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We develop an analytical device model for graphene bilayer field-effect transistors (GBL-FETs)

with the back and top gates. The model is based on the Boltzmann equation for the electron

transport and the Poisson equation in the weak nonlocality approximation for the potential in the

GBL-FET channel. The potential distributions in the GBL-FET channel are found analytically. The

source-drain current in GBL-FETs and their transconductance are expressed in terms of the

geometrical parameters and applied voltages by analytical formulas in the most important limiting

cases. These formulas explicitly account for the short-gate effect and the effect of drain-induced

barrier lowering. The parameters characterizing the strength of these effects are derived. It is

shown that the GBL-FET transconductance exhibits a pronounced maximum as a function of the

top-gate voltage swing. The interplay of the short-gate effect and the electron collisions results in a

nonmonotonic dependence of the transconductance on the top-gate length. VC 2011 American
Institute of Physics. [doi:10.1063/1.3560921]

I. INTRODUCTION

The unique properties of graphene layers, graphene nano-

ribbon arrays, and graphene bilayers1–3 along with graphene

nanomeshes4 make them promising for different nanoelectronic

device applications. The gapless energy spectrum of graphene

layers allows us to use them in terahertz and mid-infrared

detectors and lasers.5–9 However, the gapless energy spectrum

of graphene layers (GLs) is an obstacle for creating transistor

digital circuits based on graphene field-effect transistors (G-

FETs) due to relatively strong interband tunneling in the FET

off-state.10,11 The reinstatement of the energy gap in graphene-

based structures like graphene nanoribbons, graphene nano-

meshes, and graphene bilayers appears to be unavoidable to

fabricate FETs with a sufficiently large on/off ratio. Recently,

the device dc and ac characteristics of graphene nanoribbon

and graphene bilayer FETs (which are referred to as GNR-

FETs and GBL-FETs, respectively) were both numerically and

analytically assessed.12–19 The device characteristics of GNR-

FETs operating in near ballistic and drift-diffusion regimes can

be calculated analogously with those of nanowire- and carbon

nanotube-FETs (see, for instance Refs. 20–22 and references

therein). The GBL-FET characteristics can, in principle, be

found using the same approaches as those realized previously

for more customary FETs with a two-dimensional electron sys-

tem in the channel.23–31 However, some important features of

GBL-FETs, in particular, the dependence of both the electron

density and the energy gap in different sections of the GBL-

FET channel on the gate and drain voltages should be consid-

ered,32–34 along with the “short-gate” effect and the drain-

induced barrier lowering.29

In this paper, we use a substantially generalized version

of the GBL-FET analytical device model17,18 to calculate the

characteristics of GBL-FETs (the threshold voltages, cur-

rent-voltage characteristics, and transconductance) in differ-

ent regimes and analyze the possibility of a significant

improvement of the ultimate performance of these FETs by a

shortening of the gate and a decrease of the gate layer thick-

ness. The device model under consideration which presents

the GBL-FET characteristics in closed analytical form

allows a simple and clear evaluation of the ultimate perform-

ance of GBL-FETs and their comparison. The following

effects are considered: (a) dependences of the electron den-

sity and energy gap in different sections of the channel on

the applied voltages and the inversion of the gated section

charge; (b) degeneracy of the electron system, particularly in

the source and drain sections of the channel; (c) the short-

gate effect and the effect of drain-induced barrier lowering;

(d) electron scattering in the channel.

Our model is based on the Boltzmann kinetic equation

for the electron system in the GBL-FET and the Poisson

equation in the weak nonlocality approximation.35,36 The use

of the latter allows us to find the potential distributions along

the channel in the most interesting cases and analytically

obtain the GBL-FET characteristics.

The paper is organized as follows. In Sec. II, the GBL-

FET device model under consideration is presented and the fea-

tures of GBL-FET operation are discussed. In Sec. III, the main

equations of the model are cited. The general formulas for the

source-drain current and the GBL-FET transconductance sim-

plified for the limiting cases (far below the threshold, near

threshold, and at low top-gate voltages corresponding to the on-

state) are also presented. In this section, the source-drain current

and the GBL-FET transconductance are expressed in terms ofa)Electronic mail: v-ryzhii@u-aizu.ac.jp.
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the Fermi energy in the source and drain contacts and the height

of the potential barrier in the channel. To find the barrier height,

the Poisson equation is solved for different limiting cases in

Sec. IV. The obtained potential distributions are used for the

derivation of the explicit formulas for the source-drain current

and the transconductance as functions of the applied voltages

and geometrical parameters. Section V is a brief discussion of

some effects (role of the device geometry, electron scattering,

charge inversion in the channel, and interband tunneling),

which influence the GBL-FET characteristics. In Sec. VI, we

draw the main conclusions. Some reference data related to the

voltage dependences of the Fermi energy and the energy gap in

different sections of the GBL-FET channel are contained in the

Appendix.

II. DEVICE MODEL AND FEATURES OF OPERATION

We consider a GBL-FET with the structure shown in

Fig. 1. It is assumed that the back gate, which is positively

biased by the pertinent voltage Vb > 0, provides the forma-

tion of the electron channel in the GBL between the ohmic

source and drain contacts. A relatively short top gate serves

to control the source-drain current by forming the potential

barrier (its height Dm depends on the top gate voltage Vt and

other voltages) for the electrons propagating between the

contacts.

We shall assume that the GBL-FETs under the condi-

tions when the electron systems in the source and drain sec-

tions are degenerate, i.e., eF � kBT. This implies that the

back gate voltage is sufficiently high to induce the necessary

electron density in the source and drain sections.

In the GBL-FET the energy gap is electrically induced

by the back gate voltage32–34 (see also Ref. 18). Thus in

GBL-FETs, the back gate plays a dual role: it provides the

formation of the electron channel and the energy gap. Since

the electric field component directed perpendicular to the

GBL plane in the channel section below the top gate (gated

section) is determined by both Vb and Vt, the energy gap can

be different in different sections of the GBL channel: Eg;s

(source section), Eg (gated section), and Eg;d (drain sec-

tion).17,18 At sufficiently strong top-gate voltage (Vt < Vth

< 0, where Vth is the threshold voltage), the gated section

becomes depleted. Since the energy gaps in GBLs are in

reality not particularly wide, at a further moderate increase

in jVtj, the gated section of the channel becomes filled with

holes (inversion of the charge in the gated section) if

Vt < Vin < Vth, where Vin is the inversion voltage. As a

result, the GBL-FETs with moderate energy gaps are charac-

terized by the threshold and inversion voltages: Vth < 0 and

Vin < 0. The explicit formulas for Vth and Vin shall be given

in the following section. The cases Vt ¼ Vth and Vt ¼ Vin

correspond to the alignment of the Fermi level in the source

section of the channel with the conduction band bottom and

the valence band top, respectively, in the gated section.

III. MAIN EQUATIONS OF THE MODEL

Due to the relatively high energy of optical phonons in gra-

phene, the electron scattering in the GBL-FET channel is primar-

ily due to disorder and acoustic phonons. Considering such

quasielastic scattering, the quasiclassical Boltzmann kinetic

equation governing the steady state electron distribution function

fp ¼ fpðxÞ in the gated section of the channel can be presented as

vx
@fp

@x
þ e

@u
@x

@fp

@px
¼
ð

d2qwðqÞðfpþq � fpÞdðepþq � epÞ: (1)

Here e ¼ jej is the electron charge, ep ¼ p2=2m, where m is the

electron effective mass in GBL, p ¼ ðpx; pyÞ is the electron mo-

mentum in the GBL plane (z ¼ 0), wðqÞ is the probability of the

electron scattering upon disorder and acoustic phonons with the

variation of the electron momentum by the quantity q ¼ ðqx; qyÞ,
vx ¼ px and axis x is directed in this plane (from the source con-

tact to the drain contact, i.e., in the direction of the current). For

simplicity, we disregard the effect of the “Mexican hat” (see,

for instance, Ref. 34) and a deviation of the real energy spec-

trum in the GBL from the parabolic one (the latter can be

marked in the source and drain sections with relatively high

Fermi energies). The effective mass in GBLs m ¼ c1=2vW ,

where c1 ’ 0:35� 0:43 eV is the inter-layer hopping integral

and vW ’ 108 cm/s is the characteristic velocity of electrons

and holes in GLs,3,34–36 so that m ’ ð0:03� 0:04Þm0, where

m0 is the bare electron mass. One of the potential advantages

of GBL-FETs is the possibility of ballistic transport even if the

top-gate length Lt is not small. In such GBL-FETs, one can

neglect the right-hand side term in Eq. (1).

As in Refs. 10, 15, 37, and 38 we use the following

equation for the electric potential u ¼ uðxÞ ¼ wðx; zÞjz¼0 in

the GBL plane:

ðWb þWtÞ
3

@2u
@x2
� u� Vb

Wb
� u� Vt

Wt
¼ 4pe

k
ðR� � RþÞ: (2)

Here, R� and Rþ are the electron and hole sheet densities in

the channel, respectively, k is the dielectric constant of the

layers between the GBL and the gates and Wb and Wt are the

thicknesses of these layers. In the following, we use

Wb ¼ Wt ¼ W (except in Sec. V). Equation (2) is a conse-

quence of the two-dimensional Poisson equation for the

electric potential wðx; zÞ in the GBL-FET gated section

(�Lt=2 � x � Lt=2 and �Wb � z � Wt, where Lt is the

length of the top gate) in the weak nonlocality approxima-

tion.37 This equation provides the potential distributions,

which can be obtained from the two-dimensional Poisson

equation by expansion in powers of the parameterFIG. 1. (Color online) Schematic view of the GBL-FET structure.
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d ¼ ðW3
b þW3

t Þ=15ðWb þWtÞ=L2 ¼ W2=15L2, where L is

the characteristic scale of the lateral inhomogeneities (in the x-

direction) assuming that d� 1, i.e., L is not too small. The

lowest approximation in such an expansion leads to Shockley’s

gradual channel approximation, in which the first term on the

left side of Eq. (2) is neglected.39,40 The factor 1=3 has

appeared due to features of the Green function of the Laplace

operator in the case of the geometry under consideration.

The boundary conditions for Eqs. (1) and (2) are pre-

sented as

fp px�0;x¼�Lt=2 ¼ fs;p; fp

�� ��
px�0;x¼Lt=2

¼ fd;p; (3)

u x¼�Lt=2 ¼ 0; u
�� ��

x¼Lt=2
¼ Vd þ ðeF;d � eF;sÞ=e ¼ V�d ; (4)

where fs;p and fd;p are the electron distribution functions in the

source and drain sections of the channel. The functions fs;p and

fd;p are the Fermi distribution functions with the Fermi energies

eF;s and eF;d which are determined by the back gate and drain

voltages, Vb and Vd (Refs. 17 and 18) (also see the Appendix):

eF;s ’ eVb
b

ð1þ bÞ ; eF;d ’ eðVb � VdÞ
b

ð1þ bÞ ; (5)

where b ¼ aB=8W, aB ¼ k�h2=me2 is the Bohr radius, and �h is

the reduced Planck constant. In the following, we shall assume

that b� 1, so that eF;s ’ beVb and eF;d ’ beðVb � VdÞ. In

particular, if aB ¼ 4 nm (GBL on SiO2) and W ¼ 10 nm, one

obtains b ’ 0:05. Due to a smallness of b, we shall disregard a

distinction between V�d and Vd because Vd � V�d ’ bVd � Vd

(as shown in the Appendix). Restricting ourselves by the con-

sideration of the GBL-FETs operation at not too high drain vol-

tages, we also neglect the difference in the Fermi energies in

the source and drain sections, i.e., put eF;d ’ eF;s ¼ eF.

The source-drain dc current density (current per unit

length in the direction perpendicular to its flow) can be cal-

culated using the following formulas:

J ¼ 4e

ð2p�hÞ2
ð

d2pvxfp

¼ e

p2�h2

ð1
�1

dpy

ð1
0

dpxvxðfp � f�pÞ: (6)

In this case, Eq. (1) with boundary conditions (3) yields

fp � f�p ’
Hðp2

x=2mþ euÞ �Hðp2
x=2mþ eu� eVdÞ

1þ exp½ðp2=2mþ eu� eFÞ=kBT� ; (7)

where T is the temperature, kB is the Boltzmann constant, and

HðeÞ is the unity step function. Using Eqs. (6) and (7), we obtain

J ¼ e

p2�h2

ð1
�1

dpy

ð1
Dm

dn

�
1

1þ exp½ðp2
y=2mþ n� eFÞ=kBT�

� 1

1þ exp½ðp2
y=2mþ n� eF þ eVdÞ=kBT�

�

¼ ekBT

p2�h2

ð1
�1

dpy

�
ln

�
exp

�
eF � p2

y=2m� Dm

kBT

�
þ 1

�

� ln

�
exp

�
eF � p2

y=2m� Dm � eVd

kBT

�
þ 1

��
: (8)

Equation (8) can be presented in the following form:

J ¼ J0

ð1
0

dzfln½expðdm � z2Þ þ 1�

� ln½expðdm � Ud � z2Þ þ 1�g: (9)

Here (see, for instance, Ref. 23)

J0 ¼
2
ffiffiffiffiffiffi
2m
p

eðkBTÞ3=2

p2�h2
; (10)

is the characteristic current density, and dm ¼ ðeF � DmÞ=
kBT and Ud ¼ eVd=kBT are the normalized voltage swing

and drain voltage, respectively. At m ¼ 4	 10�29 g and

T ¼ 300 K, J0 ’ 2:443 A/cm.

Figure 2 shows the dependences of the source-drain cur-

rent J normalized by the value J0 as a function of Ud calcu-

lated using Eq. (9) for different values of dm.

The GBL-FET transconductance g is defined as

g ¼ @J

@Vt
: (11)

Equations (9) and (11) yield

g ¼ J0

ð1
0

dzf½expðz2 � dmÞ þ 1��1

� ½expðz2 � dm þ UdÞ þ 1��1g
�
� @dm

@Vt

�
: (12)

The obtained formulas for the source-drain current and

transconductance can be simplified in the following limiting

cases.

A. High top-gate voltages

At high top-gate voltages, which correspond to the sub-

threshold voltage range, the barrier height exceeds the Fermi

energy (Dm � eF), so that dm � 1. In this case (the electron

system in the gated section is nondegenerate), using Eqs. (9)

and (12) we obtain

FIG. 2. Normalized source-drain current J=J0 vs normalized drain voltage

Ud at different values of the normalized top-gate voltage swing dm.
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J ¼
ffiffiffi
p
p

2
J0 exp

eF � Dm

kBT

� �
1� exp � eVd

kBT

� �� �
; (13)

g ¼
ffiffiffi
p
p

2

J0

kBT
exp

eF � Dm

kBT

� �
1� exp � eVd

kBT

� �� �
� @Dm

@Vt

� �
:

(14)

B. Near threshold top-gate voltages

In this case, Dm& eF, i.e., jdmj. 1, Eqs. (9) and (12)

yield

J ’ J0

eVd

kBT
f1 þ f2

eF � Dm

kBT

� �� �
1� exp � eVd

kBT

� �� �
; (15)

g ’ J0eVd

ðkBTÞ2
f2 �

@Dm

@Vt

� �
(16)

at low drain voltages eVd. kBT (Ud. 1), and

J ’ J0 f0 þ f1

eF � Dm

kBT

� �� �
; (17)

g ’ J0

kBT
f1 �

@Dm

@Vt

� �
(18)

at high drain voltages eVd � kBT (Ud � 1). Here,

f0 ¼
Ð1

0
dn ln½expð�n2Þ þ 1� ’ 0:678, f1 ¼

Ð1
0

dn=½expðn2Þ
þ1� ’ 0:536, and f2 ¼

Ð1
0

dn expðn2Þ=½expðn2Þ þ 1�2
’ 0:337. In the limit eF ¼ Dm, Eqs. (13) and (14) provide the

values J and g close to those obtained from Eqs. (17) and

(18), which are rigorous in such a limit.

C. Low top-gate voltages

At low top-gate voltages, Dm < eF, from Eqs. (9)

J ’ 2

3
I0½ðeF � DmÞ3=2HðeF � DmÞ

� ðeF � Dm � eVdÞ3=2HðeF � Dm � eVdÞ� ; (19)

g ’ I0½ðeF � DmÞ1=2HðeF � DmÞ

� ðeF � Dm � eVdÞ1=2HðeF � Dm � eVdÞ� �
@Dm

@Vt

� �
:

(20)

Here,

I0 ¼
2
ffiffiffiffiffiffi
2m
p

e

p2�h2
; (21)

with J0 ¼ I0ðkBTÞ3=2
.

Using Eqs. (19) and (20), one obtains

J ’ I0eVd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeF � DmÞ

p
’ I0eVd

ffiffiffiffiffi
eF
p

1� Dm

2eF

� �
; (22)

g ’ 1

2
I0

eVdffiffiffiffiffi
eF
p � @Dm

@Vt

� �
(23)

at eVd � eF � Dm; and

J ¼ 2

3
I0ðeF � DmÞ3=2 ’ 2

3
I0e

3=2
F 1� 3Dm

2eF

� �
; (24)

g ’ I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeF � DmÞ

p
� @Dm

@Vt

� �
(25)

at eVd � eF � Dm.

The dependences shown in Fig. 2 implicitly describe the

dependences of J calculated using the universal Eq. (9) on

the back-gate, top-gate, and drain voltages and on the geo-

metrical parameters. Equations (13)–(25) provide these

dependences in most interesting limits. However, to obtain

the explicit formulas for J as well as for g, one needs to

determine the dependences of the barrier height Dm on all

voltages and geometrical parameters. Since the electron den-

sities in the gated section in the limiting cases under consid-

eration are different, the screening abilities of the electron

system in this section and the potential distributions are also

different. The latter leads to different Dm versus Vt relations.

IV. POTENTIAL DISTRIBUTIONS, SOURCE-DRAIN
CURRENT, AND TRANSCONDUCTANCE

To obtain the explicit dependences of the source-drain

current and the transconductance on the gate voltages Vb and

Vt and on the drain voltage Vd , one needs to find the relation-

ship between the barrier height Dm and these voltages. This

necessitates the calculations of the potential distribution in

the channel. The latter can be found from Eq. (2) in an ana-

lytical form in the following limiting cases.

A. High top-gate voltages - sub-threshold voltage
range (Dm � eF )

When the barrier height Dm exceeds the Fermi energy

eF, the electron density is low in the gated section and hence,

one can disregard the contribution of the electron charge in

this section. In such a limit, we arrive at the following equa-

tion for the potential:

d2u
dx2
� u

K2
0

¼ F0

K2
0

; (26)

where K0 ¼
ffiffiffiffiffiffiffiffi
2=3

p
W and F0 ¼ �ðVb þ VtÞ=2. Solving Eq.

(26) considering boundary conditions (4), for the case of

high top-gate voltages we obtain

u ¼ F0

coshðx=K0Þ
coshðLt=2K0Þ

� 1

� �
þ Vd

sinh½ð2xþ LtÞ=2K0�
sinhðLt=K0Þ

:

(27)

Limiting our consideration by the GBL-FETs with not too

short top gate (Lt � W), Eq. (27) can be presented as

u ’ �F0 1� 2 exp � Lt

2K0

� �
cosh

x

K


 �� �

þ Vd exp � Lt

2K0

� �
exp

x

K0

� �
: (28)

Equation (28) yields
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Dm ’ eF0 1� 1

g0

� �
� eVd

2g0

¼ � eðVb þ VtÞ
2

1� 1

g0

� �
� eVd

2g0

; (29)

where g0 ¼ expðLt=2K0Þ=2. Simultaneously, for the position

of the barrier top one obtains

xm ¼ �
K0

2
ln 1þ Vd

F0

� �
¼ �K0

2
ln 1� 2Vd

Vb þ Vt

� �
: (30)

The terms on the right-hand side of Eq. (29) containing

the parameter g0 reflect the effect of the top-gate geometry

(finiteness of its length). This effect is weakened with the

increasing top barrier length Lt. The effect of drain-induced

barrier lowering in the case under consideration is described

by the last term on the right-hand side of Eq. (29).

Equation (29) yields ð@Dm=@VtÞ ¼ �ðe=2Þð1� g�1
0 Þ.

Invoking Eqs. (13) and (14), we obtain

J ¼
ffiffiffi
p
p

2
J0 exp

eðVt � VthÞ
2kBT

1� 1

g0

� �� �

	 1� exp � eVd

kBT

� �� �
exp

eVd

2g0kBT

� �
; (31)

g ’
ffiffiffi
p
p

4

eJ0

kBT
exp

eðVt � VthÞ
2kBT

1� 1

g0

� �� �

	 1� exp � eVd

kBT

� �� �
exp

eVd

2g0kBT

� �
: (32)

Here, Vth ¼ �½1þ 2b=ð1� g�1
0 Þ�Vb ’ �ð1þ 2bÞVb. The

rightmost factors on the right-hand sides of Eqs. (31) and

(32), associated with the effect of drain-induced barrier low-

ering, lead to an increase in g with increasing Vd not only at

eVd 
 kBT but at eVd � kBT:g / expðeVd=2g0kBTÞ. One

can see that in the range of the top-gate voltages under con-

sideration, the GBL-FET transconductance exponentially

decreases with increasing jVt þ Vbj and

g ’ Je

2kBT
� g0 ¼

ffiffiffi
p
p

4

eJ0

kBT
; (33)

where at T ¼ 300 K the characteristic value of the transcon-

ductance is g0 ’ 4330 mS/mm.

B. Near threshold top-gate voltages (Dm & eF )

At eVd. kBT � eF, taking into account that the electron

distribution is characterized by the equilibrium Fermi distri-

bution function, the electron density in the gated section can

be presented in the following form:

X
’ 2m

p�h2
ðeF þ euÞ: (34)

Considering this, we reduce Eq. (2) to

d2u
dx2
� u

K2
¼ F

K2
: (35)

Here,

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aBW

12ð1þ 2bÞ

s
’

ffiffiffiffiffiffiffiffiffi
aBW

12

r
¼ W

ffiffiffiffiffiffi
2

3
b

r
;

F ¼ eF=e� b Vb þ Vtð Þ½ �
1þ 2bð Þ ’ �b bVb þ Vtð Þ ’ �bVt;

so that K=K0 ’
ffiffiffi
b
p

< 1. The solution of Eq. (35) with

boundary condition (4) is given by

u ¼ F
coshðx=KÞ

coshðLt=2KÞ � 1

� �
þ Vd

sinh½ð2xþ LtÞ=2K�
sinhðLt=KÞ

’ �F 1� 2 exp � Lt

2K

� �
cosh

x

K


 �� �

þ Vd exp � Lt

2K

� �
exp

x

K


 �
: (36)

From Eq. (36) we obtain

Dm ’ eF 1� 1

g

� �
� eVd

2g

’ ½eF � ebðVb þ VtÞ� 1� 1

g

� �
� eVd

2g

’ �ebVt 1� 1

g

� �
� eVd

2g
; (37)

where g ¼ expðLt=2KÞ=2, and the position of the barrier top is

xm ’ �
K
2

Vd

F
’ � K

2b

Vd

Vb
: (38)

Since K < K0, one obtains g� g0, and the terms in Eq. (37)

containing the parameter g can be disregarded. This implies

that the effects of the top-gate geometry and drain-induced

barrier lowering are much weaker (negligible) in the case of

the top-gate voltages in question in comparison with the case

of high top-gate voltages.

Substituting Dm from Eq. (37) into Eq. (16), for low

drain voltages we arrive at

g ’ J0e2Vdf2

ðkBTÞ2
1� 1

g

� �
b: (39)

At relatively high drain voltages (eVd > eF � kBT), the elec-

tron charge in the source portion of the gated section

(x � xm, where xm is the coordinate of the barrier top) is pri-

marily determined by the electrons injected from the source.

The electron injection from the drain at high drain voltages

is insignificant. Hence, the electron charge in the drain por-

tion of the gated section can be disregarded. In this case, Eq.

(2) can be presented as

d2u
dx2
� u

K2
¼ F

K2
(40)

at � Lt=2 � x � x0; and

d2u
dx2
� u

K2
0

¼ F0

K2
0

(41)

at x0 � x � Lt=2:
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At the point x ¼ x0 corresponding to the condition

eujx¼x0
þ eF ¼ 0, the solutions of Eqs. (40) and (41) should

be matched:

ujx¼x0�0 ¼ujx¼x0þ0 ¼�
eF

e
;

du
dx

����
x¼x0�0

¼ du
dx

����
x¼x0þ0

: (42)

Solving Eqs. (40) and (41) with conditions (4) and (42),

we obtain the following formulas for the potential u at

�Lt=2 � x � x0 and x0 � x � Lt=2 as well as an equation

for x0:

u¼F
coshðx=KÞ

coshðLt=2KÞ�1

� �
� eF

e
þF

coshðx0=KÞ
coshðLt=2KÞ�F

� �

	 sinh½ðxþLt=2Þ=KÞ�
sinh½ðx0þLt=2Þ=KÞ� ; (43)

u ¼ F0

coshðx=K0Þ
coshðLt=2K0Þ

� 1

� �
þ Vd

sinh½ðxþ Lt=2Þ=K0�
sinhðLt=K0Þ

�
�

eF

e
þ F0

coshðx0=K0Þ
coshðLt=2K0Þ

� F0

þ Vd
sinh½ðx0 þ Lt=2Þ=K0�

sinhðLt=K0Þ

�
sinh½ðx� Lt=2Þ=K0�
sinh½ðx0 � Lt=2Þ=K0�

;

(44)

1

K

�
F

sinhðx0=KÞ
coshðLt=2KÞ �

eF

e
þ F

coshðx0=KÞ
coshðLt=2KÞ � F

� �

	 cosh½ðx0 þ Lt=2Þ=KÞ�
sinh½ðx0 þ Lt=2Þ=KÞ�

�

¼ 1

K0

�
F0

sinhðx0=K0Þ
coshðLt=2K0Þ

þ Vd
cosh½ðx0 þ Lt=2Þ=K0�

sinhðLt=K0Þ

�
�

eF

e
þ F0

coshðx0=K0Þ
coshðLt=2K0Þ

� F0

þ Vd
sinh½ðx0 þ Lt=2Þ=K0�

sinhðLt=K0Þ

�
cosh½ðx0 � Lt=2Þ=K0�
sinh½ðx0 � Lt=2Þ=K0�

�
:

(45)

In the cases Vb þ Vt ’ 0 and �ðVb þ VtÞ&Vb � eF=e, Eq.

(45) yields x0 ¼ �Lt=2þ K ln½4bVt=ð
ffiffiffi
b
p
þ 2bÞðVb þ VtÞ�

and x0 ’ �Lt=2þ 2K0eF=½�eðVb þ VtÞ� ’ �Lt=2þ 2bK0

Vb=½�ðVb þ VtÞ�, respectively. When �ðVb þ VtÞ ! þ0, the

matching point shifts toward the channel center. If

�ðVb þ VtÞ increases, the matching point tends to the source

edge of the channel. In this case, the role of the electron

charge in the vicinity of the source edge diminishes, and the

potential distribution tends to that given by Eq. (27).

At the threshold, the matching point x0 coincides with

the position of the barrier maximum xm. Considering that at

x0 ¼ xm, both the left-hand and right-hand sides of Eq. (45)

are equal to zero, for the barrier top height near the threshold

at relatively high drain voltages we obtain the following:

Dm ’ eF0 1� 1

g0

� �
� eVd

g0

¼ � eðVb þ VtÞ
2

1� 1

g0

� �
� eVd

g0

; (46)

xm ’ �
Lt

2
þ K ln

2F

F� F0

� �
’ � Lt

2
þ K ln

1

b
: (47)

Both Eqs. (29) and (46) correspond to the situations when the

electron density in a significant portion of the channel is

fairly low. However there is a distinction in the dependence

of Dm on Vd (the pertinent coefficients differ by a factor of 2).

This is because in the first case the barrier top is located near

the channel center, whereas in the second case it is shifted to

the vicinity of the source edge [compare Eqs. (30) and (47)].

Using Eqs. (19) and (50), we obtain ð@Dm=@VtÞ
¼ �ðe=2Þð1� g�1

0 Þ and arrive at the following formula for

the transconductance near the threshold, i.e., when Vt ’ Vth

J ’ J0 f0 þ f1

eðVt � VthÞ
2kBT

1� 1

g0

� �� �
; (48)

g ’ J0e

kBT

f1

2
1� 1

g0

� �
¼ gth: (49)

Here, as above, Vth ’ �ð1þ 2bÞVb. In particular, Eqs. (48)

and (49) at Vt ¼ Vth, yield Jth ’ J0f0. For a GBL-FET with

Lt ¼ 40 nm, W ¼ 10 nm, at T ¼ 300 K one obtains

Jth ’ 1:656 A/cm and gth ’ 2167 mS/mm.

C. Low top-gate voltages (Dm < eF )

At relatively low top-gate voltages when Dm < eF, the

electron system is degenerate not only in the source and

drain sections but in the gate section as well. In this top-gate

voltage range, the spatial variation of the potential is charac-

terized by K ’ W
ffiffiffiffiffiffiffiffiffiffi
2b=3

p
. As a result, for Dm one obtains an

equation similar to Eq. (37). Since K < K0 � Lt, the param-

eter determining the effect of the top-gate geometry and the

effect of drain-induced barrier lowering is g ¼ expðLt=2KÞ=
2� g0. As a consequence, one can neglect the effects in

question in the top-gate voltage range under consideration.

As a result, one can arrive at

J ’ 2

3
I0e3=2½bðVt � VthÞ�3=2 � ½bðVt � Vth � Vd�3=2

(50)

when Vd � bðVt � VthÞ;

J ’ 2

3
I0e3=2½bðVt � VthÞ�3=2; (51)

when Vd > bðVt � VthÞ; and

@Dm

@Vt
¼ �be: (52)

Considering Eq. (51), at low top-gate voltages we obtain

g ’ beI0

2

eVdffiffiffiffiffi
eF
p ’

ffiffiffi
b
p

e3=2I0

2

Vdffiffiffiffiffi
Vb

p (53)

when eVd � eF � Dm ’ beðVb þ VtÞ; and

g. beI0

ffiffiffiffiffi
eF
p ’ b3=2e3=2I0

ffiffiffiffiffi
Vb

p
¼ gon (54)

when eVd � eF � Dm ’ beðVb þ VtÞ. As follows from Eqs.

(33) and (34), the transconductance is proportional to a small
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parameter b3=2. This is because the effect of the top-gate

potential is weakened due to a strong screening by the degen-

erate electron system in the gated section. As a result, the

transconductance at low top-gate voltages is smaller than

that at the top-gate voltage corresponding to the threshold.

Assuming that b ¼ 0:05 and Vb ¼ 5 (eF ’ 0:25 eV), we

obtain gon ’ 1467 mS/mm. Comparing Eqs. (49) and (54),

we find gon=gth / b3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eVb=kBT

p
’ 0:158 and g=gth

. gon=gth ’ 0:68.

Since the source-drain current at high top-gate voltages

decreases exponentially when �Vt increases, the transcon-

ductance decreases as well.

Figure 3 shows the barrier (conduction band) profile

D ¼ �eu in the GBL-FETs calculated using Eqs. (27), (36),

and (44) for different applied voltages and top-gate lengths.

As demonstrated, the barrier height naturally decreases with

increasing Vt � Vth. At the threshold (Vt ¼ Vth), the barrier

height is equal to the Fermi energy (at b ¼ 0:05 and Vb ¼ 5

V, eF ’ 0:25 eV). One can see that the shortening of the top-

gate leads to a marked decrease in the barrier height (the

short-gate effect). The source-drain current as a function of

the drain voltage for different top-gate voltage swings is

demonstrated in Fig. 4. The dependences corresponding to

Vt � Vth < 0, Vt � Vth ¼ 0, and Vt � Vth > 0 were calculated

using formulas from subsections A, B, and C, respectively.

Figure 5 shows that the transconductance as a function of the

top-gate voltage swing exhibits a pronounced maximum at

Vt ’ Vth. This maximum is attributed to the following. At

high top-gate voltages, the effect of screening is insignificant

due to low electron density in the channel. As a result, the

height of the barrier top is rather sensitive to the top-gate

voltage variations. The source-drain current in this case is

exponentially small so that the transconductance is small. In

contrast, at low top-gate voltages, the screening by the elec-

trons in the channel is effective, leading to a much weaker

control of the barrier height by the top voltage [pay attention

to parameter b� 1 in Eqs. (50)–(54)]. Despite this fact, a

strong source-drain current provides a moderate value of

the transconductance. However, in the near threshold

voltage range, both the sensitivity of the barrier height and

the source-drain current to the top-gate voltage are fairly

large.

V. DISCUSSION

A. Role of geometrical parameters

In the main part of the paper, we assumed that the thick-

nesses of the gate layers are equal to each other:

Wb ¼ Wt ¼ W. If Wb 6¼ Wt, the formulas obtained above

should be slightly modified. In particular, near the threshold

ð@Dm=@VtÞ ¼ �ðe=ð1þWt=WbÞð1� g�1
0 Þ, so that the trans-

conductance instead of Eq. (49) is given by

g ’ J0e

kBT

f1

ð1þWt=WbÞf0

1� 1

g0

� �

’ J0e

kBT

f1

ð1þWt=WbÞf0

: (55)

As follows from the comparison of Eqs. (49) and (55),

changing Wt, in particular, from Wt ¼ Wb to Wt ¼ Wb=2,

leads to an increase in the transconductance at the top-gate

voltages near the threshold of 50% (compare the g versus

Vt � Vth dependences in Fig. 5 for Wb ¼ Wt ¼ 10 nm and

Wb ¼ 10 nm and Wt ¼ 5 nm).

As demonstrated above, shortening of the top gate can

result in the deterioration of the GBL-FET characteristics.

FIG. 3. Barrier profile D ¼ �e/ at different top-gate voltage Vt and drain

voltage Vd for GBL-FETs with different top-gate length Lt. Upper and lower

pairs of curves correspond to Vt � Vth ¼ �1:5 V and Vt � Vth ’ 0, respec-

tively; W ¼ 10nm; b ¼ 0:05, and Vb ¼ 5:0 V.

FIG. 4. Source-drain current J vs drain voltage Vd at different values of the

top-gate voltage swing Vt � Vth.

FIG. 5. Transconductance g vs top-gate voltage swing Vt � Vth.
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This effect is characterized by parameters g and g0, which

strongly depend on the top-gate length Lt. This effect gives

rise to a decrease in the transconductance if Lt becomes

smaller. However, in the range of large Lt the electron colli-

sions can play a substantial role. This leads to the transcon-

ductance roll-off with increasing Lt. The effect of drain-

induced barrier lowering is also characterized by parameters

g and g0. As follows from Sec. IV, at sub-threshold, the

effect of drain-induced barrier lowering results in the appear-

ance of the factor expðeVd=2g0kBTÞ [see Eqs. (31) and (32)].

This factor can provide a marked increase in J and g with

increasing drain voltage in GBL-FETs with relatively

short top gates. For example, at W ¼ 40 nm, Lt ¼ 40 nm,

T ¼ 300 K, and Vd ¼ 0:25 V, this factor is about 2.37.

The obtained characteristics comprise parameter b,

which is proportional to the Bohr radius aB. An increase in

aB when a large-k substrate, say, HfO2 (aB ¼ 20 nm) is used

instead of the SiO2 substrate (aB ¼ 4 nm), and, conse-

quently, an increase in b leads to higher sensitivity of the

barrier height to the applied voltages and, hence, to higher

transconductance.

B. Effect of electron scattering

As shown above, the potential distributions in the main

part of the gated section are fairly flat. This implies that to

determine the effect of electron scattering associated with

disorder and acoustic phonons one can use Eq. (2) with the

collisional term following the approach applied in Ref. 17.

The interaction of electrons with optical phonons, particu-

larly with optical phonons in the substrate, can be effective

in the gate-drain section at elevated drain voltages. However,

even relatively strong scattering on optical phonons in this

section should not markedly affect the dc characteristics

under consideration, although it can be essential for the ac

characteristics. Considering the case here when the elastic

scattering mechanisms under consideration are strong so that

they lead to an effective isotropization of the electron distri-

bution, one can find that the values of the source-drain cur-

rent and the transconductance obtained in the previous

section for the ballistic transport should be multiplied by a

collision factor C. This factor is equal to C1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pkBT=m

p
=

Ltm, where m ¼ mw=2 is the collision frequency we use

wðqÞ ¼ w ¼ const. It characterizes the fraction of the elec-

trons injected into the gated section and those reflected back

due to the collisions. To obtain the GBL-FET characteristics

with the top-gate lengths in a wide range (to follow the

transition from the ballistic electron transport to the colli-

sion-dominated transport), we use for the collision factor the

following interpolation formula:

C ¼ 1

1þ Lt=Lscat

; (56)

where Lscat ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pkBT=m

p
=m is the characteristic scattering

length. Figures 6 and 7 show the dependences of the trans-

conductance maximum (approximately at Vt ¼ Vth) on the

top-gate length calculated for GBL-FETs with different Wt.

The scattering length is assumed to be 1 (ballistic trans-

port), 500 nm, and 75 nm. At T ¼ 300 K, this corresponds to

the collision frequencies m ¼ 0, m ’ 1:14	 1012 s�1 (the

electron mobilities l ’ 1:75	 105 cm2/V s) and m ’ 7:6
	1012 s�1 (l ’ 2:63	 104 cm2/V s), respectively). One can

see that in the case of essential electron collisions, g versus

Lt dependences exhibit pronounced maxima. This is attrib-

uted to an interplay of two effects: the short-gate effect

(weakening of the barrier controllability by the top-gate volt-

age when Lt decreases) and the effect of collisions, which is

reinforced when Lt becomes larger (which decreases the cur-

rent). As follows from Figs. 6 and 7, the electron collisions

can lead to a dramatic decrease in the transconductance.

C. Charge inversion in the gated section

At sufficiently high top-gate voltages Vt < Vin when

Dm > eF þ Eg, the top of the valence band in the gated sec-

tion of the channel can be markedly populated by holes

(inversion of the gated section charge), so that the term in

the right-hand side of Eq. (2) becomes negative. The latter

inequality corresponds to the following value of the inver-

sion voltage [see Eqs. (A4) and (A5)]:

Vin ¼ �Vb 1þ 2bþ d0

W

� �
’ Vth 1þ d0

W

� �
: (57)

FIG. 6. Maximum transconductance g vs top-gate length Lt for Wt ¼ 10

nm.

FIG. 7. The same as in Fig. 6 but for Wt ¼ 5 nm.
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The hole charge provides an effective screening of the

transverse electric field in the gated section. This leads to

weakening of the sensitivity of the barrier height and the

source-drain current on the top gate voltage Vt (Ref. 15) and,

hence, to a decrease in the transconductance. This pattern is

valid at the dc voltages or when the characteristic time of their

variation is long in comparison with the characteristic times of

the thermogeneration of holes and the tunneling between the

channel side regions and the gated section.15,17 In the situation

when the hole recharging of the gated section of the channel

is a relatively slow process, the ac transconductance at the fre-

quencies higher than the characteristic recharging frequency

can substantially exceed the dc transconductance.

D. Interband tunneling

At elevated top-gate voltages (Vt < Vin), the interband

tunneling of electrons from the conduction band in the source

to the valence band in the gated section as well as from the va-

lence band in the gated section to the conduction band in the

drain can be essential. At high drain voltages the latter tunnel-

ing processes can be particularly pronounced. This can result

in an elevated source-drain current despite a rather high barrier.

To limit the tunneling, the back-gate voltage, which mainly

determines the energy gap, should be high enough. A decrease

in the gate layer thicknesses also promotes the tunneling sup-

pression. For example, if W ¼ ð5� 10Þ nm, Vb ¼ �Vt ¼ 5 V,

the energy gap in the gated section of the channel

Eg ’ 0:17� 0:34 eV [see Eq. (A4)]. Despite some attempts to

calculate the tunneling currents in G-FETs and GBL-FETs

(see, for instance, Refs. 11 and 19), the problem for GBL-

FETs remains open. This is because the spatial nonuniformity

of the energy gap in the channel and its nonlinear spatial de-

pendence (particularly near the drain edge) associated with the

features of the potential distribution under the applied voltages.

Generalizing Eq. (A4), we obtain Eg ¼ ed½Vb � uðxÞ�=2W,

hence the energy gap varies from Eg ¼ Eg;s ’ edVb=W at

x ¼ �Lt=2 to Eg ¼ Eg;s ’ edðVb � Vd=2W at x ¼ Lt=2. It

reaches a maximum Eg ¼ dðeVb þ DmÞ=2W at x ¼ xm. One

can see that Eg;d can be markedly smaller than Eg, especially

at drain voltages that are not too small. Due to this, the deliber-

ation of the tunneling in GBL-FETs requires a sufficiently rig-

orous device model (which could include the formulas for the

potential distribution obtained above) and numerical approach.

VI. CONCLUSIONS

We demonstrated that the developed device model

allows us to derive the GBL-FET characteristics: the poten-

tial distributions along the channel, the dependences of the

source-drain current and the transconductance on the applied

voltages, and the geometrical parameters as closed-form ana-

lytical expressions. The key element of the model, which

provides an opportunity to solve the problem analytically, is

the use of the Poisson equation in the weak nonlocality

approximation. In particular, the model accounts for the

effect of screening of the transverse electric field by the elec-

tron charge in the channel, the short-gate effect, and the

effect of drain-induced barrier lowering. The parameters g0

and g characterizing the strength of these effects in the cases

of an essentially depleted channel and strong screening were

expressed via the geometrical parameters and the Bohr ra-

dius. As shown, the GBL-FET transconductance exhibits a

pronounced maximum as a function of the top-gate voltage

swing. The interplay of the short-gate effect and the electron

collisions results in a nonmonotonic dependence of the trans-

conductance on the top-gate length. The obtained analytical

formulas for the potential barrier height, the source-drain

current, and the transconductance can be used for GBL-FET

optimization by the proper choice of the thicknesses of gate

layers, the top-gate length, and the bias voltages.
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APPENDIX: VOLTAGE DEPENDENCES OF THE FERMI
ENERGY AND THE ENERGY GAP

Disregarding the effect of “Mexican-hat” and the non-

parabolicity of the electron energy spectrum, the density of

states can be considered independent of the energy (in the

energy range under consideration). Taking this into account,

the electron Fermi energies and the energy gaps in the source

and drain sections of the GBL-FET channel are, respectively,

given by Refs. 17 and 18 (Wb ¼ Wt ¼ W),

eF;s ¼
kBT

ð1þ bÞ ln exp
beVb

kBT

� �
� 1

� �
; (A1)

eF;d ¼
kBT

ð1þ bÞ ln exp
beðVb � VdÞ

kBT

� �
� 1

� �
; (A2)

Eg;s ¼
edVb

2W
; Eg;s ¼

edðVb � VdÞ
2W

: (A3)

Here aB ¼ k�h2=me2, b ¼ aB=8W, and d. d0, where

d0 ’ 0:34 nm (Ref. 32) is the spacing between the graphene

layers in the GBL, while d stands for the effective spacing

accounting for the screening of the transverse electric field by

GBL (polarization effect). In the portion of the gated section

essentially occupied by electrons and its depleted portion,

one obtains

Eg ¼
edðVb � VtÞ

2W
; Eg ¼

ed0ðVb � VtÞ
2W

; (A4)

respectively. Due to aB � d, from Eqs. (A1)–(A4) one

obtains eF;s � eF;d > Eg;s � Eg;d. At Vt < 0, Eg can signifi-

cantly exceed Eg;s and Eg;d . In the case of strong degeneracy

of the electron system, Eqs. (A1) and (A2) yield

eF;s ’ eVb
aB=8W

ð1þ bÞ ; eF;d ’ eðVb � VdÞ
b

ð1þ bÞ : (A5)

The quantity eF;d is given by the same equations in which,

however, Vb is substituted by Vb � Vd. As a result,

eF;s � eF;d ’
beVd

1þ b
’ beVd; (A6)
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eV�d ¼ eVd þ eF;d � eF;s ’
eVd

1þ b
: (A7)

Since parameter b in reality is small, so that eF;s � eF;d

’ be Vd � eVd and V�d ’ Vd we put eF;s ¼ eF;d ¼ eF and

substitute V�d by Vd.
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