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Superlattice formed by quantum-dot sheets: Density of states and infrared absorption
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Low-energy continuous states of electron in a heterosrtucture with periodically placed quantum-dot sheets
are studied theoretically. The Green’s function of an electron is governed by the Dyson equation with the
self-energy function which is determined the boundary conditions at quantum-dot sheets with weak damping in
the low-energy region. The parameters of a superlattice formed by quantum-dot sheets are determined using the
short-range model of quantum dot. The density of states and spectral dependencies of the anisotropic absorption
coefficient under midinfrared transitions from doped quantum dots into miniband states of a superlattice strongly
depend on dot concentration and on the period of sheets. These dependencies can be used for the characterization
of the multilayer structure and they determine the parameters of different optoelectronic devices exploiting the
vertical transport of carriers through quantum-dot sheets.
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I. INTRODUCTION

Heterostructures formed by quantum-dot (QD) sheets are
widely investigated and used in different devices, such as
lasers, photodetectors, and solar cells, see Refs. 1,2, and 3
for review. In such heterostructures, not only should the
additional localized states of electrons captured into QDs
be taken into account, but also the continuous electronic
states, which are subjected to reflections on periodically placed
QD sheets, which should be modified significantly. Such a
periodical perturbation gives rise to a superlattice (SL) with
an energy spectrum formed by gaps between the allowed
minibands. In contrast to the standard case,4 an additional
damping of electronic states takes place due to scattering
on inhomogeneities of QD sheets stemming from a random
in-plane distribution of QDs. But such a damping appears to
be weak for the low-energy region. As a result, the SL effect
should be essential near the edge of the interband absorption
in the host material, which is proportional to the density of
states of the SL, or under IR transitions from doped QDs
into miniband states. To the best of our knowledge, these
phenomena were not considered based on a simultaneous
description of SL minibands and damping effects in spite of
the fact that the structures under consideration are routinely
used in different optoelectronic devices. At the same time
the opposite case of three-dimensional (3D) ordering of the
closely spaced QDs, when a SL is formed as a result of the
tunneling mix between intra-QD states, was analyzed5 and
demonstrated experimentally, see Refs. 6 and 7 and references
therein. Because of this, it is important and timely to develop
an adequate theory of low-energy electrons interacting with
the periodically placed QD sheets and to study the optical
response of a SL which can be used for the characterization of
structures under consideration and for a description of different
optoelectronic devices.

In this paper we study low-energy electronic states, with
energies in the vicinity of the conduction band extremum, in
heterosrtuctures formed by QD sheets of period l using the
effective-mass equations for the Green’s function averaged
over randomly placed QDs in each sheet. In contrast to
the standard theoretical description based on the averaging
over 3D or two-dimensional (2D) space,8 here we perform

the averaging over QD sheets with the identical statistical
characteristics. As a result, we obtain the inhomogeneous
along the SL axis Dyson equation where the self-energy
function can be replaced by the boundary conditions at QD
sheets. Since the damping of the low-energy states is weak, one
can consider a SL the characteristics of which are determined
by an effective potential localized at the sheet positions z = nl,
n = 0, ± 1, . . .. The strength of this potential is determined by
the concentration of QDs and the shape of the QD potential.
With respect to low-energy states, QD can be considered as a
short-range defect (which has been widely investigated over
the past 50 years, see Ref. 9) if the low-energy interval under
consideration is smaller than the QD binding energy.

The density of states in a SL depends on the period l

and on the parameter determined by a strength of the QD’s
potential described within the short-range approximation.
Spectral dependencies of interband absorption between the
heavy-hole and SL states are proportional to the density of
states in the c band. In addition, the anisotropic absorption
coefficient, originated due to mid-IR transitions from the
doped QD ground state into the miniband states of SL, is
obtained through the QD concentration and the SL parameters.
We found that the efficiency of mid-IR photoexcitation is
comparable to the contribution of wetting layers formed under
QD sheets10 if the doping levels are the same. But the spectral
dependencies are very different for these two mechanisms.
Thus, it is demonstrated that the results obtained can be used
for the characterization of the structure under consideration.
It is more important that the SL parameters determine a
mechanism of vertical transport for underbarrier electrons,
which is a key process in different optoelectronic devices
exploiting multi-QD sheets. A similar mechanism of transport
through underbarrier states of IR photodetectors formed by
GaAs/AlGaAs-based SL was considered in Ref. 11.

The paper is organized as follows. In Sec. II we describe
the model of periodical sheets formed by randomly placed
QDs and evaluate the Green’s function averaged over random
positions of QDs. SL effects on the density of states and on the
process of anisotropic photoexcitation of QDs are considered
in Sec. III. A list of assumptions used and concluding remarks
are presented in the last section. The Appendix contains the
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justification of the effective SL approach employed in the
calculations performed.

II. MODEL

The electronic states near the c-band extremum of a
heterostructure, which is formed by QD sheets placed in the
host material, are described by the effective mass Hamiltonian

Ĥ = p̂2

2m
+

∑
rk

u (r − Rrk), (1)

where p̂ is the 3D momentum operator, m is the effective
mass, and u(r − Rrk) is the potential energy of a QD placed
at coordinates Rrk = (xrk,rl). Here r labels the sheet (r =
0,±1,±2, . . .) placed with the period l and k stands for the
position of QD over the rth sheet given by a 2D random
coordinate xrk (k = 1,2, . . . ,N where N is the number of QDs
over each sheet with the normalization area L2). The electron
of energy E is described by the Green’s function GE

(
r,r′)

governed by the equation

(E + iλ − Ĥ )GE(r,r′) = δ(r − r′) (2)

with λ → +0 and the 3D δ function δ(�r). Below we
consider the averaged over all QD positions Green’s function
GE(r,r′) = 〈GE(r,r′)〉 where the averaging over the rth sheet
is performed according to8

〈. . . 〉r = 1

L2N

∫
dxr1 · · ·

∫
dxrN · · · (3)

and 〈. . .〉 includes the averaging over all sheets.
Using the (p,z) representation (p is 2D momentum) one

obtains the Dyson equation governing the averaged Green’s
function as follows

GEp(z,z′) = gEp(z − z′) +
∫

dz1

∫
dz2gEp(z − z1)

×�Ep(z1,z2)GEp(z2,z
′). (4)

Here gEp(z − z′) is the free Green’s function which is governed
by Eq. (2) with the Hamiltonian p̂2/2m, so that

gEp(�z) = 1

h̄

√
m

2(εp − E)
exp

(
−

√
2m(εp − E)�z

h̄

)
, (5)

if εp > E and the imaginary factor i
√

E − εp should be
used in Eq. (5) if εp < E. Within the self-consistent Born
approximation, the self-energy function �Ep (z1,z2) in Eq. (4)
is given by

�Ep(z1,z2) � nQD

L2

∑
rp1

u

(
p − p1

h̄
,z1 − rl

)

×GEp1 (z1,z2)u

(
p1 − p

h̄
,z2 − rl

)
+ · · · ,

(6)

where u(q,z) is the 2D Fourier transform of u(r) and nQD is
the QD concentration over a sheet which is not dependent on
r (i.e., we consider identical QD sheets).

Further, we restrict ourselves by the low-energy region
where scattering on a QD can be described by the short-range
potential u(r) ≈ U�(r) with the form factor �(r) localized in

volume ∼a3 (a stands for the characteristic size of QD). We
also neglect high-order corrections to the self-energy function
(6), see the diagram expansion of Fig. 4 and the discussion in
the Appendix below. Since the kernel (6) is located near QD
sheets with z1,2 ∼ rl and the Green’s functions vary over scales
h̄/

√
2m|E − εp|, the integral equation (4) is transformed into

the finite-difference one

GEp(z,z′) = gEp(z − z′) + �Ep

∑
r

gEp(z − rl)GEp(rl,z′).

(7)

The self-energy function (6) is written here through the factor

�Ep = nQD

L2

∑
p1

GEp1 (rl,rl)

∣∣∣∣
∫

d�zu

(
p − p1

h̄
,�z

)∣∣∣∣
2

,

(8)

which is the same for any QD sheet [we moved �r, . . . , from
Eq. (6) to Eq. (7)]. Instead of Eq. (7), one can determine
GEp(z,z′) from Eq. (2) with the free Hamiltonian p̂2/2m and
describe the QD sheet effect adding the boundary conditions

h̄2

2m

[
d

dz
GEp(z,z′)

]z=rl+0

z=rl−0

= �EpGEp(rl,z′),

GEp(z,z′)
∣∣z=rl+0
z=rl−0 = 0 (9)

at sheet positions z = rl. This result was evaluated after
acting of the operator E + iλ − p̂2/2m on the integral
Dyson equation (4) and the subsequent integration of the
intergodifferential equation obtained over the QD positions
(rl − 0,rl + 0).

Within the second-order Born approximation we use
GEp (rl,rl) � gEp(0) in the self-consistent equation (8), see
Ref. 8 for details, and the momentum-independent factor �E

in Eq. (9) takes the form

�E = �

(
1 + i

√
E

εa

)
, � ≡ nQD

2
U 2ρεa

. (10)

Here we estimate � for the case of short-range defect within
the Koster-Slater approach12 and ρE is the 3D density of states
which is taken at the cutoff energy εa ∼ (πh̄/a)2/2m. Since
E 
 εa , damping of the low-energy states is weak and one can
replace the complex boundary condition (9) by the effective
potential energy −�

∑
r δa(z − rl) with δa(�z) localized in

the interval |�z| < a, so that in the framework of the effective
SL approach GEp(z,z′) is governed by the one-dimensional
equation

(E + iλ − εp − Ĥ⊥)GEp(z,z′) = δ(z − z′),

Ĥ⊥ = p̂2
z

2m
− �

∑
r

δa(z − rl)

(11)

with the electron effective mass in the GaAs matrix m.
Thus, the Green’s function is expressed using the standard
relation8 between GEp(z,z′) and the solutions of the eigenstate
problem for SL,13 Ĥ⊥ψ

(np⊥)
z = εnp⊥ψ

(np⊥)
z . The last equation

determines the dispersion relations εnp⊥ and the eigenfunctions
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FIG. 1. Miniband energy spectra E/εl versus p⊥l/h̄ of the
effective SL determined by Eq. (13) for Kl = 1 (a), 2 (b), 4 (c),
and 8 (d).

ψ
(np⊥)
z . Here p⊥ is quasimomentum (|p⊥| < πh̄/l), n labels

minibands, and the wave function takes the form

ψ (np⊥)
z = ψnp⊥ (eiknp⊥ z − Rnp⊥e−iknp⊥ z), (12)

where the reflection coefficient and the normalization factor
Rnp⊥ and ψnp⊥ are expressed through p⊥ and knp⊥ (Ref. 14).
The energy εnp⊥ = (h̄knp⊥ )2/2m is founded from the dispersion
equation

cos
p⊥l

h̄
= cos knp⊥ l − K

knp⊥
sin knp⊥ l, (13)

which is written through the characteristic wave vector K =
�m/h̄2 ∼ π3nQDa/2, see Ref. 13 for details.

The dispersion relations for the lower minibands deter-
mined by Eq. (13) are shown in Fig. 1 for dimensionless
parameter Kl varied between 1 and 8 when the transformation
from the weakly coupled SL (if Kl � 2) to the tight-binding
regime of coupling (if Kl > 4) takes place. The characteristic
energy εl = (πh̄/ l)2/2m is about 3.2 meV for a SL of period
l = 40 nm. For the SL formed by InAs QDs embedded by a
GaAs matrix Kl ≈ 3.1 if nQD � 5 × 1010 cm−2. As a result,
minigaps exceed 5 meV for the tight-binding regime, see Figs.
1(c) and 1(d) when dispersion laws are close to cosine and sine
dependencies, for odd and even n, respectively. For the weakly
coupled SLs the dispersion laws are formed by parabolic

FIG. 2. (Color online) Normalized density of states ρEl/ρ2D

versus E/εl given by Eq. (15) for the parameters used in panels
(a–d) of Fig. 1. Dotted curve in upper panel corresponds to the 3D
density of states ∝√

E if SL effect is negligible, � → 0.

curves modified near p⊥l/h̄ = 0,π with gaps ∼1 meV, see
Figs. 1(a) and 1(b). In contrast to a SL corresponding to the
underbarrier tunneling regime,13 if Kl � 1.5 one obtains the
lowest miniband at finite p⊥l/h̄ only, as it is shown in Fig. 1(a).
This is because of the absence of a solution for Eq. (13) at
p⊥ → 0 and knp⊥ l 
 1. Such a peculiarity changes the density
of states and the edge of mid-IR absorption if Kl � 1.5, see
Figs. 2(a) and 3(a) below.

III. RESULTS

Using the model described above, we consider in this
section the density of states in a SL formed by QD sheets,
and calculate the absorption coefficient under mid-IR pho-
toexcitation from ground levels of doped QDs into miniband
states of SL.

A. Density of states

The density of states is introduced through the averaged
Green’s function by the standard formula8

ρE = − 2

πL3
Im

∫
dr 〈GE (r,r)〉

� 2

L3

∑
np⊥p

δ(E − εp − εnp⊥ ), (14)

where 2 is due to spin degeneracy and L3 is the normalization
volume. The lower expression is obtained for the case of
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FIG. 3. (Color online) Spectral dependencies of dimensionless
absorption coefficients determined by Eqs. (20) and (21) for the same
conditions as in Figs. 1 and 2. Solid and dashed curves correspond
to the perpendicular and parallel polarizations, respectively. Dotted
curves correspond to the case � → 0, when the SL effect is negligible.

negligible damping in Eq. (10) using the effective SL approach
determined by Eqs. (11) to (13), see the energy spectra plotted
in Fig. 1. The integration of the δ function over p gives the 2D
density of states ρ2D , and after the integration of the θ function
over p⊥ the density of states should be replaced by a constant
if E belongs to the n̄th gap. In the n̄th miniband (below the
n̄th gap), the integral over p⊥ should be taken over the interval
(0,pE) where pE is found as a root of the equation E = εn̄pE

.
As a result, ρE takes the form

ρE = ρ2D

l

{
n̄, E ⊂ n̄th gap,

n̄ − 1 + pEl/(πh̄), E ⊂ n̄th band,
(15)

and a shape of ρE is determined by the gap-induced steps
with the transitions between them determined by the miniband
dispersion laws.

In Fig. 2 we plot the dimensionless density of states, in
units ρ2D/l, for the same parameters as in Fig. 1. For the
weak coupling regime, the jump of ρE at E → 0 appears
due to the cutoff of the lowest miniband at finite p⊥l/h̄

[cf. Figs. 1(a) and 2(a) at E/εl � 2]. With the increasing of
Kl under transition to the tight-binding regime, the energy-
independent gap contributions to the density of states’ increase
and ρE between these steps is transformed from the ∝ √

E

dependency shown by the dotted curve in Fig. 2(a) to the

arccosine dependencies. In addition, the bottom of the lowest
subband is shifted to energies ∼εl . Since ρE is connected
directly to the shape of interband optical spectra, see Ref. 13,
the step-like dependencies permit one to extract the Kl value
which determines the band structure of SL according to
Eq. (13).

Let us compare the energy scale of the SL effect, determined
by εl , and the SL effect due to the wetting layer contribution
analyzed in Ref. 10. For the parameters given at the end of
Sec. II, one obtains that the contribution of a QD sheet with
nQD = 5 × 1010 cm−2 is reduced approximately two times in
comparison to the wetting layer effect if levels of electron
doping are the same. Thus, an interplay of both mechanisms
should take place for nQD � 1011 cm−2. For such a case, the
interband optical spectra should be dependent on both the QDs’
contributions and the wetting layer contributions.

B. Photoionization

The anisotropic absorption coefficients α||
ω and α⊥

ω are
determined from the general Kubo formula as follows:

α||,⊥
ω = 8(πe)2

√
εcωL3

∑
δδ′

[f (εδ) − f (εδ + h̄ω)]

×|(δ|e||,⊥ · v̂|δ′)|2δ (εδ − εδ′ + h̄ω) , (16)

where ε is the dielectric permittivity of the host semiconductor
and the matrix element |(δ|e||,⊥ · v̂|δ′)|2 corresponds to transi-
tions between the δ and δ′ states of energies εδ and εδ′ under
radiation with polarization orts e||,⊥. We use the equilibrium
distributions f (εδ) → 1 and f (εδ + h̄ω) → 0 because the
only localized states are populated at temperatures lower than
the binding energy |E0|. Due to the in-plane isotropy of the
problem, we separate the cases of s- and p-polarized radiation
corresponding to the polarization orts e‖ and ez. Neglecting
the overlap between QD states and taking the ground state
wave functions �P in the momentum representation (P is 3D
momentum) we transform Eq. (16) into∣∣∣∣ α‖

ω

α⊥
ω

∣∣∣∣ = − 4πe2

√
εcωm2L9

∑
PP′

�P �∗
P ′

∫
dr

∫
dr′

×ei(Pr−P′r′)/h̄
∣∣∣∣ (e‖P)(e‖P′)

p̂zp̂
+
z′

∣∣∣∣K�p,E0+h̄ω(r′,r). (17)

The contribution of the miniband states is described here
through the average of the exact Green’s functionGE(r′,r) with
the exponential factor corresponding to random QD positions
(here �p ≡ P − P′)

K�p,E(r′,r) =
〈∑

rk

ei�pRrk/h̄ImGE(r′,r)

〉
, (18)

which is analyzed in the Appendix. Within the low-order
approach, the correlation function (18) takes the form

K�p,E(r′,r) ≈ NQD
L

l
δ�p,0ImGE(r′,r), (19)

where NQDL/l is the total number of QDs in the normalization
volume L3 and the averaged Green’s function GE(r′,r) was
considered in Sec. II.
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Using the ground state wave function �P written in
the Koster-Slater approach12 and neglecting the damping
correction in Eq. (10) we transform Eq. (17) as follows∣∣∣∣ α||

ω

α⊥
ω

∣∣∣∣ = (2πe)2nQD√
εcωm2lL3

∑
pp⊥

|�P |2
∣∣∣∣p2/2

p2
⊥

∣∣∣∣
×

∑
np̄⊥

∣∣∣∣2

l

∫ l

−l

dze−ip⊥z/h̄ψ (np̄⊥)
z

∣∣∣∣
2

δ(h̄�ω − εnp̄⊥ − εp).

(20)

Here P ≡ (p,p⊥) and we have replaced GEp(z′,z) from
Eq. (19) using the wave function (12). In the expressions
for α||,⊥

ω integrals over the p plane and over z are taken
analytically and the spectral dependencies of IR absorption
are obtained after the double numerical integrations over the
transverse momenta p⊥ and p̄⊥. The dimensionless spectral
dependencies are plotted in Fig. 3 for the same conditions as
in Figs. 1 and 2. The characteristic absorption α0 is given by

α0 = (4e)2nQD

c
√

εm|E0|/2

(
εl

E0

)2

(21)

and α0 ∼ 3 cm−1 for the above listed parameters. Thus, for
the maximal absorption, when h̄�ω/εl ∼ 20–30 or h̄�ω ∼
|E0|, one obtains αmax ∼ 45 cm−1. Since α||,⊥

ω ∝ nQD/l4,
the maximal absorption increases up to αmax � 103 cm−1 if
nQD > 1011 cm−2 and l � 20 nm; an approximation of low
QD concentration remains valid for such a set of parameters.
The further increase of αmax is possible in the case of heavily
doped SL, with a few electrons captured in QD.

Anisotropy of absorption is about 20% without any strong
dependency on the effective potential [cf. Figs. 3(a) to 3(d)
where parameter Kl varies from 1 to 8]. The peculiarities
of miniband spectra are visible clearly in α⊥

ω starting from
Kl � 2 while α‖

ω does not show any peculiarities at the edges
of minibands. This is due to different selection rules for
transverse and longitudinally polarized excitations: in the last
case, transitions are forbidden at the edges of minibands and
the spectral dependencies remain smooth. In addition, Fig. 1(a)
shows a jump of α⊥

ω at h̄�ω = 0 which is similar to the jump
of the density of states in Fig. 2(a) (we do not consider IR
transitions into shallow underbarrier states at h̄�ω < 0). In
Figs. 3(b) to 3(d), shifts of absorption edges to finite h̄�ω > 0
take place due to lower miniband shifts, see Figs. 1(b) to 1(d)
and 2(b) to 2(d).

IV. CONCLUSION

In summary, we have developed the theory of the superlat-
tice formed by periodically placed quantum-dot sheets. It was
found that the damping due to random in-plane positions of
dots is weak and the effect of the sheets on electronic states
can be described using the effective boundary conditions.
Within this approach we have demonstrated that the miniband
density of states, which describes the interband absorption,
and spectra of mid-IR photoexcitation of doped quantum
dots into minibands strongly depend on the parameters of
the quantum-dot sheets. Visible anisotropy of the absorption
coefficient is also found, with transverse absorption which is
strongly modulated by the miniband spectrum of SL.

Now we discuss the main assumptions in the calculations
performed. We restricted ourselves by the vicinity of the c band
using the effective-mass approach in Eq. (1) and in further
consideration of the photoionization process. To describe the
energy intervals comparable to the gap, one needs to use the
multiband kp Hamiltonian for a more detailed description of
QD states.15 We consider the case of low QD concentration
(nQD/l ∼ 1015 cm−3 in our numerical estimates) and the
electron-electron interaction effect on the energy spectrum;
thus, the IR absorption should be weak. Numerical estimates
for the SL parameters were performed here based on a
simplified description of QD as an isotropic short-range defect
with the binding energy corresponding to typical QD. This
approach gives approximate SL parameters only and a more
precise description should be based on a numerical solution
of the self-consistent Dyson equation taking into account
a real potential of QD.1,15 Because parameters of a QD
sheet (materials, concentration, and shape of QD) can be
very different, such a consideration should be performed for
different specific cases (e.g., for Ge/Si-based or AII BV I -based
QD sheets, for review see Ref. 16).

To conclude, we believe that the results obtained will
stimulate an investigation of underbarrier vertical transport
of carriers to verify the SL effect on electronic properties of
structures formed by QD sheets. The spectral and polarization
dependencies of the mid-IR photoexcitation are convenient for
direct measurements because the valence band states are not
essential. These results should be important for a description
of different devices utilizing periodical QD sheet structures.
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APPENDIX

To estimate the corrections beyond the effective potential
approach used in Eqs. (9) to (11) we consider here the method
of calculations in more detail. Using the pz representation, one
obtains the self-consistent Dyson equation (4) for the averaged
Green’s function GEp(z,z′) shown by a bold line as it is plotted
in Fig. 4. Within the second-order Born approximation, we use
the free Green’s function in the self-energy function (6) given
by the first diagram of the set for �Ep shown in the lower line
of Fig. 4. The next correction in this set can be neglected under
the standard condition8

E � |�Ep| � � (A1)

FIG. 4. Self-consistent Dyson equation for averaged Green’s
function GEp(z,z′) and the self-energy function �Ep (z1,z2) shown
in upper and lower lines, respectively.
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Δ

Δ

Δ

Δ

ΔΔ

FIG. 5. Diagram expansion for correlation function K�pE(r,r′)
written through the diagram set for the vertex part shown in lower
line.

and we arrive at Eq. (7) using the free Green’s function in �Ep

determined by Eq. (6).
More complicated consideration is necessary for the cor-

relation function K�pE(r,r′) appearing in Eq. (17) because of
the random factor exp(i�pRrk/h̄) describing positions of QDs.
Instead of Eq. (18) it is convenient to consider the generalized
expression

K�p,E(r′,r) =
〈∑

rk

ei�pRrk/h̄GE(r′,r)

〉
, (A2)

which is shown in Fig. 5. Here a dotted curve corresponds to
the averaged factor

〈 ∑
r1k1r2k2

exp

(
− i

h̄
�p · Rr1k1

)
u(r − Rr2k2 )

〉
, (A3)

while the dashed curves in Figs. 4 and 5 stand for the paired
QD potentials. After summation over all reducible diagrams,
K�pE(r,r′) is written through the averaged Green’s function
and the vertex part, which is given by the set shown in the
lower line of Fig. 5 with the initial vortex determined from
Eq. (A3) as follows

γ�p(r1,r2) = nQD

∑
r

u

(
−�p

h̄
,z1 − rl

)

×e− i
h̄

(�px1+rp⊥l)δ(r1 − r2). (A4)

The first correction to Eq. (19) appears, if we use (A4), as
the vertex part in the diagram expansion for the correlation
function shown in Fig. 5. Performing straightforward calcula-
tions under the condition (A1), one obtains that this correction
and the next contributions are negligible in comparison with
Eq. (19).
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