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Interplay of intra- and interband absorption in a disordered graphene
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The absorption of heavily doped graphene in the terahertz and midinfrared spectral regions is considered,
taking into account both the elastic scattering due to finite-range disorder and the variations of concentration due
to long-range disorder. The interplay between intra- and interband transitions is analyzed for the high-frequency
regime of response, near the Pauli blocking threshold. The gate voltage and temperature dependencies of the
absorption efficiency are calculated. It is demonstrated that for typical parameters, the smearing of the interband
absorption edge is determined by a partly screened contribution to long-range disorder while the intraband
absorption is determined by finite-range scattering. The latter yields the spectral dependencies which deviate from
those following from the Drude formula. The obtained dependencies are in agreement with recent experimental
results. The comparison of the results of our calculations with the experimental data provides a possibility to
extract the disorder characteristics.
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I. INTRODUCTION

Both the gapless (massles) energy band structure and
peculiarities of scattering mechanisms determine the response
of graphene on the in-plane polarized radiation in the tera-
hertz (THz) and midinfrared (MIR) spectral regions. Such a
response is caused by both the direct interband transitions
and the intraband transitions of free carriers accompanied by
scattering processes (the Drude mechanism), see the reviews
in Refs. 1–3 and references therein. The contributions of these
two mechanisms in heavily doped graphene are described by
the inter- and intraband dynamic conductivities, σinter and σintra,
respectively, given by

Reσinter ≈ e2

4h̄
θ (h̄ω − 2εF ), σintra(ω) ≈ σF

1 + iωτF

, (1)

where εF and τF stand for the Fermi energy and the momentum
relaxation time, σF = (e2/4h̄)εF τF /h̄ is the static conductivity,
and θ (ε) is a unity step-like function. Here we have neglected
a weak imaginary contribution Imσinter

4 and the smearing of
the interband absorption edge associated with the finiteness
of the temperature T , and the collisional damping of the
electron spectrum. When such a damping can be neglected
at T = 0, the expression for Reσinter describes an abrupt jump
at photon energy h̄ω = 2εF due to the Pauli blocking effect.
The interband and intraband contributions are of the same
order of magnitude at ωτF ∼ √

4εF τF /πh̄ − 1. Therefore, the
overlap of these contributions disappears if εF τF /h̄ � 20 [see
Fig. 1(a)]. Thus, the description of interplay between both
contributions is necessary in the THz (or MIR, depending on
the doping level) spectral region for the typical samples with
h̄/εF τF � 0.2. As shown below, the quasiclassical description
of the intraband absorption and, therefore, the expression
for σintra(ω) based on the Drude formula is not valid if h̄ω

exceeds the temperature of the carriers.5,6 This is because
of the variation of the relaxation time as a function of

the electron energy over energy intervals ∼ h̄ω, where the
intraband transitions take place [see Fig. 1(b)].

The constant value for the interband conductivity Reσinter

associated with the frequency-independent absorption was
observed for undoped suspended graphene in the visible
range of the spectrum.7 By analogy with electrical transport
in field-effect transistors, MIR spectroscopy allows for the
control of the Pauli blocking effect using the electrical gating.8

In sufficiently heavily doped graphene, the Drude mechanism
of absorption was observed near the interband threshold, up
to the MIR spectral region.9–11 Despite a series of theoretical
studies (see Refs. 12–14 and references therein), which have
treated the problem of intra- and interband absorption at
different levels of approximation, there are two drawbacks in
the interpretation of the above-listed experimental data. First,
the quantum description of the intraband absorption was not
connected with the scattering parameters determined from the
conductivity measurements and, second, an inhomogeneous
smearing of the interband threshold due to long-range disorder
was not considered. Thus, a reexamination of the intra- and
interband absorption processes in a disorded graphene is timely
now.

In this paper, we present a general consideration which is
based on the Kubo formula and takes into account both the
scattering due to finite-range disorder and a long-range partly
screened variation of concentration. The latter contribution
appears to be essential because the screening of the potential
spatial variations associated with the disorder with the in-plane
scales longer than (or comparable to) the distance to gate is
suppressed. This mechanism is schematically illustrated in
Figs. 1(c) and 1(d). As a result, the inhomogeneous mechanism
of smearing of the interband absorption at h̄ω ∼ 2εF should
be taken into account, together with the thermal smearing of
the Fermi distribution and broadening of the spectral density
due to the elastic scattering on the finite-range disorder. The
dynamic conductivity in the high-frequency range (if ωτF > 1)
is expressed via the Green’s function, which is averaged over
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FIG. 1. (Color online) (a) Spectral dependencies of Reσ (ω)
described by simplified Eq. (1) for different doping levels determined
by εF τF /h̄. (b) Intra- and interband transitions between linear
branches of gapless energy spectra. (c) Screening of nonuniform
charge in ungated graphene with field distribution shown by dashed
curves. (d) Gated graphene structure with partly screened charge and
distribution of weak field shown by dotted curves.

the finite-range disorder, and the carrier distribution averaged
over the long-range partly screened disorder. The averaged
characteristics of the Green’s function were obtained using
the phenomenological description of the static conductivity
similarly to Ref. 15. Considering the interplay of the intra- and
interband contributions, we analyze the spectral, temperature,
and gate voltage dependencies of the absorption efficiency. The
obtained results are compared with the recent experimental
data.10,11 The fitting procedure demonstrates that the disorder
characterization, including the evaluation of the parameters of
high-energy scattering and long-range inhomogeneties, can be
performed using the THz and MIR spectroscopy.

The paper is organized as follows. In the next section
(Sec. II), we present the basic equations which describe the
inter- and intraband mechanisms of absorption and consider
partly screened long-range disorder in gated graphene. In
Sec. III we analyze the spectra of relative absorption and their
dependencies on the temperature disorder and as well as on
the doping conditions. The last section includes the discussion
of experimental data and the approximations used, and the
conclusions.

II. BASIC EQUATIONS

We start with the consideration of the dynamic conduc-
tivity based on the Kubo formula which takes into account
elastic scattering and the partly screened long-range disorder.
Since the absorption is determined by the real part of
conductivity,Reσω, we neglect the Imσω contribution.4

A. Dynamic conductivity

Absorption of the THz (MIR) radiation propagating along
the normal to the graphene layer is described by the real part

of dynamic conductivity,6 given by

Reσω = 2πe2

ωL2

∫
dE(fE − fE+h̄ω)

×
〈 ∑

αα′
|(α|υ̂‖|α′)|2δ(E − εα)δ(E − εα′ + h̄ω)

〉
.

(2)

Here L2 is the normalization area, f (εα) is the equilibrium dis-
tribution over the states |α) with energies εα , and |(α|υ̂‖|α′)|2 is
the matrix element of the in-plane velocity operator υ̂‖ between
the states α and α′ connected by the energy conservation
law described by the δ function. The α states are defined
by the eigenvalue problem (ĥ + Vx)�(α)

x = εα�
(α)
x expressed

via the single-particle Hamiltonian ĥ, a random potential Vx,
and the two-component wave function �

(α)
lx with l = 1,2. The

statistical averaging of Eq. (2) over the random potential is
denoted as 〈. . .〉. To perform this averaging, we introduce the
spectral density function

Aε(lx,l′x′) =
∑

α

δ(ε − εα)�(α)
lx �

(α)∗
l′x′ . (3)

Thus, Reσω given by Eq. (1) is transformed into

Reσω = 2π (eυ)2

ωL2

∫
dE(fE − fE+h̄ω)

∫
dx1

∫
dx2

×〈tr[ÂE(x1,x2)σ̂‖ÂE+h̄ω(x2,x1)σ̂‖]〉, (4)

where tr . . . means the trace over the isospin variable, υ =
108 cm/s is the characteristic velocity, and σ̂‖ = (σ̂ · e) is writ-
ten through the 2 × 2 Pauli matrix σ̂ and the polarization ort e.

Further, the spectral density function is expressed
through the exact retarded and advanced Green’s func-
tions ĜR

E (x1,x2) and ĜA
E (x1,x2) as follows ÂE(x1,x2) =

i[ĜR
E (x1,x2) − ĜA

E (x1,x2)]/2π . These Green’s functions are
governed by the standard equation

[E − i0 − υ(σ̂ · p1) − ux1 − vx1 ]GR
E (x1,x2) = 1̂δ(x1 − x2),

(5)

which is written through the potential energy with separated
contributions from finite- and long-range disorder, ux1 and
vx1 labeled as f r- and lr- respectively. The averaging 〈· · ·〉
in Eq. (4) should also be separated as 〈· · ·〉lr and 〈· · ·〉f r . It
is convenient to introduce the variables (x1 + x2)/2 = x and
x1 − x2 = �x in Eqs. (4) and (5). Using these variables and
neglecting a weak contribution of ∇vx we obtain vx+�x/2 �
vx. As a result, after the replacement E → E + v one can
separate the averaging over f r- and lr-disorder contributions
and Eq. (4) takes the form

Reσω = 2π

ω
(eυ)2

∫
dE(〈fE+v〉lr − 〈fE+v+h̄ω〉lr )

×
∫

d�x〈tr[ÂE(x1,x2)σ̂‖ÂE+h̄ω(x2,x1)σ̂‖]〉f r ,

(6)

where we take into account that 〈. . .〉f r depends only on |�x|
and use

∫
dx = L2.

We consider below the high-frequency spectral region
ωτF  1, when the correlation function 〈. . .〉f r can be
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factorized through the averaged spectral functions Â�xE ≡
〈ÂE(x1,x2)〉f r . The averaging over f r disorder gives the
contribution∫

d�x〈tr[· · ·]〉sr = L−2
∑

p

tr(ÂpEσ̂||ÂpE+h̄ωσ̂||). (7)

Here the spectral densities ÂpE should be written through the
averaged Green’s functions ĜA

pE = ĜR+
pE and ĜR

pE , which are
given by the matrix expression

ĜR
pE = [

E − υ(σ̂ · p1) − ̂R
pE

]−1
,

(8)

̂R
pE = ζR

pE + (σ̂ · p)

p
ηR

pE,

where the self-energy function is determined in the Born
approximation through the functions∣∣∣∣∣ ζR

pE

ηR
pE

∣∣∣∣∣ =
∫

dp1

(2πh̄)2
W|p−p1|

×
∣∣∣∣∣

1
E+i0−υp1

+ 1
E+i0+υp1

(p·p1)
pp1

(
1

E+i0−υp1
− 1

E+i0+υp1

) ∣∣∣∣∣ . (9)

Using the Fourier transformation of 〈ux1ux2〉f r =
u2 exp[−(x1 − x2)2/2l2

f r ], one obtains in Eq. (9) the
Gaussian correlation function W�p expressed through the
strength of the potential and correlation length u and lf r .
Because ĜR

pE depends only on the matrix (σ̂ · p), the averaged
spectral density of Eq. (7) takes the form

ÂpE = A
(+)
pE + A

(−)
pE

2
+ (σ̂ · p)

2p
(A(+)

pE − A
(−)
pE )

(10)

A
(±)
pE = i

2π

(
1

εpE ∓ υpEp
− 1

εpE ± υpEp

)
,

where we introduced the renormalized dispersion law and
velocity εpE = E − ζR

pE and υpE = υ(1 + ηR
pE/υp), respec-

tively.
For the averaging over lr disorder in Eq. (6) we introduce

the population factor 〈fE+v〉lr = ∫ ∞
−∞ dE′φE−E′fE′ with the

kernel φE−E′ determined by the characteristics of disorder,
see Sec. II B. Thus, based on the two assumptions employed
(the smoothness of lr-potential ∇v → 0 and high-frequency
approach ωτF  1) we obtain Reσω written through the triple
integral

Reσω = π (eυ)2

ωL2

∫
dE

∫
dE′φE−E′(fE′ − fE′+h̄ω)

×
∑

p

(A(+)
pE + A

(−)
pE )(A(+)

pE+h̄ω + A
(−)
pE+h̄ω), (11)

where the contributions ∝ A
(±)
pEA

(±)
pE and ∝ A

(±)
pEA

(∓)
pE cor-

respond to the intra- and interband absorption processes,
respectively. Similar expressions for the homogeneous case,
without lr contribution, were considered in Ref. 13.

B. Partly screened long-range disorder

Here we evaluate the square-averaged potential of lr

disorder which is caused by a built-in random potential wx.

We take into account the screening effect in the gated structure
with the graphene sheet placed at z = 0 on the substrate
of the width d and the static dielectric permittivity ε, see
Fig. 1(d). The electrostatic potential Vxz is defined by the
Poisson equation with the induced charge at z = 0 determined
by the concentration of electrons in the heavily doped graphene
nx = (4/L4)

∑
p θ (εF − εxp) = [(εF − vx)/

√
πυh̄]2. The dis-

persion law εpx = υp + vx is written here through the screened
potential vx = wx + Vxz=0. Performing the Fourier transfor-
mation over the x plane one obtains the second-order equations
for V <

qz and V >
qz which correspond to the substrate 0 > z > −d

and to the upper half-space z > 0(
d2

dz2
− q2

) ∣∣∣∣∣V
>

qz

V <
qz

∣∣∣∣∣ = 0,
z > 0

0 > z > −d
. (12)

The jump of the electric field at z = 0 is defined by the charge
distribution over graphene (z → 0)

dV >
qz

dz

∣∣∣∣
z=0

− ε
dV <

qz

dz

∣∣∣∣
z=0

= −�q, �q = 4πe2
∫

L2
dxe−iqxnx,

(13)

so that the potential remains homogeneous at z = 0: V <
qz=0 =

V >
qz=0 ≡ Vqz=0. The boundary condition at z = −d is defined

by the in-plane homogeneous back-gate voltage Vg as follows:
V <

qz=−d = Vgδq,0. The last boundary condition is the require-
ment that the potential V >

qz vanishes at z → ∞.
The solution of this electrostatic problem can be written

through exp(±qz) and �q which depends on Vqz=0 through
the concentration nx. Solving the system of the boundary
conditions, we find that the screening potential at z = 0 should
satisfy the requirement

Vqz=0 = −�qdK(qd), K(y) = sinh y

y(sinh y + ε cosh y)
, (14)

where the dimensionless function K describes the gate-
induced quenching of Vqz=0 due to the fixed potential at
z = −d. According to Eq. (13), �q is the nonlinear function of
the screened potential written through nx and the electrostatic
problem given by Eqs. (12) and (13) is transformed into
the integral equation for Vqz=0 determined by Eq. (14).
Further, we consider the case of heavily doped graphene,
when εF  |vx| and the electron-hole puddles are absent,
so that nx ≈ nF (1 − 2vx/εF ) is written through the averaged
concentration nF . As a result, the linearized dependency
between �q and the screened potential vq takes place

�q ≈ 4πe2nF

(
δq,0 − 2vq

εF

)
. (15)

Therefore, Eqs. (14) and (15) give the linear relation between
Vqz=0 = vq − wq and the Fourier component of the screened
potential vq. The solution for vq takes form

vq = wq

1 + 8(e/h̄υ)2εF dK(qd)
, (16)

where screening is suppressed (i.e., vq → wq) if d → 0 and the
complete screening (|vq| � |wq|) takes place at d → ∞, when
Eq. (16) coincides with the Thomas-Fermi approximation.

The averaging over lr disorder in the distribution 〈fE+v〉lr
is performed after the Fourier transform of fE with the use of
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FIG. 2. (Color online) Dimensionless averaged potential v versus
d/llr for different gF = (1) 12.5, (2) 25, (3) 50, and (4) 100.

the relation 〈exp[ivxτ/h̄]〉lr = exp[−(vτ/h̄)2/2], where v =√〈v2
x〉lr is the averaged lr potential. Under the inverse Fourier

transformation (i.e., the integration over time) of the averaged
distribution one obtains the result 〈fE+v〉lr = ∫

dE′φE−E′fE′

which is written through the Gaussian kernel

φ�E = exp[−(�E/v)2/2]/(
√

2πv) (17)

with the half-width v. Using Eq. (16) one can write v through
the averaged built-in potential wq. We consider here a simple
case of the Gaussian distribution of wx described by the
correlation function

〈wqwq′ 〉lr = L2δq+q′,02πl2
lrw

2 exp[−(qllr )2/2], (18)

which is written through the correlation length llr and the
averaged built-in potential w = √〈w2

x〉lr . Using Eqs. (16) to
(18) one obtains

v

w
=

{ ∫ ∞

0

dxxe−x2/2

[1 + gF (d/llr )K(xd/llr )]2

}1/2

, (19)

and this ratio depends on d/llr and on the coupling con-
stant, gF = (8e2/h̄υ)llr/λF ∝ εF llr , written through the Fermi
wavelength λF = υh̄/εF . If d/llr � 1 one obtains v/w → 1
and in the region d/llr � 1 one obtains v/w � √

(1 + ε)/gF

which is independent on d/llr . In Fig. 2 we plot the function
(19) for the case of SiO2 substrate if the coupling constant
gF � 10–100 corresponds to the concentration range ∼4 ×
1011–4 × 1013 cm−2 and if llr ∼50 nm. With the increasing
of nF or llr at gF > 100, the relation v/w � √

(1 + ε)/gF

appears to be valid for the interval of d/llr > 0.1.

III. RELATIVE ABSORPTION

In this section we consider the absorption of radiation
propagated along the normal to graphene sheet placed on a
semi-infinite substrate with the high-frequency dielectric per-
mittivity κ . Here we analyze the relative absorption coefficient

ξω � 16πReσω√
κ(1 + √

κ)2c
(20)

neglecting the second-order corrections with respect to the
parameter 4π |σω|/c√κ . Note that the reflection and trans-
mission coefficients Rω and Tω (these values are connected

FIG. 3. (Color online) Spectral dependencies of relative absorp-
tion in homogeneous graphene (normalized to ξinter = ξω→∞) at
temperatures 77 and 300 K (solid and dashed curves, respectively)
for concentrations (1) 5 × 1011 cm−2 and (2) 1012 cm−2. Arrows
correspond to the doubled Fermi energies and dotted curves are ∝ ω−2

asymptotics for Drude absorption.

by the energy conservation requirement Rω + Tω + ξω = 1),
involve the first-order correction ∝ 4π |σω|/c√κ and the Reσω

contributions should be involved for the description of Rω

and Tω.

A. Spectral dependencies

First, we consider ξω given by Eq. (20) after substituting
the dynamic conductivity determined by Eqs. (9) to (11).
Performing the multiple integrations in Reσω, one obtains
the spectral, gate voltage, and temperature dependencies
of relative absorption. For calculations of the renormalized
energy spectra and velocity defined by Eq. (9) we use here the
typical parameters of f r disorder corresponding to the sample
with the maximal sheet resistance ∼3.5 k� and the correlation
length lf r ∼7.5 nm, see Ref. 15 for details. The level of long-
range disorder v, corresponding to llr  λF , is determined by
the ratio d/llr , see Fig. 2; here we consider heavily doped
graphene because a more complicated analysis is necessary
for the case when electron-hole puddles are formed.16

The spectral dependencies of ξω normalized to the high-
frequency interband contribution ξinter are plotted in Fig. 3
for the homogeneous graphene case v = 0 at concentrations
5 × 1011 cm−2 and 1012 cm−2 for temperatures T = 77 and
300 K. Similarly to the schematic spectra in Fig. 1(a), one can
separate contributions from intra- and interband transitions
at h̄ω ∼100 and ∼150 meV for lower- and higher-doped
samples with the minimal value of ξω/ξinter ∼0.15 and ∼0.08,
respectively. A visible deviation from the Drude spectral
dependence (∝ ω−2) takes place due to the quantum character
of intraband transitions if h̄ω � T . Different signs of these
deviations, which depend on h̄ω, T , and nF , appear due to the
complicated energy and momentum dependencies in Eqs. (9)
and (10). The smearing of interband absorption around the
Fermi energies (2εF are marked by arrows) is defined by both
the scattering-induced broadening of the spectral density (10)
and thermal effect (c.f. the solid and dashed curves in Fig. 3).

In addition, the inhomogeneous smearing of the interband
absorption threshold due to partly screened long-range varia-
tions of concentration is essential, as it is shown in Fig. 4 for
T = 77 K. Here we considered a strong lr-disorder case with
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FIG. 4. (Color online) The same as in Fig. 3 at T = 77 K taking
into account inhomogeneous smearing of threshold due to partly
screened variations of concentrations around (1) 5 × 1011 cm−2 and
(2) 1012 cm−2. Dashed curves are plotted for the homogeneous case
v = 0.

v � 30 meV for nF = 5 × 1011 cm−2 and v � 20 meV for
nF = 1012 cm−2 (we used the dependencies of Fig. 2 with
w � 50 meV and d/llr � 0.1). Similarly to the thermally
induced effect, the partly screened disorder effect results both
in smearing of the interband absorption threshold and in
enhancement of the minimal absorption in the region between
intra- and interband contributions.

B. Comparison with experiment

We turn now to a comparison of our calculations with
the recent experimental data10,11 where both the spectral
dependencies of relative absorption in large-area samples
and the static conductivity σ versus gate voltage Vg were
measured. Using the phenomenological momentum relaxation
rate νp suggested in Ref. 15 and the experimental data for hole
conductivity from Refs. 10 and 11, one can fit the dependency
σ (Vg) as it is shown in Fig. 5. This approach gives us the
f r-disorder scattering parameters for energies vp � 200 meV
and we can extrapolate these data up to ∼400 meV energies,
which are necessary for the description of the MIR response
measured in Refs. 10 and 11.

In Fig. 6 we plot the spectral dependencies of relative
absorption measured in Ref. 12 for graphene with hole con-
centrations ∼2.2, ∼4.3, and ∼5.8 × 1012 cm−2 at T = 100 K.
Solid curves are plotted for the case of a homogeneous sample
with the scattering parameters determined from the transport
data shown in Fig. 5. These dependencies are in agreement
with the experiment both in the intraband absorption region

FIG. 5. (Color online) Fitting of experimental data from Refs. 10
and 11 marked as 1 and 2: (a) momentum relaxation rate νp versus
energy υp and (b) sheet conductivity versus gate voltage. Squares
and triangles are experimental points from Refs. (1) 10 and (2) 11,
respectively.

FIG. 6. (Color online) Fitting of relative absorption spectra
(normalized to ξinter) to conditions of Ref. 10 at gate voltages (1)
−30, (2), and (3) −80 V. Solid and dotted curves correspond to
homogeneous and inhomogeneous (with w ∼ 150 meV) samples.
Squares, triangles, and diamonds are experimental points for the
cases 1, 2, and 3, respectively. Arrows correspond to the doubled
Fermi energies.

(at h̄ω � 150 meV) and above the threshold of interband
absorption, at h̄ω > 2εF . But the absorption in the intermediate
region h̄ω ∼ 200–300 meV appears to be suppressed in
comparison to the experimental data. The minimal absorption
increases if we take into account the partly screened lr-disorder
contribution with v ∼ 80, 75, and 60 meV for curves 1, 2,
and 3, respectively. Such values of v are realized if w is
comparable to εF and d/llr � 0.1 (i.e., the micrometer scale
of inhomogeneities takes place, see Fig. 2). Thus, we have
obtained a reasonable agreement with the experimental data.
But the smearing of the interband threshold is stronger in
comparison to the experimental data because the Gaussian
model does not describe a real lr distribution. A more accurate
description is possible with the use of lr-disorder parameters
taken from additional structure measurements.

A similar fitting of ξω/ξinter measured in Ref. 11 for hole
concentrations ∼4.3, ∼6.5, and ∼8.6, and 11 × 1012 cm−2

at T = 300 K is presented in Fig. 7. We plot the spectral
dependencies both for the homogeneous sample (solid curves)
and for the inhomogeneous sample taking into account the
strong lr disorder (dotted curves) with v ∼ 120, 105, 90,
and 75 meV for curves 1, 2, 3, and 4, respectively. Now,
reasonable agreement with experimental data for interband

FIG. 7. (Color online) The same as in Fig. 6 for conditions of
Ref. 11 at gate voltages (1) −30, (2) −60, (3) −90, and (4) −120 V.
Squares, triangles, diamonds, and inverse triangles are experimental
points for the cases 1, 2, 3, and 4, respectively.
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absorption takes place (see the above discussion of Fig. 6 about
the lr-disorder contribution) while the intraband absorption
appears to be two to three times stronger in comparison to
the disorder-induced contributions calculated. An additional
contribution may appear due to relaxation via the emission of
optical phonons of energy h̄ω0. Such a channel of intraband
absorption is allowed if εF > h̄ω0 and the rate of transitions
is proportional to the density of states at εF − h̄ω0. As a
result, this process may be essential for the conditions of
Ref. 11, where εF � 250 meV, while this mechanism should be
negligible at the lower concentrations and temperatures used in
Ref. 10. Recent calculations of the phonon-induced intraband
contribution17 gives an additional absorption ∼0.2ξinter for the
conditions of Ref. 11. This contribution is of the order of
the disagreement between calculations and experimental data
presented in Fig. 7. More detailed experimental data, for the
spectral range 200–400 meV at temperatures �300 K, are
necessary to verify this contribution.

Overall, the comparison performed here demonstrates
reasonable agreement with the experimental data, which opens
a way for the verification of scattering mechanisms and long-
range disorder parameters. The Drude spectral dependencies
(for the region �100 meV) were fitted to the experimental data
in Refs. 10 and 11; our calculations are in good agreement with
these data because we used the scattering parameters taken
from the transport measurements. A complete verification
can be performed under complex analysis which should
include comparisons of spectroscopic data with (i) steady-
state transport measurements of conductivity and Hall effect
versus Vg and T , (ii) a structural (e.g., scanning tunneling
microscopy) characterization of long-range disorder, and
(iii) effect of large-area inhomogeneties (ripples, wrinkles,
holes, etc.) in centimeter-sized samples.

IV. CONCLUSION

We have examined the spectral, concentration (gate volt-
age), and temperature dependencies of the relative absorption
due to intra- and interband transitions in graphene taking
into account both elastic scattering and partly screened
long-range variations of concentration. The smearing of the
interband absorption edge, deviation from the Drude spectral
dependence due to quantum regime of intraband transitions,
and interplay of these two contributions are demonstrated.
The results are in agreement with the recent experimental data
obtained for heavily doped graphene.10,11 This analysis allows
to extract disorder parameters in the high-energy region (up to
h̄ω above the Fermi energy).

Let us discuss the assumptions used in the calculations
performed. The main restriction of the results is due to
consideration of the high-frequency spectral region, when
Reσω can be written through the matrix product of the averaged
spectral density functions (10). A more complicated descrip-
tion, based on the Bethe-Salpeter equation, is necessary for
the low-frequency region ωτF � 1, which is beyond the scope
of our consideration. This case is realized if h̄ω < 20 meV,
where the Drude dispertsion takes place, see Figs. 3 and 4.
We also restrict ourselves by the phenomenological models
for the finite-range disorder scattering15 and for the partly
screened long-range variations of concentration. It is enough
for a description of spectral, gate voltage, and temperature
dependencies of ξω because they are expressed through simple
correlation functions which are similar for any microscopic
nature of disorder. In addition, a long-range random strain18

may have affect on the interband transitions in large-area
samples. The scattering processes caused by phonons and
carrier-carrier collisions should be analyzed under calculations
of the intra- and interband absorption in clean samples. A
possible contribution of optical phonons at room temperature11

is discussed in Sec. III B (more detailed analysis is beyond of
the scope of this paper) while the interaction with acoustic
phonons is negligible. The Coulomb interaction changes the
interband absorption in the UV spectral region due to the
excitonic effect.19 The comparison with the experiment was
performed here for the hole doping case and electron-hole
asymmetry reported in Refs. 10 and 11 is unclear. According
to Refs. 20, the Coulomb-induced renormalization of the
response and scattering processes give a weak contribution
for typical disorder levels. This disagreement requires an
additional investigation.

To conclude, we believe that our results open a way for
the characterization of scattering processes and long-range
inhomogeneities using THz and MIR spectroscopy. More
importantly, that effect of disorder on THz and MIR response is
the main factor which determines characteristics of different
devices (e.g., lasers21 and photodetectors22) in this spectral
region. We believe that our study will stimulate a further
investigation of these device applications.
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