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Generation and recombination processes via acoustic phonons in disordered graphene
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Generation-recombination interband transitions via acoustic phonons are allowed in a disordered graphene
because of violation of the energy-momentum conservation requirements. The generation-recombination
processes are analyzed for the case of scattering by a static disorder and the deformation interaction of carriers
with in-plane acoustic modes. The generation-recombination rates were calculated for the cases of intrinsic and
heavily-doped graphene at room temperature. The transient evolution of nonequilibrium carriers is described
by the exponential fit dependent on doping conditions and disorder level. The characteristic relaxation times
are estimated to be about 150–400 ns for a sample with the maximal sheet resistance of ∼5 k�. This rate is
comparable with the generation-recombination processes induced by the thermal radiation.
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I. INTRODUCTION

Transport1 and optical2 properties of graphene as well
as noise phenomena in this material3 are not completely
understood for the regime of nonlinear response. The treatment
of nonequilibrium carriers requires not only verification of
the momentum and energy relaxation processes, but also
understanding of the interband generation-recombination pro-
cesses that determine electron and hole concentrations far
from equilibrium (similar transport conditions take place
for the bulk gapless materials; see review4 and references
therein). Effective interband transitions via optical phonons
of energy h̄ω0 take place for the energy of carriers greater
than h̄ω0/2; see Refs. 5 and 6 where the cases of optical
excitation and heating by dc current were analyzed. At lower
energies, the generation-recombination processes become
ineffective because the Auger transitions are forbidden due to
the symmetry of electron-hole states7 (compare with Ref. 8).
Since the carrier’s velocity υ � 108 cm/s exceeds significantly
the sound velocity s, the interband transitions via acoustic
phonons are also forbidden due to the momentum-energy con-
servation laws. Only slow generation-recombination processes
induced by the thermal radiation are allowed in a perfect
graphene.11 To the best of our knowledge, consideration of
a disorder effect on the interband transitions via acoustic
phonons in the low-energy region, ε < h̄ω0/2, is not performed
yet. Thus the evaluation of the generation-recombination rate
caused by the interaction of carriers with the acoustic phonon
thermostat under violation of the momentum-energy laws in
a disordered graphene (allowed electron-hole transitions are
depicted in Fig. 1) is timely now.

In this paper, the calculations are performed for the model
of short-range disorder whose parameters are taken from the
mobility data,1,10 for samples with the maximal resistance of
2–6 k� per square. The probability of electron-hole transitions
is expressed through the averaged spectral density functions
and is calculated taking into account the contribution of
interband interference. Due to slowness of the interband
transitions, the quasiequilibrium distributions of electrons and
holes with the same temperature are used for the description
of a temporal evolution of nonequilibrium concentrations
of carriers. The electron and hole concentrations are also
connected through the electroneutrality condition with the
surface charge controlled by a gate voltage.

ac

FIG. 1. Interband generation-recombination transitions via
acoustic phonons with energies ∼h̄ωac (thick arrows) between
broadened electron-hole (e-h, shown by gray) states in the low-energy
region, ε < h̄ω0/2. Thin lines show the ideal dispersion law.

The results were obtained for the cases of intrinsic and
heavily-doped graphene at temperature T and can be briefly
summarized as follows. The concentration balance equation is
written through the chemical potential normalized to T and the
characteristic rate, which is proportional to a carrier-phonon
coupling and increases with temperature as T 2. The transient
evolution of nonequilibruim population can be fitted by an
exponential decay with the relaxation time 150–400 ns at room
temperature and a typical disorder level corresponding to the
maximal sheet resistance ∼5 k�. This time scale appears to
be comparable to the recombination rate via thermal radiation
and the mechanism under consideration can be verified by
temperature and temporal measurements.

The paper is organized as follows. In the next section, we
present the basic equations which describe the generation-
recombination processes under consideration. In Sec. III,
we evaluate the generation-recombination rates and analyze
their dependencies on temperature, disorder level, and doping
conditions. The last section includes the discussion of the
approximations used and conclusions. In the Appendix, we
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consider the generation-recombination mechanism caused by
the interaction with the thermal radiation.

II. BASIC EQUATIONS

Temporal evolution of carriers in a random potential, which
are weakly interacting with the acoustic phonon modes, is
described by the distribution fαt over the states |α) with
energies εα . An exact with respect to a disorder effect kinetic
equation takes the form11

∂fαt

∂t
=

∑
α′

[Wα′αfα′t (1 − fαt ) − Wαα′fαt (1 − fα′t )]. (1)

The transition probability Wαα′ is written within the Born
approximation with respect to the carrier-phonon interaction
with qth phonon mode of frequency ωq :

Wαα′ = 2π

h̄

∑
q

|(α|χ̂q |α′)|2[(Nq + 1)δ(εα − εα′ − h̄ωq)

+Nqδ(εα − εα′ + h̄ωq)]. (2)

Here the operator χ̂q determines the carrier-phonon interaction∑
q(χ̂q b̂q + H.c.), where b̂q is the annihilation operator of qth

mode and Nq is the Planck distribution of phonons at the
equilibrium temperature T . Note that the transition proba-
bilities Wα′α and Wαα′ are connected by Wα′α = exp[−(εα −
εα′ )/T ]Wαα′ and∑

αα′
[Wα′αfα′t (1 − fαt ) − Wαα′fαt (1 − fα′t )] = 0 (3)

due to the particle conservation law.
The concentrations of electrons and holes, nt and nt , which

are averaged over random disorder (such averaging is denoted
as 〈· · ·〉), are given by

∣∣∣∣nt

nt

∣∣∣∣ = 4

L2

〈∑
α

∣∣∣∣ θ (εα) fαt

θ (−εα) (1 − fαt )

∣∣∣∣
〉

, (4)

where L2 is the normalization area and the step function θ (±ε)
appears due to the symmetry of the electron-hole spectrum [see
Eq. (10) below]. Since effective intraband scattering is caused
by the phonon thermostat and carrier-carrier interaction, the
quasiequilibrium distributions over the conduction and valence
bands are imposed during short-time scales and below we
use

f̃εt =
{[

exp
( ε−μ>

t

T

) + 1
]−1

, ε > 0,[
exp

( ε−μ<
t

T

) + 1
]−1

, ε < 0.
(5)

Due to effective energy relaxation, the same temperatures are
established in both bands. At the same time, the electron
and hole concentrations are determined through the different
chemical potentials, μ>

t and μ<
t , respectively. The chemical

potentials are connected by the electroneutrality condition
nt − nt = ns , where the surface charge ens is controlled
by the gate voltage, Vg , according to ns = aVg with a �
7.2 × 1010 cm−2/V written for the SiO2 substrate of thickness
0.3 μm.

The concentration of electrons is governed by the bal-
ance equation dnt/dt = (dn/dt)ac with the generation-
recombination rate(

dn

dt

)
ac

=
∫ ∞

0
dε

∫ 0

−∞
dε′W (ε,ε′)

×
[

exp

(
ε′ − ε

T

)
(1 − f̃εt )f̃ε′t − (1 − f̃ε′t )f̃εt

]
.

(6)

We take into account that the intraband transitions (when
ε,ε′ > 0) vanish in Eq. (6) and transform the transition
probability as follows:

W (ε,ε′) = 4

L2

〈∑
αα′

δ(ε − εα)δ(ε′ − εα′ )Wαα′

〉
. (7)

Further, we introduce the exact spectral density function

Aε

(
lx,l′x′) =

∑
α

δ(ε − εα)�(α)
lx �

(α)∗
l′x′ , (8)

which is determined through the double-row wave function
�

(α)
lx with l =1,2. The column �

(α)
x is a solution of the

eigenvalue problem (ĥ + Vx)�(α)
x = εα�

(α)
x written through

the single-particle Hamiltonian ĥ and a random potential Vx.
Using the definition (2), one obtains the probability W (ε,ε′)
as follows:

W (ε,ε′) = 8π

h̄L2

∑
q

|Cq |2(Nq + 1) δ(ε − ε′ − h̄ωq)

×
∫

dx
∫

dx′eiq·(x−x′)tr〈Âε′ (x,x′)Âε(x′,x)〉, (9)

where q is the in-plane wave vector and |Cq |2 is the matrix
element of deformation interaction.10 As a result, (dn/dt)ac

is expressed through the electron-hole correlation function
with ε > 0 and ε′ < 0. Since the main contributions to
Eq. (6) appear from energy transfers, ε − ε′, which exceed
the broadening energy, the vertex corrections give a weak
contribution to 〈Âε′Âε〉. Thus the correlation function can be
factorized according to 〈Âε′ (x,x′)Âε(x′,x)〉 ≈ Âε′,xÂε,−x,
where Âε,x = 〈Âε(x,x′)〉 is the averaged spectral function
given by the 2×2 matrix.

Below, we calculate the probability (9) using the model
of disorder described by the Gaussian correlator 〈VxVx′ 〉 =
V̄ 2 exp[−(x − x′)2/2l2

c ], where V̄ is the averaged amplitude,
lc is the correlation length, and the cutoff energy Ec = υh̄/ lc
exceeds the energy scale under consideration. For the low-
energy region, |ε| 
 Ec, the model gives ∝ ε relaxation rate,
i.e., we deal with a short-range scattering. According to Refs.
12 and 13, the retarded Green’s function in the momentum
representation takes form:

ĜR
ε,p = P̂ (+)

p Gε,p + P̂ (−)
p Gε,−p,

(10)

Gε,p ≈ [ε(1 + �ε + ig) − υp]−1, �ε = g

π
ln

(
Ec

|ε|
)

,

where P̂
(±)
p = [1 ± (σ̂ · p)/p]/2 are the projection operators

on the conduction (+) and valence (−) bands, σ̂ is the isospin
Pauli matrix, and g = (V̄ 2lc/h̄υ)2π/2 is the coupling constant.
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FIG. 2. (Color online) (a) Density of states ρε vs energy at g = 0
(1), 0.15 (2), 0.3 (3), and 0.45 (4). (b) Ratio Vε = √

ρε/ρε vs g

for ε = 20 meV (1), 30 meV (2), 40 meV (3), and 50 meV (4).
(c) Equilibrium concentration of nondoped graphene neq vs g

normalized to nT � 0.52(T/h̄υ)2.

Here we restrict ourselves by the Born approximation when
the self-energy contribution ε(�ε + ig) is written through
the logarithmically-divergent real correction and the damping
factor. Note that these corrections vanish at ε → 0. From a
comparision with the mobility data1,10 one obtains that the
parameters g � 0.45, 0.3, and 0.15 correspond to the sheet
resistances ∼6, ∼4, and ∼2 k� per square, respectively.
The density of states, ρε = −4 Im

∑
p trĜR

ε,p, is shown in
Fig. 2(a) and ρε = ρ−ε, i.e., the electron-hole symmetry is
not violated due to disorder. Since ρε increases in comparison
to the ideal case, ρε = 2|ε|/[(h̄υ)2π ], the energy-dependent
renormalized velocity, υVε, decreases up to 10% if g � 0.5
and the concentration of carriers in an intrinsic graphene
increases up to two times; see Figs. 2(b) and 2(c), respectively
(here nT � 8.1 × 1010 cm−2 is the equilibrium concentration
at room temperature and at g →0).

Furthermore, we use the standard relation Âε,p = i(ĜR
ε,p −

ĜR+
ε,p )/2π and transform the probability (9) taking into account

the energy conservation law:

W (ε,ε′) ≈ {|Cq |2(Nq + 1)}h̄ωq=ε−ε′

× 8π

h̄L2

∑
pp′

δ(ε − ε′ − s|p − p′|)tr(Âε′,p′Âε,p).

(11)

The trace here should be taken using tr(P̂ (±)
p′ P̂

(±)
p ) = [1 +

(p · p′)/pp′]/2 and tr(P̂ (±)
p′ P̂

(∓)
p ) = [1 − (p · p′)/pp′]/2. This

result differs from the standard consideration,14 because
interference of electron and hole states gives an essential
contribution to W (ε,ε′) due to the matrix structure of the
spectral density functions. After the integrations over p plane,
one transforms Eq. (11) into

W (ε,ε′) ≡ �GRw(ε/T , − ε′/T )/T 2,
(12)

�GR = υacs

υ2

T

h̄

(
T

πh̄υ

)2

, υac = D2T

4h̄2ρsυs2
,

where we separated the dimensionless kernel, w(ξ,ξ ′), and the
factor, �GR, which is written for the case of the deformation
interaction of carriers with the in-plane acoustic modes; see
Refs. 10 and 13. Here D is the deformation potential, s is the
sound velocity, and ρs is the sheet density of graphene. At room

FIG. 3. Contour plots of dimensionless kernels w(ε/T ,ε′/T ) for
g = 0.4 (a) and g = 0.2 (b).

temperature and typical other parameters,10 we obtain υac �
0.96 × 106 cm/s and �GR � 5.06 × 1019 cm−2s−1 (notice that
υac ∝ D2 and we used D � 12 eV). The dimensionless kernel
is plotted in Fig. 3 and the probability W (ε,ε′) is suppressed
fast if (ε − ε′)/T � 0.15. This cutoff factor is determined
by the weak ratio s/υ � 1/137 mainly while parameter g

determines a peak value of W (ε,ε′); cf. Figs. 3(a) and 3(b).
The generation-recombination rate (6) is written through

Eqs. (11) and (12) with the use of the dimensionless variables
ξ = ε/T and ξ ′ = ε′/T :(

dn

dt

)
ac

= �GR

∫ ∞

0
dξ

∫ ∞

0
dξ ′w(ξ,ξ ′)

× e−ξ ′−μ>
t /T − e−ξ ′−μ<

t /T[
exp

(
ξ − μ>

t

T

) + 1
][

exp
(
ξ ′ − μ<

t

T

) + 1
] (13)

For typical concentrations of carriers, μ<
t and μ>

t exceed
0.15T and one can simplify the rate as follows:(

dn

dt

)
ac

≈ �GR
wg

[
e−μ>

t /T − e−μ<
t /T

]
[
e−μ>

t /T + 1
][

e−μ<
t /T + 1

] ,

(14)

wg =
∫ ∞

0
dξ

∫ ∞

0
dξ ′w(ξ,ξ ′),

where the averaged over energies kernel wg is plotted versus g

in Fig. 4, together with a simple quadratic fit. For the disorder
level corresponding to the resistance ∼5 k� per square, one
obtains wg � 0.02.

III. RESULTS

In this section, we analyze the concentration balance
equation dnt/dt = (dn/dt)ac, where the right-hand side is
given by Eq. (14) and is written through ψ>

t = μ>
t /T and

×

FIG. 4. (Color online) Averaged kernel wg vs coupling constant
g. Dashed curve corresponds to the quadratic fit.
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ψ<
t = μ>

t /T . The initial conditions ψ>
t=0 = ψ>

0 and ψ<
t=0 =

ψ<
0 are determined through the initial concentrations nt=0 and

nt=0 according to Eq. (4). Variables ψ>
t and ψ<

t are connected
through the electroneutrality condition,∫ ∞

0
dε ρε

(
1

eε/T −ψ>
t + 1

− 1

eε/T +ψ<
t + 1

)
= ns, (15)

and below we consider the limiting cases of an intrinsic
graphene (ns = 0) and a n-type heavily-doped graphene (ns >

0). Since a slowness of generation-recombination processes
in comparison to the intraband relaxation, any kinetic phe-
nomenon can be considered with the use of concentrations
which are parametrically dependent on time.

A. Intrinsic graphene

For the case under consideration, ψ>
t = −ψ<

t ≡ ψt and the
concentration of electrons (or holes, because now nt = nt ) is
given by nt = ∫ ∞

0 dε ρε[exp(ε/T − ψt ) + 1]−1, so that nt and
ψt are connected through

dnt

dt
= dψt

dt

∫ ∞

0

dε ρε

1 + cosh(ε/T − ψt )
(16)

and the concentration balance equation is derived from
Eq. (13) as

dnt

dt
= −�GRwg tanh

(
ψt

2

)
. (17)

As a result, Eqs. (16) and (17) are transformed into the first-
order differential equation for ψt with the initial condition
ψt=0 = ψ0, where ψ0 is determined through the nt=0. The
implicit solution of this equation takes form

νGRt =
∫ ψ0

ψt

dψ F (ψ), νGR = wg

υacs

πυ2

T

h̄
,

(18)

F (ψ) = tanh

(
ψ

2

) ∫ ∞

0

dξ rξ

1 + cosh(ξ − ψ)
.

Here rξ = ρξT /ρT is the dimensionless density of states
and the temporal evolution of nt is described through the
characteristic rate νGR and the dimensionless function F (ψ).
At room temperature and at wg � 0.02, one obtains νGR �
1.85 × 107 s−1 for the parameters used; νGR increases with T

and with disorder level because νGR ∝ wgT . Since νGR ∝ D2,
the rate increases up to 108 s−1, if D ∼ 20 eV, as it was
measured in Ref. 15 (note that a lower D was also reported
recently16).

Figure 5 shows the transient evolution of nt from the initial
concentration nt=0 to the equilibrium concentration neq, which
is determined by neq = ∫ ∞

0 dε ρε[exp(ε/T ) + 1]−1, taking
into account the disorder-induced renormalization of ρε; see
Fig. 2. We plotted nt for the cases of recombination or genera-
tion of carriers, if nt=0 > neq or nt=0 < neq, respectively. The
relaxation becomes suppressed if the disorder level decreases
both due to a slowness of dependency on νGRt , compare curves
for g = 0.5 and 0.25 in Fig. 5, and, mainly, due to the relation
νGR ∝ wg; see Fig. 4. Within a 5% accuracy, the evolution of
nt can be fitted by the exponential dependence

nt ≈ n0 + neq[1 − exp(−ανGRt)], (19)

eq

FIG. 5. (Color online) Transient evolution of concentration nt

at different initial conditions: nt=0 = 3neq (1,2), nt=0 = 2neq, (3,4),
and nt=0 = 0.5neq (5,6) for coupling parameters g = 0.25 (1, 3, 5)
and g = 0.5 (2, 4, 6). Dotted curves correspond to exponential fits
(19), with α = 0.16 (1), 0.125 (2), 0.19 (3), 0.155 (4), 0.22 (5), and
0.275 (6).

with the parameter α varying between 0.16 and 0.28 depending
on initial condition and on disorder level (the numerical
data are given in the figure caption). This parameter slightly
increases if disorder level decreases for nt=0 > neq and the
generation process is faster than the recombination one. The
corresponding times, (ανGR)−1, equal 338 ns (1), 284 ns (3),
and 196 ns (5) for g � 0.25. For g � 0.5 (curves 2, 4, and 6),
these times vary between 310 and 180 ns. Such a time scale
is comparable to the radiative recombination times, see the
Appendix, so that the contribution under consideration can be
extracted due to different temperature dependencies.

B. Heavily-doped graphene

We turn now to the case of a heavily-doped graphene, when
ψ>

t � 1 and it is convenient to introduce a weak variation
δψt = ψ>

t − ψs , where ψs corresponds to the equilibrium case
with concentration ns . Neglecting a hole concentration and
using the step-like Fermi function in c-band, one obtains ns

from Eq. (15):

ns ≈
∫ ψsT

0
dε ρε. (20)

As a result, δψt and ψ<
t are connected by the electroneutrality

condition (15) as follows:

δψt ≈ ρT

ρε=ψsT

∫ ∞

0

dξ rξ

1 + exp (ξ + ψ<
t )

, (21)

where the ratio ρT /ρε=ψsT can be found from Fig. 2(a). Using
Eq. (14), we transform the concentration balance equation into
the form

dδψt

dt
= − νGRρT

2ρε=ψsT [1 + exp(ψ<
t )]

. (22)
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Substituting the relation (21) into Eq. (22), one obtains the first-
order differential equation for ψ<

t , with the implicit solution

νGRt =
∫ ψ<

t

ψ0

dψ

∫ ∞

0

dξ rξ (1 + eψ )

1 + cosh(ξ + ψ)
, (23)

where ψ0 = ψ<
t=0 appears from the initial condition. Notice

that the factor ρT /ρε=ψsT drops out from the solution (23),
i.e., the transient process under consideration does not depend
on the doping level because the only low-energy states are
involved in the interband transitions.

Furthermore, we plot the transient evolution of the hole
concentration nt = nt − ns determined through ψ<

t according
to nt = ∫ ∞

0 dε ρε[exp(ε/T + ψ<
t ) + 1]−1. Figure 6 shows the

concentration nt versus dimensionless time, νGRt , for the initial
conditions written through the characteristic concentration nT ;
see Fig. 2. Similarly to the undoped case, the exponential
fits (nt − ns)/(nt=0 − ns) ≈ exp(−βνGRt) with β � 0.12 (1),
0.15 (2), and 0.2 (3) describe the transient evolution with
an accuracy of ∼10% if νGRt <10. An enhancement of
recombination takes place at tails of transient evolution, if
νGRt > 10. Since the relaxation rate increases with the disorder
level because νGR ∝ wg (in spite of β decreasing slightly
with disorder level), the recombination process becomes faster
in spite of an opposite dependency on νGRt in Fig. 6. The
relaxation times, ∼(βνGR)−1, equal 450 ns (1), 360 ns (2),
and 270 ns (3) for g = 0.25 and different initial conditions.
For g = 0.5, these times vary between 410 and 240 ns. Once
again, the recombination scale is comparable to the radiative
recombination process shown in Fig. 7(b); see the Appendix.
The time scales obtained should be changed by a factor of
0.2–4 depending on the value of the deformation potential
used.15,16

IV. SUMMARY AND CONCLUSIONS

We have examined the new channel for interband
generation-recombination process of carriers in a disordered
graphene via acoustic phonons. The efficiency of transitions
increases with disorder level and concentration of nonequilib-
rium carriers as well as with temperature. We have found that

GR

FIG. 6. (Color online) Transient evolution of hole concentra-
tion nt − ns at different initial conditions: nt=0 − ns = 3nT (1),
nt=0 − ns = 2nT (2), and nt=0 − ns = 0.5nT (3). Solid and dashed
curves correspond to coupling parameters g = 0.5 and g = 0.25,
respectively. Dotted curves correspond to the exponential fits.

the relaxation rate belongs to a submicrosecond range for the
samples with typical disorder level at room temperature.

Let us discuss the assumptions used in the presented cal-
culations. The main restriction of the results is the description
of the response in the framework of the quasiequilibrium
approach, with different chemical potentials in c- and v-bands
but the same temperature due to the fast energy relaxation
caused by phonon and carrier-carrier scattering processes. We
also restrict ourselves by the phenomenological model of the
disorder scattering.11 Since a low-energy region is only essen-
tial in W (ε,ε′) and the results are written through the kernel
(14), a microscopic mechanism of elastic relaxation (which
remains under debate up to now1,17) is not important for the
process under consideration. By analogy with the description
of transport phenomena,1,10,12 more complicated calculations
for finite-range disorder should give similar results. However,
the case of impurities with a low-energy resonant level,
which was discussed recently in Refs. 18, requires a special
consideration. Besides this, the Coulomb renormalization of
υ leads to a weak modification of the transition probability
(12). We considered the deformation interaction of carriers
with longitudinal acoustic modes10,13 neglecting scattering
by surface phonons of the substrate in agreement with the
experimental data.19 Such a contribution can only restrict the
energies under consideration because of the lower surface
phonon energy (∼55 meV for the SiO2 substrate). Since
the nondiagonal components give a weak contribution to
the concentration balance equation under consideration,11 we
take into account only diagonal components of the density
matrix fαt while evaluating of the generation-recombination
rate. The simplifications mentioned above do not change
either the peculiarities of the generation-recombination pro-
cesses or the numerical estimates of relaxation times given
in Sec. III.

Next, we briefly consider some possibilities for experi-
mental verification of the mechanism of interband transitions
suggested. It is clear from a comparison of the results in
Sec. III and in the Appendix that interband transitions via
acoustic phonons and via thermal radiation can be separated
due to different temperature and concentration dependencies
of damping. A possible contribution of the disorder-induced
Auger process is weak for a low concentration of nonequi-
librium carriers and temperature dependencies should be
different. This contribution is beyond our consideration and
requires a special study. In contrast to the ultrafast optical
measurements applied for the study of the relaxation and
recombination of high-energy carriers,2 a transient evolution
of concentration over time scales ∼100 ns can be measured
directly (e.g., in Ref. 6 the transient response under abrupt
switching on of a dc field lasts up to hundreds of nanoseconds).
However, under a verification of the slow process examined,
a possible contact injection or a trapping into substrate states
should be analyzed.

To conclude, we believe that the generation-recombination
via acoustic phonons can be verified experimentally and
more detailed numerical calculations are necessary in order
to separate this mechanism from other contributions. The
results obtained will stimulate a further study of the generation-
recombination processes that are essential in many transport
and optical phenomena far from equilibrium.
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APPENDIX: RADIATIVE TRANSITIONS

Below we describe the generation-recombination processes
that are associated with the interband transitions induced by
the thermal radiation and evaluate the radiative relaxation rate
for the weak disorder case, g 
 1. The corresponding collision
integral was evaluated in Ref. 9 and the kinetic equation for
the electron distribution fept takes the form

∂fept

∂t
= ν(R)

p [N2υp/T (1 − fept − fhpt ) − feptfhpt ], (A1)

where N2υp/T describes the Planck distribution of the ther-
mal photons at temperature T . The hole distribution can
be obtained from the condition ∂(fept + fhpt )/∂t = 0. The
interband absorption or emission of photons are described by
the first or second terms in the right-hand side of Eq. (A1) and
are responsible for the generation or recombination processes.
The rate of spontaneous radiative transitions is given by
ν(R)

p = υRp/h̄, where we have introduced the characteristic
velocity υR � 41.6 cm/s for graphene surrounded by SiO2

layers. Similar to Eq. (6), contribution of the radiative collision
integral from Eq. (A1) into the concentration balance equa-
tion takes the form (dn/dt)ac = (4/L2)

∑
p ν(R)

p [N2υp/T (1 −
fept − fhpt ) − feptfhpt ].

For the case of an intrinsic graphene, the balance equation
is written by analogy with Sec. III A through ψt = μt/T :

dψt

dt
= −νR

Fi(ψt )

N (ψt )
, νR = 2υR

υ

T

h̄
, (A2)

where ν−1
R ≈ 30 ns is the radiative recombination time at room

temperature. The functions Fi(ψ) and N (ψ) are given by

Fi(ψ) =
∫ ∞

0

dξ ξ (1 − e−2ψ )

(1 − e−2ξ )(eξ−ψ + 1)2
,

(A3)

N (ψ) =
∫ ∞

0

dξ ξ

1 + cosh(ξ − ψ)
,

FIG. 7. (Color online) Transient evolution of concentration due
to interband radiative transitions for intrinsic (a) and heavily-doped
(b) graphene at different initial conditions: nt=0 = 3nT (1), nt=0 =
2nT (2), and nt=0 = 0.5nT (3). Dotted curves correspond to exponen-
tial fits.

and the implicit solution of Eqs. (A2) and (A3) is given by the
formula similar to Eq. (18):

νRt =
∫ ψt

ψ0

dψ
N (ψ)

Fi(ψ)
. (A4)

In Fig. 7(a), we plot the transient evolution of concentration
versus the dimensionless time, νRt , for the same initial
conditions as in Fig. 5. These transient dependencies are
described by the exponential decay given by Eq. (19) with α ≈
0.25 for all cases. Thus one obtains the radiative recombination
time ∼4/νR ≈ 120 ns, which does not depend on an initial
concentration.

For the case of doped graphene, the concentration balance
equation (22) should be replaced by

dδψt

dt
= −νR

2
Fd (ψ<

t ),
(A5)

Fd (ψ) =
∫ ∞

0

dξ ξ 2(
1 − e−2ξ

) (
eξ+ψ + 1

) ,

while the relation between δψt and ψ<
t takes the form [cf.

Eq. (21)]

δψt ≈ 1

ψs

∫ ∞

0

dξ ξ

1 + exp(ξ + ψ<
t )

. (A6)

As a result, the equation for ψ<
t has the only difference from

Eq. (2) due to the replacement Fi(ψ) by Fd (ψ). The implicit
solution of Eqs. (A5) and (A6) is given by Eq. (A4) with the
same replacement. In Fig. 7(b), we plot the transient evolution
of hole concentration, nt/nT , for the same initial conditions as
in Fig. 6. The corresponding exponential fits are determined
by the coefficients β � 0.15 (1), 0.125 (2), and 0.06 (3),
i.e., the relaxation rate depends on hole concentration. At
room temperature, the radiative recombination time (βνR)−1

corresponds to the time interval between 190 and 480 ns.
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