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Abstract
Mechanism of transient population inversion in graphene with multi-split (interdigitated)
top-gate and grounded back gate is suggested and examined for the mid-infrared spectral
region. Efficient stimulated emission after fast lateral spreading of carriers due to
drift–diffusion processes is found for the case of a slow electron–hole recombination in the
passive region. We show that with the large gate-to-graphene distance, the drift process always
precedes the diffusion process, due to the ineffective screening of the inplane electric field by
the gates. Conditions for lasing with a gain above 100 cm−1 are found for cases of single- and
multi-layer graphene placed in the waveguide formed by the top and back gates. Both the
waveguide losses and temperature effects are analysed.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Conventional scheme of semiconductor laser [1] is based on
population inversion between electron states in conduction and
valence bands, so that the emission wavelength is determined
by the bandgap of the material used (typically, lasing takes
place in a spectral region from near-IR to far-UV). Lasers for
mid-infrared (mid-IR) and THz regions were realized based on
the tunnel-coupled heterostructures (quantum cascade scheme
[2]) or on the p-type bulk materials with the degenerate
valence bands [3]. Active studies of graphene, which is a
two-dimensional gapless semiconductor with unusual physical
characteristics [4], involve both theoretical investigation of
the stimulated emission regime under steady-state or ultrafast
pumping [5, 6] and experimental attempts—approaches for
realization of lasing. Recently, the transformation of the
ultrafast optical pumping into THz or near-IR radiation
was reported, see [7–9]. Due to the emission of optical
phonons after the ultrafast pumping [7], these approaches
should lose an efficiency with increasing pulse duration. In
order to avoid the suppression of stimulated emission, one
needs a pumping scheme which permits creation of dense

3 Present address: QK Applications, San Francisco, CA 94033, USA.

electron–hole plasma without involvement of the high-energy
states when the optical-phonon emission becomes essential.
Thus, investigation of alternative pumping mechanisms for
realization of population inversion in electron–hole plasma of
graphene is timely now.

In this paper, we suggest a new pumping scheme for a
graphene layer modulated by spatio-temporally varied voltages
applied through multi-split gates (MSGs), see the structure
in figure 1(a). Such structures have been studied for THz
plasmonic devices [10], for excellent coupling between two-
dimensional plasmons and THz waves. For our purpose,
the MSG structure enables us to induce spatially separated
electrons and holes in the graphene layer by bias voltages at
the initial time and then to induce the interband population
inversion through the entire layer by lateral drift and diffusion
processes. An initial periodical modulation of electron and
hole concentrations shown in figure 1(b) takes place at t � 0
under bipolar voltages ±Vg applied through the top gates of
the MSG structure. Temporal evolution of the initial charge
distributions due to lateral spreading of carriers after abrupt
switch-off voltages ±Vg at t � 0 is shown in the middle
panel of figure 1(b). If recombination processes are negligible,
in-plane spreading of electrons and holes drifted by the electric
field created by themselves takes place with a timescale tD,
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Figure 1. (a) Multi-split-gated structure under initial biases +Vg and
−Vg with a grounded back gate at the bottom. (b) Transient
evolution of charge concentrations after switching off the voltages
±Vg at t = 0 when lateral drift and diffusion processes take place
during time intervals t ∼ tD and tD � t � tR, where tD and tR are
the characteristic timescales of the drift–diffusion and
recombination processes, respectively.

followed by their diffusion within time tD � t � tR, where
tR is the characteristic time for non-radiative recombination,
without changing the total electron and hole concentrations
which are determined by the initial conditions at t � 0. The
MSG structure also works as a waveguide where the multi-split
top and back gates define the vertical confinement and waves
propagate along the waveguide. By having many periods,
the waveguide can work in the mid-IR region, in which the
wavelength is several times larger than one period (∼5 µm).

Under a typical disorder level, the drift–diffusive
hydrodynamic equations describe regime of spreading at t > 0,
when the initial distributions transform into homogeneous
quasi-Fermi distributions of electrons and holes. If transient
stimulated emission due to direct interband transition in the
spectral region h̄ω � 2εF takes place during timescales
less than or comparable to the characteristic time tD in the
passive region (at energies less than a half of the optical-
phonon energy), an effective regime for the transient stimulated
emission is accomplished.

The paper is organized as follows. In the next section we
calculate the distributions of carriers in the biased structure
under consideration. In section 3, we analyse the process of
lateral drift and diffusion of carriers after the bias voltages
are abruptly switched-off. The transient lasing regime is
considered in section 4. The last section includes the list of
approximations used and conclusions. In the appendix we
evaluate the hydrodynamic equations describing a temporal
evolution of non-uniform electron–hole plasma.

2. Initial electron and hole distributions

We start from consideration of the initial distribution of
electron and hole concentrations under the biases ±Vg applied
through the multi-split top gates separated by the distance d

from graphene placed at z = 0 over the substrate with the
grounded bottom gate at z = −d . The two-dimensional
Poisson equation

∂2ϕ

∂x2
+

∂2ϕ

∂z2
= 0, |z| < d, |x| < L (1)

should be supplied by periodic boundary conditions along the
structure (x-direction, here 2L is the length of the two-strip
element with +Vg and −Vg voltages), boundary conditions at
the top gates and bottom gate, ϕ||x±L/2|<Lg/2,z=d = ±Vg and
ϕ|z=−d = 0, and boundary conditions far from the structure,
(∂ϕ/∂z)x,z→∞ = 0. Boundary conditions at the graphene
layer are given by the continuity requirement ϕ|z=+0

z=−0 = 0 and
the Gauss theorem:

∂ϕ

∂z

∣∣∣∣z=+0

z=−0

= −4π

ε
ρ. (2)

Here ε is the static dielectric constant, which is the same for
the layers under and above the graphene layer, and ρ = ρe +ρh

is the total charge density in the graphene layer, where ρe and
ρh are the electron and hole charge densities, respectively.

Initial distributions of the potential and the charge
densities can be found by solving equation (1) self-consistently
with the following relation between the charge densities and
the potential in the graphene layer, ϕ|z=0:

ρr = sr

4e

2πh̄2

∫ ∞

0
dppfF(p, −sreϕ|z=0, T ), (3)

where se = −1 and sh = +1, T is the carrier temperature, and
fF(p, E, T ) = {1 + exp[(vp − E)/T ]}−1 is the quasi-Fermi
distribution with the carrier velocity v = 108 cm s−1.

The charge densities and potential would be obtained from
equations (1) and (3) analytically as |ρr | = ρs = εVg/4πd =
CsVg and ϕ = ϕs =

√
πh̄2v2CsVg/2e3, in the case when

the parallel-plate model could be applicable, the temperature
would be zero, and the quantum capacitance of graphene could
be ignored. However, the parallel-plate model is not applicable
in our case, due to the limitation of the vertical dimension d that
determines the operating frequency of the waveguide structure
and the magnitude of gate voltages in order to have population
inversion up to that frequency. Intending waveguide structures
operating at mid-IR wavelengths, in the discussion below
we shall set the structural parameters as d = 1.5–4 µm,
L = 1.5–6 µm, Lg = 0.5–2 µm, and ε = 4 (SiO2) and
with thickness of the gates fixed to 10 nm. However, it should
be mentioned that SiO2 has sharp absorption peaks at 9 and
21 µm [11]. Therefore, we shall focus on λ = 12 µm,
15 µm and 30 µm (corresponding to f = 25 THz, 20 THz
and 10 THz, respectively). In general, either adapting non-
polar waveguide materials or avoiding absorption peaks in
polar materials is preferable to avoid the dielectric loss in the
THz/mid-IR region.

Figure 2 shows the normalized potential distribution,
ϕ/Vg, with d = 1.5 µm, L = 2 µm and Lg = 0.5 µm at
T = 300 K and Vg = 200 V, and figure 3 shows electron and
hole concentrations, |ρr/e| with different gate voltages. As
expected, the gate voltages induce electrons and holes in the
graphene layer, in which the potential is slightly fluctuated
from zero to have nonzero charge densities. Since we have
the gates placed far away from the graphene layer, the electron
and hole charge densities are smaller than those obtained using
the parallel-plate model, ρ = ρs, and they have sinusoidal-like
shapes. Moreover, since we have the ratio of L/d close to
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Figure 2. Contour plot for dimensionless potential distribution,
ϕ/Vg, in the structure with d = 1.5 µm, L = 2 µm, Lg = 0.5 µm
and ε = 4 at T = 300 K and Vg = 200 V. The bold black line
corresponds to the graphene layer, and the grey lines to the gates. In
between the graphene layer and the bottom gate there is only an
invisible variation of the potential, of the order of 0.1 V.
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Figure 3. Distributions of electron (r = e) and hole (r = h)
concentrations (solid and dashed lines, respectively), with the same
parameters as in figure 2 except gate voltages.

unity, the electric field in the graphene layer created by one
gate is cancelled due to the fringe effect by the other gate
with opposite-signed voltage, so that the charge densities are
further reduced. The electric field is mostly concentrated at
the edges of the gates, reflecting that their thickness is much
smaller than their length. The maximum field for the highest
voltage is close to but still below the breakdown field of SiO2,
∼10 MV cm−1 [13]. On the other hand, the field is almost zero
in between the graphene layer and the bottom gate due to the
screening.

3. Transient lateral drift–diffusion and population
inversion

After the abrupt switch-off of the gate voltages, the carriers
spread over the graphene layer by the lateral drift–diffusion
processes. In the limit of effective intercarrier scattering and
momentum relaxation due to the elastic scattering on structural
disorders, these processes are governed by the hydrodynamic
equations described in the appendix, equations (A.7) and
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Figure 4. Transient evolution of (a) in-plane electric field,
(b) electron concentration and (c) electron quasi-Fermi level with
the same parameters as in figure 2 and with υtot/v = 0.5.

(A.8), coupled with the self-consistent Poisson equation,
equation (1). In this section, they were solved numerically
as nonlinear equations for the quasi-Fermi levels for electrons
and holes, µrxt , using the standard finite-difference scheme.
As mentioned above, we also assume that recombination
processes are suppressed.

Figures 4(a)–(c) show the time and position dependences
of the electric field, electron concentration, and electron quasi-
Fermi level, respectively (see also figure 5). Here the same
parameters as in figure 2 were used and we have an additional
parameter, υtot/v, which characterizes the total scattering
rate caused by structural disorders (see appendix for details).
Hole concentration and its quasi-Fermi level are just equal
to mirror images of figures 4(b) and (c). They show two
distinct timescales of relaxation of these quantities towards
their steady states. One is about 0.5 ps, and it is associated
with a process that continues until the electric field created
by carriers becomes negligibly small, thus identified as the
drift process. The other is longer than 10 ps and is due to the
diffusion process. In our case where d is comparable to L and
therefore the screening of the inplane electric field by the gates
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Figure 5. Time dependence of electron quasi-Fermi level at
x = L/2 with the same parameters as in figure 2 and with different
values of υtot/v.

is ineffective, the timescale of the drift process is always much
faster than that of the diffusion process, unless the quasi-Fermi
level is not too large. According to [12], in the degenerate case
where µe/kBT � 1, those characteristic timescales for drift
and diffusion processes in the system under consideration can
be represented as

τdr ∼
(

L

2v

)2

νp=µe/v

µe

eExL
, τD ∼

(
L

2v

)2

νp=µe/v, (4)

where νp = (υtot/h̄)p is the scattering rate which depends
linearly on the momentum due to the linear density of states.
Note that they depend on the quasi-Fermi level (directly,
through the self-consistent electric field, and through the
collision frequency). With µe ∼ 100 meV and Ex ∼
0.2 MV cm−1 taken from figures 4(a) and (c), we have τdr ∼
0.4 ps. On the other hand, taking into account that the
quasi-Fermi level after its stabilization by the drift process
is about 50 meV in figure 4(c), we have τD ∼ 40 ps. These
estimations agree well with the timescales mentioned above.
It can also be seen from figure 4(c) that more or less uniform
distribution of the electron quasi-Fermi level around 50 meV is
reached and population inversion in the THz range through the
entire graphene layer is established just after the drift process.
Qualitatively speaking, this is shorter than the timescale of
nonradiative recombination via optical phonons, which is in
between 1 and 10 ps (see, for example, [14]).

Figure 5 shows the time dependence of the electron quasi-
Fermi level at the centre of the graphene layer with different
values of υtot/v. The timescales increase simultaneously when
υtot/v increases, since the carrier spreading becomes slower
when its scattering becomes more frequent. A dimensional
analysis shows that the timescales are proportional to υtot/v.
Moreover, they are almost proportional to L2 when d, Lg and
Vg are scaled linearly to L. On the other hand, when fixing d

and Vg while scaling L and Lg, the timescale of the drift process
is roughly proportional to L, whereas that of the diffusion
process remains proportional to L2.

Figure 6 shows the minimum electron quasi-Fermi level at
t = 0.3 ps as a function of gate voltage Vg with different half-
period lengths L and different gate lengths Lg, together with
υtot/v = 0.1. As can be seen in figures 4(c) and 5, we have
more or less uniform quasi-Fermi level at the time t = 0.3 ps
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Figure 6. Minimum electron quasi-Fermi level at t = 0.3 ps as a
function of gate voltage Vg with different half-period lengths L and
different gate lengths Lg, together with υtot/v = 0.1. Thin solid lines
indicate a half of the photon energy corresponding to λ = 12 µm.

for υtot/v = 0.1, so that it makes sense to discuss about a single
quasi-Fermi level (we took the minimum quasi-Fermi level to
ensure that population inversion at a certain energy takes place
all over the graphene layer). It is clear from figure 6 that
the quasi-Fermi level increases monotonically as the voltage
increases. Also, it increases as the gate length increases.
The condition of population inversion, h̄ω/2 < µr , for
λ = 12 µm is fulfilled at voltage Vg > 150–300 V depending
on the gate length Lg and the half-period length L. Since
we have neglected the nonradiative recombination, the quasi-
Fermi level is solely determined by the initial concentration
and, thus, by the electrostatics through the gate voltages and
geometrical parameters in a non-trivial way. In particular,
threshold voltages for the same value of the quasi-Fermi level
are lower for L = 4 µm than those for L = 2 µm. This
lowering is associated with the larger ratio of L/d in the former
case, where the cancellation of the electric field in the graphene
layer discussed in the previous section is largely relaxed and
thereby the induced charge densities as well as the total charges
become larger.

From the aspect of the breakdown field, detailed numerical
analysis showed that the maximum field at the gate edges to
obtain the same value of quasi-Fermi level (say, 60 meV) varies
a little by the value of Lg for a fixed value of L, although there
exists an optimal value of Lg; for example, for L = 2 µm,
the maximum field ranges from 2 to 2.4 MV cm−1 when
Lg = 0.2–1 µm, having the minimum value at Lg � 0.4 µm.
In conjunction with the fringing effect mentioned above, the
maximum field becomes several times smaller as L changes
from L = 2 to 4 µm (reduced to around 0.7 MV cm−1). Note
that for too long L, the timescale of the drift process becomes
longer, so that the nonradiative recombination effectively takes
place before the drift process completes, and the condition
of population inversion might not be fulfilled. It is worth
mentioning that the results obtained in this section depend
only weakly on the temperature through the temperature
dependence of the quasi-Fermi level for fixed charge densities.
In particular, the quasi-Fermi level becomes slightly larger as
the temperature becomes lower. However, this is not the case
for gain of the waveguide since values of distribution functions
around the quasi-Fermi level mainly determine the gain and
depend greatly on the temperature.
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4. Transient gain of MSG structures

Finally, we turn to estimate gain in the MSG structure. We
determine the electric field of TE mode Ez exp(ikx − iωt)

propagating along the waveguide from the wave equation[
d2

dz2
− k2 +

(√
εω

c

)2
]

Ez = 0. (5)

Here we take into account the dielectric loss by introducing
the complex dielectric constant, ε = ε′ + iε′′, while we assume
ε′ � ε′′. We use the boundary conditions at multi-split and
bottom gates Ez=±d = 0. We set to Ez=d = 0 the boundary
condition at the MSGs because the gate period is shorter than
the wavelength.

At the graphene layer we use a continuity requirement
Ez|z=+0

z=−0 = 0 and a boundary condition

dEz

dz

∣∣∣∣0

−0

= −i
4πω

c2
σωEz=0, (6)

which is written through the high-frequency conductivity of
graphene, σω = σ ′

ω + iσ ′′
ω . Using the solution of equations (5)

and (6), Ez ∝ sin κ(d − |z|) with κ =
√

ε(ω/c)2 − k2, one
obtains the dispersion relation between the wavenumber k and
the frequency ω:

κd cot(κd) = 2π(−σ ′′
ω + iσ ′

ω)
ωd

c2
. (7)

Neglecting the Drude-like conductivity which is small at
the designed mid-IR frequencies of the waveguide (see
experimental data in [15] and also discussion at the end of the
section) compared with the interband conductivity during the
state of population inversion, the conductivity can be written as

σ ′
ω = e2

4h̄

(
1 − f̃exp=pωt − f̃hxp=pωt

)
, σ ′′

ω � 0, (8)

where pω = h̄ω/2v and f̃r is the quasi-Fermi distributions of
electrons and holes with temperature T and quasi-Fermi levels
µr . Here we take the minima of the quasi-Fermi levels to avoid
the complication by their position dependence in the transient
behaviour discussed in the previous section. In the case of
multi-layer graphene, the conductivity roughly becomes m-
fold larger, where m is the number of graphene layers.

Taking into account the smallness of σ ′
ω/c, we derive

the explicit expression of the complex wavenumber from
equation (7):

kd �
(√

ε′ωd

c

)2

−
(π

2

)2
+ i

ωd

c2
(4πσ ′

ω + ε′′ωd)

1/2

. (9)

Away from the condition
√

ε′ωd/c = π/2, the following
approximate expressions for the gain defined as gω = −Im k

and the real wavenumber kω = Re k can be obtained from
equation (9):

gωd � − ω

2kωc2
(4πσ ′

ω + ε′′ωd),

kωd �
(√

ε′ωd

c

)2

−
(π

2

)2

1/2

,

(10)
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Figure 7. Dependence of gain on the thickness d with operating
wavelengths λ = 12, 15 and 30 µm, quasi-Fermi levels µ = 70, 60
and 40 meV for (a), (b) and (c), respectively, different absorption
indices, different temperatures, and different numbers of graphene
layers (left panels for single layer and right for four layers).

for
√

ε′ωd/c > π/2. This case corresponds to a propagating
mode with relatively small gain. In the opposite case, we
have a quasi-standing-wave mode with high gain, which is not
of our interest. Considering the nonnegligible absorption by
SiO2, it turns out that the waveguide under consideration has
a rather narrow bandwidth for the propagating mode around
the central frequency ω = πc/2

√
ε′d when the thickness d is

fixed. Writing the imaginary part of the dielectric constant ε′′

through the absorption index n′′ (ε′′ � 2
√

ε′n′′), the condition
of positive gain can be readily obtained from equation (10) for
multi-layer graphene:

− m
(
1 − f̃exp=pωt − f̃hxp=pωt

)
� n′′

α
� ε′′

2
√

ε′α
, (11)

where α = e2/h̄c is the fine structure constant. Since the left-
hand side in equation (11) is smaller than m, we have a rather
universal expression for the maximum allowed value of the
dielectric loss for positive gain, n′′ < mα.

Figure 7 shows the dependence of gain on the thickness
d with operating wavelengths λ = 12 µm, 15 µm and
30 µm, quasi-Fermi levels µ = 70 meV, 60 meV and
40 meV, respectively, different absorption indices, different
temperatures, and different numbers of graphene layers,
using equation (9). Note that for each wavelength under
consideration the condition of population inversion is satisfied
with corresponding quasi-Fermi level. We plotted figure 7
for the thickness larger than d0 = πc/2

√
ε′ω (d0 = 1.5 µm,

1.88 µm and 3.75 µm for λ = 12 µm, 15 µm and 30 µm,
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respectively), which correspond to the propagating mode.
At the condition d = d0, the values of the gain and real
wavenumber coincide. For d < d0, the mode transits abruptly
to a quasi-standing-wave mode, which has a real wavenumber
in the propagation direction much smaller than d0. It is seen
from figure 7 that the gain above 100–200 cm−1 is achieved
and that the gain decreases as the thickness increases, whereas
the real wavenumber increases. These dependences can be
understood from the fact that the propagating mode can be
considered roughly as the superposition of electromagnetic
waves with wavevectors (kω, ±kd), where kd = π/2d is
the wavenumber in the z-direction. These electromagnetic
waves propagate with reflection by the multi-split and bottom
gates and with passage through the gain region, i.e., the
graphene layer. With increasing d , the electromagnetic waves
are more inclined to the propagation direction in order to
match the absolute value of their wavevectors to

√
ε′ω/c =

2π/λ, so that the real wavenumber kω along the propagation
direction increases; the matching condition is just given by
equation (10). In turn, this increase in the real wavenumber
accompanies the rapid gain decrease near d = d0, as it reduces
‘the number of passages’ of the electromagnetic waves through
the gain region in unit length along the propagation direction.
Taking these dependences into account, one needs to choose
carefully a proper value of the thickness d (slightly larger than
d0) to have sufficiently large real wavenumber while keeping
the gain larger than losses. Conversely, once the thickness
is determined, the operating wavelength is limited in a rather
narrow-band range.

Figure 8 shows the dependence of gain on the quasi-Fermi
level with a fixed thickness for each operating wavelength. The
real wavenumber does not noticeably change by the quasi-
Fermi level. It is seen in figure 8 that the gain increases almost
linearly to the quasi-Fermi level, starting from the onset of
positive gain described by equation (11), and it saturates after
the increase in the quasi-Fermi level by temperature. Owing
to the factor 1/d in the expression of k, the gain increases as
the operating wavelength decreases.

Figures 7 and 8 exhibit a relatively strong temperature-
dependence of the gain. This reflects the fact that the
interband negative conductivity is linearly dependent on values
of distribution functions as seen in equation (8), resulting in
the increase in its absolute value for the frequency below the
quasi-Fermi level as the temperature decreases. Thus, at low
temperature the positive gain appears for the higher absorption
index. It in turn means that for a fixed absorption index the
threshold quasi-Fermi level for the positive gain becomes lower
at lower temperature, although above the threshold the positive
gain quickly saturates and the magnitude remains more or less
the same below T = 77 K. Also, the introduction of multi-
layer graphene greatly enhances the gain. The absorption
index n′′ experimentally measured for fused silica glasses
in [11] is above 10−2, although a smaller value is expected
by a thermally grown crystalline SiO2 on a Si substrate. As
seen in the right panels of figure 7, the dielectric loss in such
a case can be overcome by introducing multi-layer graphene
and by operating at low temperature. One can alternatively
use nonpolar materials with no large absorption in the mid-IR
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Figure 8. Dependence of gain on the quasi-Fermi level with fixed
thickness d (λ = 12 µm, 15 µm, 30 µm and d = 1.51 µm, 1.89 µm,
3.78 µm for (a), (b), (c), respectively). Other parameters are the
same as in figure 7.

wavelength as a part of the MSG structure, e.g., in the substrate
region, where materials with relatively low breakdown field are
permissible.

It was checked that the Drude-like conductivity, with
increased electron and hole concentrations during the state of
population inversion and with the scattering rate by disorders
(υtot/v > 0.1), becomes influential when the wavelength is
longer than 30 µm. In particular, it decreases the values of
the gain in figure 7 and increases the threshold of the gain
in figure 8. Also, it is anticipated that the imaginary part
of the Drude-like conductivity changes the condition of the
propagating mode, d > d0, due to reflection of electromagnetic
waves at the graphene layer. However, these effects are not
essential for physics discussed in this section, although they
add more complication to the design of the MSG structure,
which is beyond the scope of this paper.

5. Conclusions

With the main goal to find conditions for an effective stimulated
emission regime without the optical-phonon emission, we
have examined a new pumping scheme for a graphene layer
modulated by spatio-temporally varied voltages which are
applied through the multi-split top gates. We found that a
transient lasing regime in the mid-IR spectral region is realized
in the MSG structure with micrometer width and period. Gain
above hundred(s) cm−1 for operating wavelengths λ = 12, 15
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and 30 µm was obtained if the gate voltage is around 100–
300 V. This is comparable to gain in typical quantum cascade
lasers [16] and the transient stimulated emission takes place if
waveguide losses are comparable to losses in quantum cascade
lasers.

Let us discuss the assumptions we used in the presented
calculations. Because of a lack of data on graphene structures
with multi-split gates, the above consideration was separated
into description of the different stages of evolution (i.e.,
diffusion from the separated electron and hole distributions at
initial moment to the homogeneous electron–hole plasma) and
estimates of the gain at a time when the recombination caused
by optical phonons and Auger processes is negligible (see
numerical data for recombination rate in [17]). The inclusion
of the Auger processes, which are forbidden by the vanishing
phase space for transition for the case of strictly linear band
dispersion [18], requires special theoretical investigation to
account not only for the energy-level broadening [19] but also
band renormalization due to electron–electron and/or electron–
disorder interaction, and it is beyond the scope of this paper.
We considered the simplified periodical geometry (the edge
effects require a special consideration) placed into a media
with homogeneous dielectric constant. A more complicate
spatio-temporal simulation does not change the numerical
estimates presented here and it should be performed for a
specific structure. In calculating the waveguide mode of
the MSG structures we assumed the zero field at the plane
where the multi-split gate is placed. Other assumptions are
rather standard. We used the semi-phenomenological model
of elastic scattering under description of the diffusion process
in the appendix, assuming the rate of long-range disorder
scattering is proportional to carrier momentum (see discussion
and conditions in [20]), and restricted ourselves by the single-
particle approach. For the mid-IR region, one can omit
the intraband (Drude-like) conductivity in realistic graphene
samples; see experimental data and discussion in [15]. In
addition, we do not consider a nonlinear regime of lasing,
which is essential under high concentrations (limited by Vg)
or for long times, so that a pulse duration is not determined
here. An estimate of the recovery time requires a special
consideration.

To conclude, we believe that the results obtained open a
way for a further experimental investigation of the transient
stimulated emission in the mid-IR spectral region and that the
use of the MSG structures suggested can open a new possibility
for mid-IR application. Note that attempts for realization of the
graphene-based laser in the THz and near-IR spectral region
were performed in recent years [5–9]. Similar investigations
in the mid-IR spectral region should be useful for realization
of devices in that region.
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Appendix. Hydrodynamic approach

The electron and hole contributions (r = e and h) to the charge
and current densities, ρrxt and Irxt , are determined by the
standard quasi-classical relations:∣∣∣∣ρrxt

Irxt

∣∣∣∣ = 4sre

∫
dp

(2πh̄)2

∣∣∣∣ 1
vp

∣∣∣∣ frxpt , (A.1)

where frxpt stands for electron or hole distributions and
se = −1 and sh = +1. The spatio-temporal evolution of
the quantities (A.1) is governed by the quasi-classical kinetic
equation for frxpt , see [21]. In this paper, we consider the case
of effective momentum relaxation due to the elastic scattering
on structural disorders, under the conditions νm ≡ νp̄ �
|eE|/p̄ (here p̄ is a characteristic momentum) and νm � v/L,
when the distribution is given by frxpt = frxpt + �frxpt with
a weak anisotropic part, �frxpt = −�frx,−pt . The linearized
equation for �f gives the anisotropic distribution in the form:

�frxpt = − (
vp · ∇x + sreExt · ∇p

)
frxpt/νp, (A.2)

where we used the elastic collision integral −νp�frxpt written
through the momentum relaxation frequency νp. The isotropic
part of distribution frxpt is governed by the equation:

∂frxpt

∂t
+ �rxpt =

∑
k

Jk(fxt |rp), (A.3)

�rxpt = (
vp · ∇x + sreExt · ∇p

)
�frxpt ,

where overline means the averaging over p-plane angle
and summation over k includes the non-elastic scattering
mechanisms (k = ac, opt, cc for relaxation via acoustic and
optical phonons or carrier-carrier scattering).

A general solution for equations (A.2) and (A.3) is
determined both by external field and by relative contributions
of the nonelastic scattering mechanisms. Below we consider
the case of an effective intercarrier scattering, under the
condition

νm � νcc � νac, νopt , (A.4)

where νk means the scattering rate for kth channel. The
solution is given by the quasiequilibrium distribution:

f̃rxpt = {exp[(vp − µrxt )/Txt ] + 1}−1 (A.5)

written without a negligible correction of the order of
(νac, νopt )/νcc. Note that Jcc(f̃xt |rp) = 0 and the main
term of equation (A.3) vanishes by the solution (A.5) with any
effective quasi-Fermi levels, µrxt , and an arbitrary effective
temperature, Txt .

In order to obtain µrxt and Txt , we take into account that

4

L2

∑
p

∣∣∣∣ 1
vp

∣∣∣∣ Jcc (fxt |rp) = 0, (A.6)

i.e., the intercarrier scattering does not change the electron and
hole concentrations and the energy of carriers, as it follows
from the explicit expression for Jcc. Thus, the functions
µrxt and Txt are determined from the balance equations for
the charge and energy densities, while Irxt is determined

7



J. Phys. D: Appl. Phys. 47 (2014) 055103 A Satou et al

through µrxt and Txt according to equations (A.1), (A.2) and
(A.5). Integrating equation (A.3) over p-plane, one obtains the
balance equations for electron and hole charge densities:

∂ρrxt

∂t
+ ∇x · Irxt =

(
∂ρrxt

∂t

)
rec

, (A.7)

where we take into account that 4e
∫

dp�rxpt/(2πh̄)2 =
sr∇x ·Irxt and the right-hand side describes the recombination
processes4. We consider the momentum relaxation caused
by Gaussian and short-range disorder potentials, [20] with
the total rate νp. The Gaussian disorder is described by

the correlation function V
2

exp[−(x − x′)2/2l2
c ], where V is

the averaged energy and lc is the correlation length. Within
the Born approximation, the correspondent relaxation rate
reads νp = (υdp/h̄)�(plc/h̄)(1 + v0/vd) where we have
introduced the dimensionless function �(z) = e−z2

I1(z
2)/z2

with the first-order Bessel function of an imaginary argument,
I1(z) and the characteristic velocity υd = π(V lc/h̄)2/(2υ).
The relaxation rate due to the short-range disorder potential
has a similar (if lc → 0) dependence ∝ υ0p/h̄, with an
explicit expression for the characteristic velocity υ0 given in
reference [20]. Assuming that the carrier temperatures are
equal to the lattice temperature, Txt = T , the current density
can be written in the following expression:

Irxt = σrxt

(
Erxt − sr

e
∇xµrxt

)
, (A.8)

where the local conductivity σrxt is given by σrxt �
(e2v/πh̄υtot)f̃rxp=0t . We assumed here that the total scattering
rate is proportional to the momentum, i.e., νp = (υtot/h̄)p

with the characteristic velocity υtot = υ0 + υd of the total
scattering rate. The value of υtot can be estimated as υtot/v =
6.58×10−2 −10−1, which correspond to the value of the total
scattering rate 1013–1014 s−1 at vp = 100 meV.
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