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Abstract
Low-energy electronic states in heterostructures formed by ultranarrow layers (single or
several monolayers in thickness) are studied theoretically. The host material is described
within the effective mass approximation and the effect of ultranarrow layers is taken into
account within the framework of the transfer matrix approach. Using the current conservation
requirement and the inversion symmetry of an ultranarrow layer, the transfer matrix is
evaluated through two phenomenological parameters. The binding energy of localized state,
the reflection (transmission) coefficient for the single ultranarrow layer case, and the energy
spectrum of the superlattice are determined by these parameters. The spectral dependency of
absorption due to photoexcitation of electrons from localized states into minibands of the
superlattice is determined by the ultranarrow layer characteristics. Such a dependency can be
used for verification of the transfer matrix and should modify the characteristics of
optoelectronic devices with ultranarrow layers. Comparison with experimental data shows that
the effective mass approach is not valid for the description of ultranarrow layers.

(Some figures may appear in colour only in the online journal)

1. Introduction

Multi-layer heterostructures are widely used in different
devices, such as bi- or monopolar heterostructure lasers,
photodetectors and solar cells, see reviews [1] or [2, 3] and [4],
respectively. Thicknesses of layers in such structures are vary
widely, starting from an ultranarrow layer (UNL) of thickness
a or Na for single or several monolayer structures, e.g. the case
of the quantum dot sheets with ultranarrow wetting layers,
see [5]. Here a is the monolayer thickness and N = 1, 2, . . .

is the number of monolayers; for an InAs monolayer in a
GaAs matrix a � 3.25 Å. The case of N � 1 corresponds
to a wide well or a barrier which is described in the
framework of the effective mass approximation (EMA) or the
kp-method supplied by appropriate boundary conditions at
heterointerfaces [6]. Early in the eighties, similar approaches
were used for the description of abrupt heterojunctions
between different bulk semiconductors, see [7, 8] and
references in [8]. The electronic properties of short-period
superlattices (SL), i.e. heterostructures formed by periodic
UNLs, were studied experimentally and numerically based
on different approximations, see [9, 10], respectively. These

approaches determine the energy spectra of SL only, but they
are not suitable for consideration of transport and optical
phenomena. To the best of our knowledge, the effect of UNLs
on these phenomena was not considered in detail because
the effective mass approximation is not valid over scales ∼a.
If a heterostructure includes UNLs, one should consider it
as a new object which is described by boundary conditions
added to the EMA equations at UNL positions, z = z0.
Because heterostructures with UNLs are routinely used in
different optoelectronic devices without an investigation of
the peculiarities mentioned, it is important and timely to
develop an adequate theory of electronic states at the UNL
and to perform a verification of the UNL’s parameters.

In this paper we consider an UNL placed at {z0}, by
applying the effective mass approximation (or the kp-method)
for the host material, at z �= z0, and by using boundary
conditions at z → z0 which describe modifications of envelope
functions at UNL. In order to describe low-energy electron
states, with energies in the vicinity of the conduction band
extremum, in heterostructures formed by UNLs we employ
the EMA approximation in the host material and the boundary
conditions at UNLs written through the transfer matrix. The
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Figure 1. Band diagrams of UNLs enclosed by host semiconductor
for: (a) well-like case with |τ | < 1, (b) barrier-like case with τ > 1,
and (c) combined case with τ < −1, and (d) non-symmetric case.
Here gray regions correspond to microscopic potentials in different
kinds of UNLs and τ is the diagonal element of the transfer matrix,
see equation (5) .

parameters of such a matrix are restricted by the current
conservation condition and the boundary conditions are
written below for a symmetric UNL, see figures 1(a)–(c) (the
case of non-symmetric UNL, shown in figure 1(d) should
be considered elsewhere). Depending on the dimensionless
diagonal element of the transfer matrix τ introduced in
equations (5), one should separate UNLs into three categories:
(i) a well-like UNL with |τ | < 1, (ii) a barrier-like UNL
with τ > 1, and (iii) a non-conventional UNL with τ < −1.
These cases are sketched in figures 1(a)–(c), respectively,
where thicknesses of layers (filled in by gray) are comparable
to a. While the cases (i) or (ii) correspond to the EMA
description of a narrow well or a barrier at Na → 0 [11],
a non-conventional UNL has no simple EMA analogy. In
general, it is convenient to characterize the transfer matrix by
a dimensionless phase, �, and a characteristic wavevector, K,
see equations (5)–(7). The wavevector K (or the characteristic
energy EK = (h̄K)2/2m) describes the strength of the UNL
potential while the factor � is connected with phase relations
between the wavefunction and its derivative at the UNL. The
phenomenological parameters K and � determine a character
of low-energy states together with the effective mass (or
parameters of the kp-method, if the energy is comparable
to the gap of the host semiconductor) and they should be
determined from experimental data.

Here we have evaluated the transfer matrix, which is
written through the parameters � and K, and have considered
electronic properties of different types of single UNLs as
well as SL formed by UNLs. We calculated the binding
energy of the localized state at a single UNL, which
appears to be the allowed state for the cases (i) and (iii)
and to be the forbidden state for the barrier-like case (ii).
The energy-dependent reflection (transmission) coefficient is
found when considering the scattering of electron on the UNL.
For the SL formed by UNLs, we analyze the energy spectrum,
the density of states, and the absorption coefficient due to
photoexcitation of localized electrons under THz or mid-IR
excitation. We demonstrate that these properties are modified
essentially under variation of the UNL’s characteristics and we
discuss possibilities for the verification of the transfer matrix
parameters. In addition, formation of the localized state at
a UNL and modification of propagation of electrons across
UNLs (effective reflection from single UNL and miniband
states of SL) lead to changes in both the transport properties

and concentration of electrons. As a result, optoelectronic
devices with UNLs should be analyzed by taking into account
these factors.

The consideration below is organized as follows. In
section 2 we describe a UNL in the framework of the
transfer matrix approach. The single-layer case is considered
in section 3 and the properties of SL formed by UNL are
considered in section 4 (some details are in the appendix).
A discussion of the experimental verification of the UNL’s
parameters is performed in section 5. Concluding remarks and
a list of the assumptions used are given in section 6.

2. Transfer matrix approach

Within the one-band effective mass approximation, the
electronic states in a bulk semiconductor with a UNL placed
at z = z0 is described by the Schrodinger equation:

p̂2
z

2m
�z = E�z, z �= z0. (1)

Here m is the effective mass and p̂z is the momentum
operator. The second-order differential equation (1) should
be solved with the boundary conditions which connect the
wavefunctions and their first derivatives at z0 − 0 and z0 + 0.
Similarly to the consideration of an abrupt heterojunction
case [7, 8], we write the connection rules for the column �z
in the form:

�z0+0 = T̂�z0−0, �z ≡
∣∣∣∣∣ �z

d�z/dz

∣∣∣∣∣ . (2)

The 2 × 2 transfer matrix T̂ is determined by the current
conservation requirement and by the symmetry properties of
layer.

From equation (1) it follows that �̃+
z σ̂y�z does not

depend on z if z �= z0 (here and below σ̂ is the Pauli matrix
which connects �z and its derivative). We impose the current
conservation requirement at UNL as �̃+

z σ̂y�z|z0+0
z0−0 = 0. Since

two arbitrary states �̃z and �z are considered here, the current
conservation gives the condition for the transfer matrix:

T̂+σ̂yT̂ = σ̂y, (3)

see similar evaluation for heterojunction in [8]. Further, we
restrict ourselves to the case of symmetric UNL, when �z
and σ̂z�−z should be determined by the same equations. As
a result one obtains the additional condition:

σ̂zT̂σ̂z = T̂−1 (4)

and the four complex parameters of T̂ should be determined
from the eight conditions given by equations (3) and (4).
Straightforward calculations give us the transfer matrix1

T̂ =
∣∣∣∣∣ τ τ12

τ21 τ

∣∣∣∣∣ , det T̂ = 1 (5)

1 Writing T̂ through the Pauli matrix T̂ = t + t · σ̂ and using equation (4) one
obtains tz = 0 and t2 − (t‖ · t‖) = 1. The current conservation (3) is valid if t

and tx are real but ty is imaginary. As a result, T̂ is determined through three
real parameters, τ = t, τ12 = tx − ity, and τ21 = tx + ity with the additional
condition det T̂ = 1.
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Figure 2. Dimensionless energy of localized state E0/EK versus phase � for the cases of |τ | < 1 (a) and τ < −1 (b). Dashed curves in
panel (b) correspond to asymptotes at � 
 1 and � � 1.

written through real parameters τ, τ12 and τ21. Since the
determinant is fixed here, the matrix T̂ depends on two real
parameters, which should be considered as phenomenological
characteristics of UNL.

At |τ | < 1, it is convenient to introduce the phase, �, and
wavevector, K, so that the transfer matrix takes the form:

T̂ =
∣∣∣∣∣ cos � K−1 sin �

−K sin � cos �

∣∣∣∣∣ (6)

which depends on two phenomenological parameters, K > 0
and 0 < � < 2π . If |τ | > 1, one can use similar expressions
for T̂±, which is written through the hyperbolic functions:

T̂± =
∣∣∣∣∣± cosh � K−1 sinh �

K sinh � ± cosh �

∣∣∣∣∣ . (7)

Here the signs + and − correspond to τ > 1 and τ < −1,
respectively. Once again, we suppose K > 0 in equation (7)
because � can have any sign.

The explicit expressions for � and K can be written
for N � 1, when T̂ can be evaluated within the EMA
approximation, for the wide layer cases (i) and (ii). For the
N-monolayer well or barrier of the thickness Na with the band
offset �U and the effective mass ml, one obtains the transfer
matrix T̂ or T̂+ given by equations (6) and (7), respectively.
The parameters � and K are determined by

� = N

√
ml

m
Ka, EK = (h̄K)2

2m
= m

ml
�U, (8)

where the characteristic energy EK is introduced. For the case
of InAs well placed in GaAs [12] one obtains that the energy
EK varies between 1 and 2.8 eV, depending on the mismatch
stress contributions. The phase � varies between 0.32N and
0.42N, where N � 1 (for the case (i), � should be reduced
to the interval (0, 2π)). Similar estimates can be obtained
for other heterostructures with well-like or barrier-like UNL.
Notice, that the non-conventional case τ < −1 described by
matrix T̂− has no analogy with the results for well or barrier
described by equations (8) within the EMA approximation.

3. Single-layer case

Here we consider the single UNL placed at z0 = 0. The state
localized along the 0Z direction, with energy −E0 < 0, is

described by the wavefunction

�z = �0[θ(z)e−κz + θ(−z)eκz], E0 = (h̄κ)2

2m
, (9)

where θ(z) is the Heaviside step function, E0 is the binding
energy written through the characteristic size of localization,
κ−1, and �0 = √

κ is the normalization coefficient. The
boundary condition (2) gives us the dispersion relation which
determines κ > 0 through the transfer matrix parameters, �

and EK . As a result, at τ < 1 the binding energy of localized
state E0 is given by:

E0 = EK

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(√
1 + tan2� − 1

tan �

)2

, |τ | < 1

(√
1 − tanh2� + 1

tanh �

)2

, τ < −1

(10)

and there is no localized state for the barrier-like case τ > 1.
In figure 2 we plot the dependences of E0/EK versus

�. If |τ | < 1 then E0/EK < 1, moreover a deep level with
E0 → EK is realized at � → π/2 and such a dependency
is plotted over the interval (0, π) because it is a periodic
function. At � ≤ π/4 or π − � ≤ π/4 a shallow state at
UNL is realized. For a non-conventional UNL with τ ≤ −1,
a deep level with E0/EK > 1 is realized and E0 → EK if
|�| � 1, while in the opposite case |�| → 0 one obtains the
divergent asymptote E0/EK ≈ (2/�)2. These asymptotes are
also shown in figure 2(b).

The scattering problem, for an electron with energy E > 0
propagating from the left, is described by the wavefunction

�z = θ(−z)(�i eikz + �r e−ikz) + θ(z)�t eikz, (11)

where �i, �r, and �t are the amplitudes of the incident,
reflected, and transmitted waves. The wavevector k is
connected with the energy E by the standard relation E =
(h̄k)2/2m. The reflected and transmitted amplitudes, �r, and
�t, are expressed through �i from the boundary condition
(2). Further, we introduce the flows Jγ = ∣∣�γ

∣∣2 h̄k/m, which
correspond to the incident (γ = i), reflected (γ = r), and
transmitted (γ = t) waves, and calculate the reflection and
transmission coefficients according to RE = Jr/Ji and TE =
Jt/Ji. Since the particle conservation law, RE + TE = 1, only

3
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Figure 3. (a) Reflection coefficient RE versus dimensionless energy
E/EK for the case |τ | < 1 at � = π/16 (1), π/8 (2), π/4 (3), and
π/2 (4). (b) The same for the case |τ | > 1 at � = 0.1 (1), 0.4 (2),
0.8 (3), and 1.2 (4).

the reflection coefficient is considered below:

RE = [1 + F(�, k/K)]−1 ,

F(�, z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[

2z

sin �(1 − z2)

]2

, |τ | < 1[
2z

sinh �(1 + z2)

]2

, |τ | > 1.

(12)

Here F(�, z) = F(−�, z) and RE is determined by positive
�; the interval 0 < � < π/4 is enough in order to describe
the case of UNL with |τ | < 1.

Figure 3 shows the reflection coefficient RE versus
E/EK = (k/K)2. Since F(�, 0) = 0, there is no tunneling of
low-energy electrons through any UNL because RE→0 → 1. If
energy increases, RE decreases up to E = EK and, once again,
RE → 1 if E � EK . But in the region E ∼ EK the behavior
of RE is different for |τ | < 1 and |τ | > 1: the well-like
case REK = 0, while for |τ | < 1 the reflection coefficient
approaches constant, compare figures 3(a) and (b) (there is
no difference between the cases (ii) and (iii) in panel (b)).

4. Superlattice

We turn now to the consideration of electronic states in
SL of the period l formed by the UNLs placed at z0 →
{nl} , n = 0, ±1, . . . . Based on the boundary conditions (2)
at z = nl, below we consider the miniband energy spectrum
and calculate the absorption coefficient of doped SL under
photoexcitation of localized states.

4.1. Miniband spectrum

The eigenvalue problem for the periodic system of UNLs
is solved introducing a quasimomentum 0 < p⊥ < 2π h̄/l
and using Bloch’s theorem, �p⊥z = exp(ip⊥l/h̄)�p⊥z−l. The
wavefunction takes the form

�p⊥z = Np⊥√
l
[eikz + R(p⊥, k)e−ikz], 0 < z < l, (13)

where Np⊥ is the normalization factor. By analogy with the
general consideration [11], the coefficient R(p⊥, k) and the
dispersion relation between p⊥ and k are determined from
the periodicity requirement and the boundary conditions (2)
at z = 0, l, see appendix for details. For the UNL with |τ | < 1
we use the transfer matrix (6) and the factor R(p⊥, k) takes the
form

R(p⊥, k) = eip⊥l/h̄ − [cos � + (ik/K) sin �eikl]
eip⊥l/h̄ − [cos � − (ik/K) sin �e−ikl] , (14)

while the dispersion equation is written as follows:

cos
p⊥l

h̄
= cos � cos kl − 1

2

(
K

k
+ k

K

)
sin � sin kl. (15)

If |τ | > 1 one uses the transfer matrix (7) and the factors
R±(p⊥, k) should be written similarly to equation (14) but
through the hyperbolic functions, ± cosh � and sinh � instead
of cos � and sin �. The corresponding dispersion equation is
given by

cos
p⊥l

h̄
= ± cosh � cos kl

+ 1
2

(
K

k
− k

K

)
sinh � sin kl. (16)

As in equation (7), here and in R±(p⊥, k) the signs + and
− correspond to τ > 1 and τ < −1, respectively. The last case
has no analogy with the standard dispersion relations obtained
in the EMA approximation, while equations (15) and (16)
with + cosh � are similar to the results for wells or barriers
of finite width [11].

The contour plots of the right-hand sides of equa-
tions (15) and (16) versus � and dimensionless energy
E/

√
EKεl, (here εl = (h̄/l)2/2m is a small energy correspond-

ing to SL of period l) are presented in figure 4. Here the
gap regions, which are above +1 and below −1, are shaded
by gray and the dashed curves are plotted at the middle of
miniband energies, when cos p⊥l/h̄ = 0. For the well-like
case, |τ | < 1, the weakly-coupled SL is realized if � →
0, π, 2π and far from these points the tight-binding coupling
regime takes place, see figures 4(a) and (b). With increasing of
the dimensionless parameter 4

√
EK/εl, a number of minibands

increases and a weakly-coupled regime is under more rigid
conditions, compare figures 4(a) and (b). If |τ | > 1 (i.e. SL
is formed by barrier-like or non-conventional UNLs), the
tight-binding regime of coupling takes place if � > 0.5 and
a weakly-coupled SL is realized at � → 0. Transformations
between these regimes are different if τ > 1 or τ < −1,
compare figures 4(c)and (d).

4
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Figure 4. (a) Contour plot of the right-hand side of equation (15)
versus � and dimensionless energy E/

√
EKεl at 4√EK/εl = 10.

(b) The same as in panel (a) at 4√EK/εl = 20. (c) The same as in
panel (a) for the dispersion equation (16) at τ > 1 and
4√EK/εl = 15. (d) The same as in panel (c) at τ < −1. Gap regions
are shaded, dashed curves correspond to the zero level, and dotted
lines correspond to the cross-sections shown in figure 5.

The dispersion laws εrp⊥ = (h̄krp⊥)2/2m, which are
written through krp⊥ determined by the dispersion equations
(15) or (16) depending on UNL parameters, are shown
in figure 5 at � marked in each panel of figure 4. The
energy scale of gaps and allowed bands is determined by the
characteristic energy

√
EKεl, which is between 70 and 25 meV

for l = 10–50 nm if EK is taken as 1 eV. The dispersion laws
plotted in figure 5 are close to cosine or sine dependences.

Further, we consider the density of states, which is
introduced by the standard formula: ρE = (2/L3)

∑
δδ(E−εδ)

where εδ → εrp⊥ + εp. Here we separated the in-plane kinetic
energy, εp = p2/2m, which corresponds to the 2D momentum
p, and the superlattice contribution, εrp⊥ plotted in figure 5.
Integration over p gives the 2D density of states, ρ2D, and ρE
appears to be written through the integrals taken over the step
function, θ(z):

ρE = ρ2D

∑
r

∫ 2π h̄/l

0

dp⊥
2π h̄

θ(E − εrp⊥). (17)

If E belongs to the r̄th gap, the θ -functions for r ≤ r̄ should
be replaced by unity and ρE is constant. In the r̄th miniband

Figure 5. Miniband energy spectra εrp⊥ for the parameters used in
figures 4(a)–(d) at � = π/8 (a), (b) and 0.2 (c), (d).

(below the rth gap), the integral over p⊥ should be taken over
the interval (0, pE), where pE is found as a root of the equation
E = εr̄pE . As a result, the density of states takes the form:

ρE = ρ2D

l

⎧⎨⎩
r̄, E ⊂ r̄th gap

r̄ − 1 + pEl

2π h̄
, E ⊂ r̄th miniband

(18)

and a ladder-like shape of ρE is determined by the
gap-induced steps with miniband contributions between them.

In figure 6 we plot the density of states for the same
parameters as in figure 5. Here the thick straight lines
correspond to gap contributions, with miniband contributions
between them which are similar to arccosine dependences.
One can see that the number of minibands increases with
the parameter 4

√
EK/εl. An approach to the square-root

dependence, corresponding to the bulk density of states, takes
place at E/

√
EKεl > 3. Since ρE is connected directly to

the shape of interband optical spectra, see [6b], the step-like
dependences over the interval E/

√
EKεl ≤ 3 permit one to

extract UNL parameters which determine the bandstructure
of SL. The effect of the above-barrier states on PLE spectra in
the wide InGaAs/GaAs structure was measured and calculated
within the EMA approach in [12].

4.2. Absorption coefficient

Using the solutions obtained, we consider below the process
of photoexcitation of electrons localized at levels of energy
−E0 into minibands caused by the radiation polarized along
SL axis. Such absorption takes place in heavily doped SL
formed by the well-like or non-conventional UNLs; we do not

5
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Figure 6. Normalized density of states for the parameters used in
panels (a)–(d) of figures 4 and 5.

consider here the case (ii), which is similar to an ordinary SL,
see [13]. The absorption coefficient αω is determined by the
general Kubo formula as follows:

αω = 8(πe)2
√

εcωL3

∑
δδ′

[f (εδ) − f (εδ + h̄ω)]
∣∣(δ|v̂z|δ′)

∣∣2

× δ (εδ − εδ′ + h̄ω) , (19)

where ε is the dielectric permittivity of the host semiconduc-
tor, L3 stands for the normalization volume, and the matrix
element

∣∣(δ|v̂z|δ′)
∣∣2 corresponds to transitions between δ-

and δ′-states of energies εδ and εδ′ . We use the equilibrium
distribution f (εδ) and take into account εδ → εp − E0
because only localized states are populated. Since transitions
are vertical, the energy conservation law and the matrix
element do not depend on p and the 2D concentration n2D =
(2/L2)

∑
pf (εp − E0) appears in (19) if h̄ω > E0. In addition,

the matrix element Mrp⊥ = ∣∣(0|v̂z|rp⊥)
∣∣2 is the same for any

UNL and (19) may be transformed into the sum over different
minibands

αω = 2πe2n2D√
εch̄ω

∑
r

∫ 2π h̄/l

0
dp⊥ Mrp⊥δ(h̄�ω − εrp⊥) (20)

written through the frequency detuning, �ω = ω − E0/h̄.
The transparency regions take place if h̄�ω belongs

to any gap. If h̄�ω is brought into the r̄th miniband, the
corresponding absorption coefficient takes the form

α(r̄)
ω = 2πe2n2D√

εch̄ω

Mr̄p�ω

|dεr̄p⊥/dp⊥|p�ω

, (21)

where p�ω should be determined from the equation h̄�ω =
εrp�ω . Under the condition κl � 1, the matrix element Mrp⊥

Figure 7. (a) Spectral dependences of dimensionless absorption
coefficient α�ω/α0 for � = π/12 at the same conditions as in
figures 4(a)–6(a). (b) The same as in panel (a) for the conditions of
figures 4(b)–6(b). (c) The same as in panels (a), (b) for � = 0.1 and
the conditions of figures 4(d)–6(d).

is written through the wavefunctions (9) and (14) in the form
(see appendix):

Mrp⊥ =
(

h̄

m

)2
κ

l

∣∣Np⊥
∣∣2 |1 + eikl + R (p⊥, k) (1 + e−ikl)|2

(22)

for the UNL with |τ | < 1. If |τ | > 1 one should use R± (p⊥, k)
in equation (22). Notice that Mrp⊥ and the velocity dεr̄p⊥/dp⊥
vanish at the edges of minibands, so that jumps of absorption
are possible at edges of absorption regions. Thus, spectral
dependences of α

(r̄)
ω appear to be strongly dependent on the

transfer matrix parameters and they can be extracted from
these data.

The shapes of absorption peaks are determined by
equations (21) and (22) and by the dispersion relations εr̄p⊥ ,
as is shown in figure 7 for lower peaks. Here we plotted the
dimensionless spectral dependences α�ω/α0, where

α0 = 8πe2
√

εc
n2D

√
2

mE0
(23)

is the characteristic absorption. For the case of IR absorption
of SL with concentration n2D = 5 × 1011 cm−2 and E0 ∼
0.1 eV,2 one obtains α0 � 1.25 × 104 cm−1 if

√
ε � 3.3.

The positions and widths of absorption peaks correspond to
the miniband energy spectra shown in figures 4 and 5. There
is an essential difference between odd and even peaks due
to the inversion symmetry of the eigenstate problem at the
edges of minibands, when p⊥l/h̄ = 0, 2π . The odd peaks

2 This value is taken in agreement with experimental data of [14].
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are non-symmetric ones, they are higher (see the scaling
factors in figure 7) and more narrow in comparison to the
even peaks, which are more symmetric and wide. Since the
condition κl > 1 is satisfied at l ≥ 10 nm, a visible (>30%)

absorption takes place for a 20-layer periodic structure and
the mid-IR measurements permit a direct verification of the
SL parameters.

5. Experimental verification

Next, we briefly discuss the possibilities for experimental
verification or for ab initio calculations of the UNL’s
parameters. It is not a simple task because the UNL’s
parameters affect the response of the heterostructure in a
complicated way and one needs to design an appropriate
structure and to perform special measurements. Also, any
first-principles calculations of the UNL’s parameters should
include both UNL and host material, so that it is necessary
to perform calculations on an atomic level for a long-period
SL in order to compare with the results of section 4
written through the UNL’s parameters. Any method used
for short-period SL, see [9] and references therein, can be
applied providing a generalization for the case of a long host
material. Similar calculations for InAs UNL embedded by
GaAs together with the measurements of capacitance–voltage
characteristics were performed in [14] and the binding energy
of localized state E0 appears to be ∼60 meV. This value is
about three times smaller than the EMA estimate of E0 given
by equations (8) and figure 2(a). Thus, the EMA approach is
not valid for the description of the InAs UNL in GaAs host
matrix but a complete determination of parameters � and EK
is not possible due to lack of data in [14].

Below we list a set of papers, where UNLs based
on different heteropairs were realized, and discuss possible
measurement schemes in order to verify the UNL parameters.
Different optoelectronic devices contain quantum dot sheets
with an ultranarrow wetting layer [1–4] and the influence
of these layers on electronic states is described by the
results obtained here if one neglects the quantum dots effect.
UNLs with N ∼ 5 are widely used in the quantum cascade
lasers [15], where each period contains about ten layers
of different thickness, so that a verification of the UNL
parameters is difficult. At least several measurements of
InAs UNLs placed into GaAs or AlGaAs matrix [16] as
well as results for UNLs in AIVBVI [17] and in AIIBVI [18]
heterostructures have been published. But a verification of
UNL parameters was not performed in these papers and a
special investigation for each system is necessary.

All the results obtained in section 4 depend strongly on
� and EK , which determine the transfer matrices (6) or (7),
and these parameters can be verified from the spectroscopical
measurements. Indeed, the results of section 4.2 demonstrate
that mid-IR (or THz, depending on parameters in question)
absorption is strongly varied depending on transfer matrix
parameters. The near-IR interband transitions in SL depend
essentially on the density of states considered in section 4.1
for different UNL parameters. Variations of the near-IR
spectra from the bulk case permit one to verify � and

EK using the electromodulation spectroscopy or the PLE
measurements. Besides this, the transfer matrix parameters
can be extracted from the transport data, but in addition to the
UNL parameters, some other characteristics, e.g. scattering
rates, should be involved in interpretation of these data.

6. Conclusions

In summary, we have re-examined the theory of electronic
states in heterostructures formed by ultranarrow layers, taking
into account that the EMA approximation cannot be applied
for description of UNLs. Our consideration is based on the
transfer matrix method, which was generalized for the case
of UNL. It is found that three types of UNL are possible,
depending on the value of the diagonal element in the transfer
matrix (5). The cases |τ | < 1 or τ > 1 are similar to a
narrow well or barrier, while there is no simple analogy with
a wide layer for the non-conventional UNL with τ < −1.
The localized level appears at a single UNL with τ < 1.
The energy-dependent reflection coefficients of a single UNL
as well as the energy spectrum of SL formed by a periodic
array of UNLs are different for the cases |τ | < 1 and τ > 1.
The spectral dependences of absorption are analyzed for the
case of photoexcitation of localized electrons into the SL’s
minibands. The EMA approach fails to explain the results
of [14], but there is a lack of experimental data for verification
of the UNL parameters.

Let us discuss now the main assumptions applied to the
consideration performed. Using the single-band Hamiltonian
in equation (1) we suppose that the electron energy E is small
in comparison with the gap of the host semiconductor. In
order to consider the high-energy states, one needs to use the
kp-Hamiltonian and more complicated boundary conditions,
see similar considerations of an abrupt heterojunction in [8,
20]. In addition, the transfer matrix approach is valid for the
description of UNL of width Na if Na is less than the electron
wavelength, i.e. (h̄/Na)2/2m � E. We restrict ourselves to
the model of symmetric UNL based on the condition (4). It
should be mentioned that the EMA-based estimates given by
equations (8) are not valid for N ∼ 1, at least for InAs UNLs,
see the discussion in [19], and equations (8) can be used if
Na > 10 Å. A more complicated consideration is necessary
in order to take into account a non-symmetry of UNL; this
case should be considered elsewhere. Also, we consider an
ideal UNL, neglecting an in-plane scattering processes or
inhomogeneous broadening; this approximation is valid if E
exceeds a typical broadening energy. A possible segregation
of UNLs (some experimental data for InAs see in [21]) will
not be essential because short-scale lateral inhomogeneities
are realized. In the structures with quantum dots formed over
wetting layers, an additional contribution from dot-induced
scattering should be essential [22].

To conclude, we believe that the results obtained will
stimulate the verification of phenomenological parameters
describing the electronic properties of UNLs using mid-
IR spectroscopy when the valence band states are not
essential. These data should be important for applications of
heterostructures with UNLs in different devices.
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Appendix

We consider here the eigenstate problem for the SL formed
by UNLs in more detail. SL states are described by the
Schrodinger equation (p̂2

z /2m)�z = E�z which should be
solved with the boundary condition at zn = nl with n =
0, ±1, . . . ∣∣∣∣∣ ψz

dψz/dz

∣∣∣∣∣
zn+0

= T̂

∣∣∣∣∣ ψz

dψz/dz

∣∣∣∣∣
zn−0

, (A.1)

which is written through the transfer matrix T̂ given
by equations (5)–(7). According to Bloch’s theorem
exp(−ip⊥z/h̄)ψz is a periodic function, so that the
wavefunction corresponding to the quasimomentum p⊥ takes
the form

ψp⊥z =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ψ(+)

p⊥ eikz + ψ(−)
p⊥ e−ikz, |z| <

l

2
eip⊥l/h̄[ψ(+)

p⊥ eik(z−l) + ψ(+)
p⊥ e−ik(z−l)],

l

2
< z <

3l

2
,

(A.2)

where h̄k = √
2mE. The amplitudes ψ

(±)
p⊥ in (A.2) are

determined from the boundary condition∣∣∣∣∣ ψz

dψz/dz

∣∣∣∣∣
l/2+0

= T̂

∣∣∣∣∣ψz

dψz/dz

∣∣∣∣∣
l/2−0

, (A.3)

which is transformed into the linear system of equations
for ψ

(±)
p⊥ . The solvability condition gives us the dispersion

relations (15) and (16) for the cases |τ | < 1 and |τ | >

1, respectively. The eigenfunction (A.3) takes the form
(13) with the normalization factor Np⊥ determined from∫
|z|<l/2 dz |ψp⊥z|2 = 1.

The matrix element of equation (20), which determines
photoexcitation from the ground state into the rth miniband, is
expressed through the wavefunctions (9) and (A.2) as follows

Mrp⊥ = �2
0

(
h̄

m

)2 ∣∣ψrp⊥z=l/2 + ψrp⊥z=−l/2
∣∣2

. (A.4)

Here we have neglected overlap between states localized at
different UNLs. After substitution of the wavefunction (13)
and straightforward algebra one arrives at the result given by
equation (22).

References

[1] Zory P S (ed) 1993 Quantum Well Lasers (New York:
Academic)

[2] Gmachl C, Capasso F, Sivco D L and Cho A Y 2001 Rep.
Prog. Phys. 64 1533

[3] Rogalski A 2003 J. Appl. Phys. 93 4355
Pan J N and Fonstad C G 2000 Mater. Sci. Eng. 28 65

[4] Avrutin V, Izyumskaya N and Morkoc H 2011 Superlatt.
Microstruct. 49 337

Brown G F and Wu J Q 2009 Laser Photon. Rev. 3 394
[5] Bimberg D, Grundmann M and Ledentsov N N 1999 Quantum

Dot Heterostructures (New York: Wiley)
Krestnikov I L, Ledentsov N N, Hoffmann A and

Bimberg D 2001 Phys. Status Solidi a 183 207
[6a] Bastard G 1988 Wave Mechanics Applied to Semiconductor

Heterostructures (Paris: Editions de Physique)
[6b] Vasko F T and Kuznetsov A 1998 Electronic States and

Optical Transitions in Semiconductor Heterostructures
(New York: Springer)

[7] Ando T and Mori S 1982 Surf. Sci. 113 124
Sokolov I M 1985 Zh. Eksp. Teor. Fiz. 89 556
Sokolov I M 1985 Sov. Phys. JETP 62 317 (Engl. transl.)
Laikhtman B 1992 Phys. Rev. B 46 4769

[8] Tokatly I V, Tsibizov A G and Gorbatsevich A A 2002 Phys.
Rev. B 65 165328

[9] Donetsky D, Svensson S P, Vorobjev L E and Belenky G 2009
Appl. Phys. Lett. 95 212104

Li H, Katz S, Boehm G and Amann M-C 2011 Appl. Phys.
Lett. 98 131113

[10] Schmidt H, Pickenhain R and Bohm G 2002 Phys. Rev. B
65 045323

[11] Herman M 1986 Semiconductor Superlattices (Berlin:
Academic)

Mitin V, Sementsov D and Vagidov N 2010 Quantum
Mechanics for Nanostructures (Cambridge: Cambridge
University Press)

[12] Worren T, Ozanyan K B, Hunderi O and Martelli F 1998 Phys.
Rev. B 58 3977

[13] Shik A Ya 1974 Sov. Phys.—Semicond. 8 1841
Shik A Ya 1972 Sov. Phys.—Semicond. 6 1110
Kastalsky A, Duffield T, Allen S J and Harbison J 1988 Appl.

Phys. Lett. 52 1320
[14] Pickenhain R, Schmidt H and Gottschalch V 2000 J. Appl.

Phys. 88 948
[15] Cathabard O, Teissier R, Devenson J, Moreno J C and

Baranov A N 2010 Appl. Phys. Lett. 96 141110
Revin D G, Commin J P, Zhang S Y, Krysa A B,

Kennedy K and Cockburn J W 2011 IEEE J. Quantum
Electron. 17 1417

[16] Guimard D, Morihara R, Bordel D, Tanabe K, Wakayama Y,
Nishioka M and Arakawa Y 2010 Appl. Phys. Lett.
96 203507

Di Ventra M and Mader K A 1997 Phys. Rev. B 55 13148
[17] Jeffers J D, Namjou K, Cai Z, McCann P J and Olona L 2011

Appl. Phys. Lett. 99 041903
[18] Ivanov S V, Toropov A A, Shubina T V, Sorokin S V,

Lebedev A V, Sedova I V, Kopev P S, Pozina G R,
Bergman J P and Monemar B 1998 J. Appl. Phys. 83 3168

[19] Paki P, Leonellia R, Isnard L and Masut R A 1999 Appl. Phys.
Lett. 74 1445

Albe V and Lewis L J 2001 Physica B 301 233
[20] Kisin M V, Gelmont B L and Luryi S 1998 Phys. Rev. B

58 4605
[21] Martini S, Manzoli J E and Quivy A A 2010 J. Vac. Sci.

Technol. B 28 277
Ares R, Tran C A and Watkins S P 1995 Appl. Phys. Lett.

67 1576
[22] Vasko F T and Mitin V V 2012 Phys. Rev. B 85 235321

8


