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We analyze the dynamic operation of an optical modulator based on double graphene-layer (GL)

structure utilizing the variation of the GL absorption due to the electrically controlled Pauli blocking

effect. The developed device model yields the dependences of the modulation depth on the control

voltage and the modulation frequency. The excitation of plasma oscillations in double-GL structure

can result in the resonant increase of the modulation depth, when the modulation frequency

approaches the plasma frequency, which corresponds to the terahertz frequency for the typical

parameter values. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4766814]

I. INTRODUCTION

The gapless energy spectrum of graphene layers (GLs),1

results in the interband absorption of the electromagnetic

radiation from the terahertz (THz) to ultraviolet range.2 This

opens up prospects to use graphene structures in active and

passive optoelectronic devices. Novel lasers, photodetectors,

modulators, and mixers have been proposed and studied3–15

(see also the review paper16 and references therein). Varying

the controlling voltage, one can effectively change the elec-

tron and hole densities and the Fermi energy and, hence, the

intraband and interband absorptions in GLs. An increase in

the electron (hole) density increases the intraband absorption

(associated with the Drude mechanism), but it decreases the

interband absorption due to the Pauli blocking effect. Which

mechanism dominates depends on the incident photon

energy �hX and the momentum relaxation time of electrons

and holes, s. At the frequencies of infrared and visible radia-

tion, X� s�1, so that the Drude absorption is weak. Even in

the THz range, the latter inequality can be valid for high

quality GLs (like those studied in Refs. 17 and 18), even at

room temperatures.

In this paper, we develop a device model of a double-

GL optical modulator proposed and demonstrated in Ref. 19.

In this modulator, GLs were separated by relatively thick

barrier and the structure was integrated with an optical wave-

guide. The operation of the device under consideration is

associated with the filling of GLs with electrons and holes

injected from the contacts under the self-consistent electric

field created by the applied voltage and the electron and hole

charges in GLs. This process determines both static and

dynamic characteristics of the double-GL modulator. At the

non-stationary conditions, the dynamics of the electron-hole

plasma in double-GL can exhibit resonant response due to

the excitation of plasma oscillations similar to those well

known in more traditional two-dimensional electron and

hole systems.20–30 The plasma oscillations in GL-structures

also were considered previously (see, for instance, Refs. 31–

35). A resonant plasmonic THz using double-GL structures

was recently studied in Ref. 36.

In this paper, we develop a device model for double-GL

modulators of optical radiation and demonstrate that the

resonant excitation of plasma oscillations in double-GL

modulators can provide an efficient modulation of optical

radiation by high frequency signals, in particular, in the THz

range.

The variation of the Fermi energy in double-GL is asso-

ciated with the electron and hole injection and extraction by

the side contacts. Therefore, the consideration of the

electron-hole plasma dynamics in double-GLs must account

for the self-consistent electric field found from the solution

of the hydrodynamic equations and the Poisson equation.

II. EQUATIONS OF THE MODEL

We consider the double-GL modulator reported in

Ref. 19. Its simplified structure is shown in Fig. 1(a). We

assume that each GL is connected to one side contact and is

isolated from the opposite contact (connected to the other

GL), The voltage, Vm, applied between these contacts, Vm

¼ V0 þ dVm, where V0 and dVm are the bias and modulationa)Electronic mail: v-ryzhii@riec.tohoku.ac.jp.
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components. We set dVmðtÞ ¼ dVm expð�ix tÞ, where x
is the modulation frequency. The latter is much smaller than

the frequency of the incident optical radiation X: x� X.

The system of two highly conducting side contacts can be

considered as a slot line enabling the propagation of the

modulation signals. The side contacts can also be connected

to or be a part of THz antenna, which converts the incoming

THz radiation into the modulation voltage.

The absorption coefficient of the light wave propagat-

ing along the waveguide with double-L on topGL is deter-

mined by the real part of the double-GL conductivity RerX

¼ Rerintra
X þ Rerinter

X at the frequency X

bX ¼
4p RehrXiCX

c
ffiffiffi
k
p ; (1)

where c is the speed of light in vacuum and k is the dielectric

constant of the waveguide material. The symbol h…i means

the averaging accounting for the distribution of the optical

field EXðx; yÞ in the waveguide, where the x-axis and y-axis

correspond to the direction along double-GL structure and

perpendicular to the z-axis corresponding to the direction of

the wave propagation direction in the waveguide. Thus,

hrXiCX ¼

ðL

�L

RerXjEXðx; 0Þj2dx
ð1
�1

ð1
�1
jEXðx; yÞj2dxdy

;

CX ¼

ðL

�L

jEXðx; 0Þj2dx
ð1
�1

ð1
�1
jEXðx; yÞj2dxdy

; (2)

where CX is the mode overlap factor and 2 L is the GL

length, which is approximately equal to the spacing between

the side contacts as shown in Fig. 1(a).

We assume that the electron and hole momentum relax-

ation time is associated with the scattering due to disorder

and acoustic phonons, so that its energy dependence is given

by s�1 ¼ �ðe=T0Þ, where � is the characteristic scattering

frequency at V¼ 0 (at the Dirac point). In this case, the real

part of the conductivity of two GLs at X� �0 can be pre-

sented as10

RerX ¼
e2

4�h

� ��
2� 1

1þ exp
�hX=2�lþ

T

� �� 1

1þ exp
�hX=2þlþ

T

� �� 1

1þ exp
�hX=2�l�

T

� �� 1

1þ exp
�hX=2þl�

T

� �

þ 8�

p�hX2

ðl2
þ þ l2

� þ p2T2=3Þ
T

�
: (3)

Here, lþ and l� are the GL Fermi energies counted from the

Dirac point in the upper and lower GLs, respectively, T is the

temperature, and e is the electron charge. The first five terms

in Eq. (4) correspond to the contributions of the interband

transitions to the conductivity of the upper and lower GLs.

These terms explicitly account for the Pauli blocking effect.

The last term in Eq. (3) accounts for the intraband transitions.

It is presented in the form providing an interpolated depend-

ence of the intraband conductivity on the Fermi energies and

the temperature. At slow variation of the applied voltage,

lþ ¼ l� ¼ l, where l obeys the following equation:

2lþ D ¼ eVm: (4)

The quantity D is determined by the electric field between

GLs and the thickness of the barrier layer between GLs d.

FIG. 1. Schematic view of (a) double-GL modulator structure coupled with

an optical waveguide and (b) band diagram of GLs under a voltage drop

between them (shaded areas indicate the states occupied by electrons).
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Generally speaking (at sufficiently fast variations of the volt-

age), the spatial distributions of the electron and hole den-

sities do not follow the variation of the applied voltage, and

the Fermi energies depend on the coordinate x: lþ ¼ lþðxÞ
and l� ¼ l�ðxÞ.

The Fermi energies in GLs are governed by the follow-

ing equation:

jR6j ¼
2

p�h2v2
W

ð1
0

e de

1þ exp
e� l6

T

� �; (5)

where vW ¼ 108 cm=s is the characteristic velocity of elec-

trons and holes in GLs. Since the spacing, d, between GLs is

rather small compared to 2 L, one can use the following for-

mulas which relate the densities R6 and the electric poten-

tials of GLs u6

4p eR6

k
¼ 7

ðuþ � u�Þ
d

: (6)

The negative values of R6 correspond to the case when a GL

is filled by electrons, whereas the positive values correspond

to the filling by holes.

III. MODULATION CHARACTERISTICS

When the control voltage Vm varies slowly, one can set

u6 ¼ 6
Vm

2
; (7)

and, hence,

R6 ¼ 7
k Vm

4p ed
; l6 ¼ l; (8)

where l is governed by the following equation:

Vm

�V
¼
ð1

0

n dn
1þ expðn� l=TÞ: (9)

Here,

�V ¼ 8ed

k

T

�h vW

� �2

: (10)

If d¼ 10 nm, k¼ 7 (Al2O3), and T¼ 300 K, from Eq. (10),

we obtain �V ’ 30 mV.

At sufficiently large bias voltage V0, the electron and

hole systems in GLs become degenerate (i.e., l� T), and

Eq. (10) yields

l ’ T

ffiffiffiffiffiffiffiffiffi
2Vm

�V

r
¼ �h vW

ffiffiffiffiffiffiffiffi
kVm

4ed

r
; (11)

so that, taking into account Eq. (4),

D ’ eVm � 2T

ffiffiffiffiffiffiffiffiffi
2Vm

�V

r
¼ eVm � �h vW

ffiffiffiffiffiffiffiffi
kVm

ed

r
: (12)

Using Eqs. (1) and (3) and considering Eq. (8), we arrive

at the following formula for the absorption coefficient:

bX
�bX

¼ 1� 1

1þ exp �hX
2T �

ffiffiffiffiffiffi
2Vm

�V

q� �þ 32� T

p�hX2

Vm

�V
þ p2

12

� �
: (13)

Here,

�bX ¼
2paCXffiffiffi

k
p ; (14)

where � is the characteristic collision frequency of electrons

and holes (which is assumed to be proportional to T), and

a ¼ e2=c�h ’ 1=137 is the fine structure constant (so that

pa ’ 0:023).

In the near infrared range of frequencies, �hX� T, the

contribution of the intraband absorption at low control vol-

tages V is small. This implies that the last term in the right-

hand side of Eq. (13) is much smaller than unity.

Considering a modulator for optical radiation with the

wavelength k ¼ 1537 nm ð�hX ’ 0:8Þ eV as in Ref. 19, set-

ting �hX ¼ 0:8 eV; V0 ¼ �Vð�hX=2
ffiffiffi
2
p

TÞ2 ¼ ðed=kÞðX=vWÞ2
¼ 337 mV, and � ¼ 1013 s�1, we obtain that the last term

in Eq. (13) is about 0.03. Thus, in the case of even mod-

estly perfect GLs, this term is relatively small and can be

omitted. This implies that in such a case, the modulation

is primarily due to the voltage control of the Pauli block-

ing but not due to the variations of the intraband

absorption.

In the most realistic case �hX� T, the ratio of the inten-

sities of output (modulated by slow varying voltage) and

input radiations, I0 and I00, respectively, taking into account

that the second and fourth terms yield the same contribution

and omitting the third and fifth terms in Eq. (14), can be pre-

sented as

I0

I00

¼ exp ��bXH
exp �hX

2T �
ffiffiffiffiffiffi
2Vm

�V

q� �

1þ exp �hX
2T �

ffiffiffiffiffiffi
2Vm

�V

q� �
2
64

3
75; (15)

where H is the double-GL length in the direction of radiation

propagation. and �hX0 ¼ �h vW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kV0=ed

p
/

ffiffiffiffiffi
V0

p
. Equation (15)

describes the variation of the output radiation I0 caused by rel-

atively slow variations of the applied voltage Vm with arbi-

trary swing. Using Eq. (15), one can estimate the modulation

depth m0 and the extinction ratio g for the case of relatively

slow modulation and when Vm varies from Vm ¼ 0 to Vm

¼ Vmax
m > �Vm

max
, where �Vm

max ¼ ð4ed=kÞðX=vWÞ2 : m0 ¼ 1

�expð��bXHÞ and g ¼ expð�bXHÞ.

IV. SMALL SIGNAL LINEAR MODULATION
CHARACTERISTICS

We now assume that V0 is sufficiently large to form the

degenerate electron and hole systems in the pertinent GLs,

while the time dependence of dVmðtÞ � V0 is still character-

ized by a small modulation frequency. In this case, from

Eq. (15) we obtain the following formulas of the modulation

amplitude dI0 and the modulation depth of the output radia-

tion dm0 ¼ dI0=I

104507-3 Ryzhii et al. J. Appl. Phys. 112, 104507 (2012)



dI0

I00

¼ �bXH exp ��bXH
exp

�hðX�X0Þ
2T

h i

1þ exp
�hðX�X0Þ

2T

h i
8<
:

9=
;

�
exp

�hðX�X0Þ
2T

h i

1þ exp
�hðX�X0Þ

2T

h in o2
� dVmffiffiffiffiffiffiffiffiffiffiffi

2 �VV0

p (16)

and

dm0 ¼ �bXH
exp

�hðX�X0Þ
2T

h i

1þ exp
�hðX�X0Þ

2T

h in o2
� dVmffiffiffiffiffiffiffiffiffiffiffi

2 �VV0

p ; (17)

where �hX0 ¼ �h vW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kV0=ed

p
/

ffiffiffiffiffi
V0

p
.

In particular, at eV0 ¼ �hX, when dm0 reaches a maxi-

mum, Eqs. (16) and (17) yield, respectively,

dI0

I00

¼
�bXH

4
exp

�
�

�bXH

2

�
� dVmffiffiffiffiffiffiffiffiffiffiffi

2 �VV0

p ; (18)

dm0 ¼
�bXH

4
� dVmffiffiffiffiffiffiffiffiffiffiffi

2 �VV0

p : (19)

V. PLASMA OSCILLATIONS IN DOUBLE-GL
STRUCTURES

In the double-GL structures with sufficiently high con-

ductivity at low modulation frequencies, one can use Eq. (6),

i.e., put u6 ¼ 6Vm=2. However, at elevated modulation fre-

quencies (for instance, in the THz range), the spatial distribu-

tions of the ac components of the electron and hole charges,

the electron and hole Fermi energies, and the self-consistent

electric potential are nonuniform because these distributions

do not follow fast modulation signals. In sufficiently perfect

GLs, the modulation signals can excite the electron-hole

plasma oscillations. In this situation, the ratio of the ac com-

ponent of the radiation intensity d Ix to the input intensity is

given by the following equation, which replaces Eq. (16):

dIx
I00

¼
�bXH

4
exp ��bXH

exp
�hðX�X0Þ

2T

h i

1þ exp
�hðX�X0Þ

2T

h i
8<
:

9=
;

�
exp

�hðX�X0Þ
2T

h i

1þ exp
�hðX�X0Þ

2T

h in o2

1

L

ðL

�L

dx ðduþ � du�Þffiffiffiffiffiffiffiffiffiffiffi
2 �VV0

p : (20)

The last factor in the right-hand side of Eq. (20) accounts for

the contributions of different parts of GLs being dependent

on local values of the Fermi energies and, hence, the local

values of the ac potentials [see Fig. 1(b)].

To find the distributions of duþ and du�, one can use a

system of hydrodynamic equations (Euler equation and con-

tinuity equation) adjusted to the features of the electron and

hole spectra in GLs35 for the electron and hole plasmas in

the upper and lower GLs coupled with the Poisson equation.

For simplicity, we use the Poisson equation in the gradual-

channel approximation, which leads to Eq. (6) above. The

linearized versions of the equations in question can be

reduced to the following equation for the ac component of

the potential at the frequency x:36

d2duþ
dx2

þ xðxþ i�Þ
s2

ðduþ � du�Þ ¼ 0; (21)

d2du�
dx2

þ xðxþ i�Þ
s2

ðdu� � duþÞ ¼ 0: (22)

Here, � � �0 is the collision frequency of electrons in

GLs with impurities and acoustic phonons and s is the char-

acteristic velocity of plasma waves in GLs. Since electrons

and holes belong to different GLs separated by the rather

high and thick barrier, their mutual collisions can be

neglected. The plasma-wave velocity is determined by the

net dc electron and hole density (i.e., by the Fermi energy)

R0 ’ ðl=�h vWÞ2=p and the gate layer thickness d (Refs. 31,

33, and 35): s ’ vW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4aGLl0d=�h vW

p
/ V

1=4
0 d1=4, where

aGL ¼ e2=k�h vW is the coupling constant (aGL=a ¼ c=vW

’ 300). Similar equations were obtained for the gated elec-

tron channels in the traditional heterostructures. The differ-

ence is in the existence of two interacting channel and in

different values of s. At d¼ 10 nm and �hX0 ¼ 0:2� 0:8 eV,

one obtains s=vW ’ 3:75� 7:5.

The plasma wave velocity in GL system is much higher

than that in the standard gated channels.34,35 Large values of

s in the double-GL should allow us to achieve rather high

plasma frequencies (in the THz range) in the devices with

relatively large values of L (in the micrometer range). If the

left-side contact and the upper GL and the right-side contact

and the lower GL [see Fig. 1(a)] are very close,32 one can

disregard the gaps between GLs and the contacts and use the

following boundary conditions for Eqs. (21) and (22):

duþjx¼L ¼
dVm

2
expð�ixtÞ; du�jx¼�L ¼ �

dVm

2
expð�ixtÞ;

(23)

dduþ
dx

				
x¼�L

¼ 0;
ddu�

dx

				
x¼L

¼ 0: (24)

The latter boundary condition reflects the fact that the elec-

tron and hole currents are equal to zero at the disconnected

edges of GLs (at x¼ –L in the upper GL and at x¼ L in the

lower GL).

First, from Eqs. (21) and (22) we obtain

duþ þ du� ¼ Ax; (25)

where A is a constant. Considering Eq. (25), Eqs. (21) and

(22) can be presented as

d2duþ
dx2

þ 2xðxþ i�Þ
s2

duþ �
A

2
x

� �
¼ 0; (26)

d2du�
dx2

þ 2xðxþ i�Þ
s2

du� �
A

2
x

� �
¼ 0: (27)

Solving Eqs. (26) and (27) with boundary conditions

(24) and (25), we obtain
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duþ ¼
dVm

2

cos cxx

cx sin cxL
� x

cos cxL

cx sin cxL
� L

0
BB@

1
CCA; (28)

du� ¼ �
dVm

2

cos cxx

cx sin cxL
þ x

cos cxL

cx sin cxL
� L

0
BB@

1
CCA: (29)

Here, cx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2xðxþ i�Þ

p
=s. Introducing the characteristic

plasma frequency xp ¼ p s=2
ffiffiffi
2
p

L, one obtains cxL
¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðxþ i�Þ

p
=2xp.

In the low modulation frequency limit (when

x� L2=2s2� ¼ 4x2
p=p

2� ¼ s�1
M , where s�1

M is the Maxwell

relaxation time, and, hence, jcxjL� 1), one obtains duþ
¼ dVm=2 and du� ¼ �dVm=2, i.e., the spatial distribution

of the ac potential across the GLs is flat.

Figure 2 shows examples of the spatial distributions of

the amplitudes of the ac potential across GLs, calculated for

different modulation frequencies using Eqs. (28) and (29).

As seen from Fig. 2, the amplitudes jduþj and jdu�j are

close to the amplitude of the applied ac voltage dVm=2 at rel-

atively low modulation frequencies (x=2p ¼ 0:20 and 0.5

THz). However, with increasing x, the amplitudes dramati-

cally increase (see the curves corresponding to x=2p ¼ 0:80

and 1.00 THz). This is attributed to the excitation of plasma

oscillations, whose amplitude grows as the modulation fre-

quency approaches to the plasma resonance frequency (see

below).

VI. RESONANT MODULATION

Substituting duþ and du� from Eqs. (28) and (29) into

Eq. (21) and integrating over dx, we obtain

dmx ¼ �bXH

exp
�hðX� X0Þ

2T


 �

1þ exp
�hðX� X0Þ

2T


 �� �2

� sinðcxLÞ
ðcxLÞ cosðcxLÞ � ðcxLÞsinðcxLÞ½ �

dVmffiffiffiffiffiffiffiffiffiffiffi
2 �VV0

p ; (30)

yielding for the normalized modulation depth

d mx

d m0

¼
				 sinðcxLÞ
ðcxLÞ cosðcxLÞ � ðcxLÞsinðcxLÞ½ �

				: (31)

Using Eq. (31), the normalized modulation depth can also be

expressed via the characteristic plasma frequency xp

dmx

dm0

¼

2xp

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
xðxþi�Þ
p


 �
sin

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
xðxþi�Þ
p

2xp


 �

cos
p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
xðxþi�Þ
p

2xp


 �
� p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
xðxþi�Þ
p

2xp


 �
sin

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
xðxþi�Þ
p

2xp


 �� �
								

								
:

(32)

At x� �;xp, Eq. (32) yields

dmx

dm0

’ tan
ffiffiffiffiffiffiffiffiffiffiffi
ixsM

p
ffiffiffiffiffiffiffiffiffiffiffi
ixsM

p
				

				: (33)

Equations (19) and (33) provide the dependences of the mod-

ulation depth on the structural parameters and the modula-

tion frequency (particularly the frequency dependence at the

roll-off) obtained experimentally and described in Ref. 19.

The character of the dependence of the modulation

depth d mx on the modulation frequency x depends on the

collision frequency �. Figure 3 shows the frequency

dependences (on f ¼ x=2p) of the normalized modulation

depth dmx=dm0 calculated using Eq. (32) for devices with

different values of the collision frequency �. It is assumed

that the plasma frequency xp=2p ¼ 1:77 THz. For the char-

acteristic plasma velocities s ¼ ð3:75� 7:5Þ � 108 cm=s (as

in the estimate in Sec. V), this frequency corresponds to

2L ¼ 0:75� 1:5 lm, i.e., to the length of GLs (size of

the waveguide) close to the optical wavelength under

consideration.

At relatively large collision frequencies �, the modula-

tion depth dmx monotonically decreases with increasing the

modulation frequency [in line with Eq. (33)]. The curve for

� ¼ 10� 1012 s�1 in Fig. 3 corresponds to sM ’ 2� 10�13 s

and the 3 dB roll-off frequency f3dB ’ 0:8 THz. In the devi-

ces with a smaller xp, i.e., with a smaller plasma-wave ve-

locity, s, or larger length of GLs, 2L, the Maxwell relaxation

time is longer, so that the roll-off frequency is smaller. How-

ever, in the devices with relatively small � � xp, dmx can

exhibit a steep increase when x approaches to the plasma

resonance frequency. The sharpness of the modulation depth

peak and its height rise with decreasing � (i.e., with an

FIG. 2. Spatial distributions of the normalized amplitudes of the ac potential

jduþj=dVm and jdu�j=dVm in upper and lower GLs, respectively, for differ-

ent modulation frequencies x=2p.
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increasing quality factor of the plasma resonances,

Q � xp=�). This also seen in Fig. 4 (compare the solid and

dashed lines).

The plasma resonance frequencies, xn / xp. Here,

n¼ 1, 2, 3,… is the resonance index. As can be derived from

Eq. (32), the resonance frequencies are given by the solution

of the following equation:

cotðpxn=2xpÞ ¼ ðpxn=2xpÞ: (34)

Equation (34), in particular, yields px1=2xp ’ 0:86 < 1, so

that at xp=2p1:77 THz, one obtains x1=2p ’ 0:97 THz. The

second (even) resonance corresponds to x2=2p � 3:54 THz.

Thus, apart from a pronounced first resonance, a fairly weak

second resonance is also seen in Fig. 3. A characteristic

plasma frequency falls in the THz range. As seen in Fig. 4, an

increase in xp and, consequently, in xn shifts the positions of

the peaks in the frequency dependence of the modulation

depth. However, this shift cannot be used for the electrical

control because the bias voltage V0 corresponds to the energy

of photons of modulated radiation. This is in contrast to other

THz voltage-controlled devices using the resonant excitation

of plasma oscillations (see, for instance, Ref. 36).

VII. CONCLUSIONS

In summary, we developed a device model for an optical

modulator based on the double-GL structure that was

recently proposed and experimentally realized.19 The

double-GL modulator utilizes the variation of absorption due

to the electrically controlled Pauli blocking effect. Our

model accounts for the interband and intraband absorption

and the plasma effects in GLs determining the spatio-

temporal distributions of the electron and hole densities and

the absorption coefficient, The developed model yields the

dependence of the modulation depth on the control voltage

for strong but slow modulation signals and for small-signal

modulation in a wide range of frequencies. The dependence

of the modulation depth on the modulation frequency is

determined by the relationship between the collision fre-

quency of electrons and holes and the characteristic plasma

frequency (or between the latter and the Maxwell relaxation

time). At relatively large collision frequencies (or small

plasma frequencies), the modulation depth is a monotoni-

cally decreasing function of the modulation frequency. The

obtained dependencies qualitatively explain the experimental

results. However, we predict that in the double-GL structures

with relatively weak disorder and, hence, with a low colli-

sion frequencies, and a sufficiently high quality factor of the

plasma oscillations, the modulation depth exhibits a sharp

maximum at the modulation frequency, which corresponds

to the plasma resonance. The frequency of the latter falls in

the THz range for typical parameter values. This opens up

the possibility to use the double-GL structures for effective

modulation of optical radiation by THz signals.
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