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We investigate the electrical conductance of long, high-mobility quantum wires formed by the split-gate

technique, which allows for adjustment of the wire width and the number of one-dimensional electron

subbands, n. In wires with 3 � n � 8, a logarithmic temperature dependence of the conductance is

observed for 1< T < 10 K, which reaches as much as 30% of the Drude conductance. In even narrower

wires, the logarithmic dependence changes to a power-law variation. Our observations are shown to be in

good agreement with recent theoretical studies, which attribute the logarithmic term to interaction effects

in a weakly disordered quasi-one-dimensional conductor. This interaction correction is associated with the

emergence of a crossover from a quasi-one-dimensional weakly disordered Fermi liquid to a multichannel

Luttinger liquid.
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Since the beginning of the 1980s, the interplay of dis-
order and interaction in low-dimensional conductors has
been the subject of intensive theoretical and experimental
research [1–4]. Much of this attention has focused on the
electrical properties of quasi-1D conductors. In the ab-
sence of disorder, interacting electrons in quasi-1D con-
ductors are often described by the Luttinger-liquid model,
which manifests itself as a power-law temperature depen-
dence of the conductance [5,6]. In the diffusive limit,
which corresponds to relatively strong disorder, T� < 1
(� is the electron momentum relaxation rate), the
Altshuler-Aronov correction to the Drude conductance
has been widely studied in quasi-1D conductors [7].
While these two limiting cases have been intensively in-
vestigated and are well understood, much less is known
about weakly disordered (T� > 1) quasi-1D conductors.

The corrections to the Drude conductance, �D, due to
electron-electron interaction in a quasi-one-dimensional
weakly disordered Fermi liquid have been calculated in
Ref. [8], and may be presented as

�ðTÞ
�D

¼ 1þ C

n
ln

�
2kBT

�F

�
; (1)

where n is the number of conducting channels (1D sub-
bands), C is a constant that describes the electron-electron
interaction in the singlet and triplet channels, and �F is the
Fermi energy. The above result was obtained in a pertur-
bative way and assumes that the logT term is substantially
smaller than 1. More recently, employing the interacting
nonlinear sigma model, the authors of Ref. [9] accounted
for the next orders in the interaction and presented strong
arguments in favor of the exponentiation of Eq. (1).
Considering Eq. (1) as an expansion of the exponential
function in the logT term [9], we obtain the Luttinger-
liquid temperature-dependent conductance,

�ðTÞ
�D

¼
�
2kBT

�F

�
C=n

: (2)

Note, while the above consideration was relevant to the
long wires, the same power-law dependence was also
obtained for weakly disordered multichannel Luttinger
liquid in short constrictions [10–12]. To the best of our
knowledge, the logarithmic interaction correction and the
corresponding crossover from the Fermi liquid to the
Luttinger-liquid behavior have not yet been experimentally
investigated.
In this Letter, we present new data on the temperature

dependence of the conductance in long quasi-1D weakly
disordered quantum wires. We investigate the transport in
high-mobility wires of submicron width that are formed by
the split-gate technique in a two-dimensional electron gas
(2DEG) [13,14]. This technique allows us to vary the width
of the relatively long wire while maintaining high electron
mobility within it, ensuring that the condition T� > 1 is
fulfilled above 1 K. For wire widths ranging from 90 to
180 nm, we observe a clear logarithmic temperature de-
pendence of the conductance in the range 1–10 K. The
logarithmic term increases as the width of the wire de-
creases. For this range of parameters, the width of the wire,
w, is smaller than LT ¼ @vF=kBT, and, therefore, our
submicron-width wires should be considered as one-
dimensional with respect to the electron-electron inter-
action. Thus, these observations allow us to associate the
observed logT-conductance variation with the interaction
correction in the weakly disordered quasi-1D Fermi liquid
[Eq. (1)]. Moreover, we find that the prelogarithmic factor
is in good quantitative agreement with the theoretical
prediction of Ref. [8]. On the other hand, the logT term
may also be considered as a precursor to the weakly dis-
ordered multichannel Luttinger liquid [Eq. (2)]. A transi-
tion from a logarithmic to a power-law dependence is
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expected when the logT term becomes comparable with
the temperature-independent Drude conductance [9]. Our
measurements support this scenario. If the width of the
wire decreases, the logT term increases. Once the number
of one-dimensional electron subbands in the wire de-
creases to 3, the logT term at 10 K exceeds 30% of the
Drude conductance. When the width further decreases, the
logarithmic temperature dependence starts changing to a
power-law dependence.

Our long, submicron-width, quantum wires with rela-
tively high electron mobility were formed by employing
the split-gate technique in AlGaAs=GaAs quantum wells.
These heterostructures were grown by molecular beam
epitaxy on undoped (100) GaAs substrates in the following
order: 120 nm smoothing superlattice, 1000 nm GaAs
buffer layer, 20 nm Al:33Ga:66As spacer layer, Si-delta
doping layer, 40 nm Al:45Ga:55As, and 5 nm capping layer.
The 2DEG is located 65 nm below the surface. At 4.2 K, its
electron mobility, density, and mean free path is 4:7�
105 cm2=Vs, 3:0� 1011 cm�2, and 4:25 �m, respec-
tively. A six-probe Hall bar was fabricated [Fig. 1(a)],
and two Cr=Au Schottky contacts were deposited on top
of this to form a split-gate electrode with a lithographic
width and length of 0:5 �m� 20 nm and 100 �m, re-
spectively, [see Figs. 1(b) and 1(c)]. Low-temperature
transport measurements were carried out using standard
low-frequency four terminal lock-in techniques with ap-
propriate low-pass filters in a dilution refrigerator with a
base temperature of �25 mK. Voltage measurements to
characterize the 2DEG and the quasi-1D wire were per-
formed between two different sets of contacts labeled Vch

and V2DEG respectively in Fig. 1(a). This allowed for a
more accurate determination of the 2DEG parameters
while excluding the influence of the gate electrodes. The
measured resistance is composed of the wire’s resistance
and about one square of 2DEG resistance, which was
negligible compared with the more than 200 squares which
make up the submicron wide wire.

The 2D electron concentration in the wire was deter-
mined from Shubnikov–de Haas oscillations (SdH) pre-
sented in Fig. 2. Measurements of the SdH oscillations
throughout the entire experimental range of temperatures
showed that the electron concentration does not depend on
temperature, in both the wires and the 2DEG. The slope of
the linear portion of the Landau-level plot at higher fields,
where the cyclotron radius is smaller than the width, was
used to determine the 2D electron concentration. The
concentration as a function of gate voltage is shown in
the inset (a) of Fig. 3. In the narrowest wires the concen-
tration decreases to roughly one half of the 2DEG concen-
tration which is reasonable for split-gate structures [14].
In the narrow quantumwires, the oscillation indexN as a

function of the inverse magnetic field B�1 starts to deviate
from linearity when the cyclotron radius rcðBÞ becomes
�w=2 [15]. For a harmonic confinement potential, the
onset of this nonlinearity in NðB�1Þ directly provides the
number n of 1D subbands in the wire. The results of this
analysis are presented in Fig. 3 by blue triangles. In our
measurements, the method was limited by n ¼ 4, because
for smaller n, the linear dependence is not well defined.
We also determine the number of 1D subbands follow-

ing the widely used empirical method suggested in
Ref. [16]. This approach is based on the analysis of the
low-field magnetoresistance peaks due to diffusive electron
scattering at the edges of the wire. This electron-boundary
scattering manifests itself as two small side-peaks, which
are marked by red arrows in the inset of Fig. 2. The peaks
move to higher fields with increasing negative gate bias.

FIG. 1 (color). (a) Schematic diagram of the device’s geome-
try. (b) SEM image of the split-gate structure. (c) Magnified
image of the split-gate defined quantum wire.

FIG. 2 (color). Resistance Rxx of the wire (left axis) and SdH
oscillation indices N (right axis) as a function of B�1 at Vg ¼
�1020 mV and �630 mV. As can be seen from the SdH
oscillations at Vg ¼ �630 mV for T ¼ 1 K, 5 K, 8 K (blue,

red, green) the electron concentration is independent of tem-
perature. Dependence NðB�1Þ starts to deviate from linear when
cyclotron radius rcðBÞ is�w=2. Inset: Resistance of the wire Rxx

vs B for various gate voltages at T ¼ 1 K. Arrows mark local
peaks which correspond to rcðBÞ ’ w=2.
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The number of 1D subbands can be evaluated via an
empirical relation, n ¼ 0:55@=ð�eBmaxÞ Ref. [16], which
has subsequently been confirmed in numerous works. The
results of this method are presented in Fig. 3 as the red
circles. The error bars represent the uncertainty in the
determination of Bmax from the magnetoresistance mea-
surements. In our experiments, the method was limited to
n ¼ 3, because for more narrow wire widths, the peaks
become difficult to identify. As can be seen in Fig. 3, the
two methods used give consistent results for the number of
subbands n as a function of the gate voltage. In what fol-
lows, we will compare our results with the theory [Eqs. (1)
and (2)] in terms of the number of conducting channels, n.
For illustrative purposes, in inset (b) of Fig. 3, we present
the wire width, w, as a function of Vg. The dependence

wðVgÞ was calculated from nðVgÞ employing two model

potential shapes, the square-well and parabolic infinite
confinement potentials. These two extreme models provide
lower and upper boundaries for more realistic po-
tentials, such as the parabolic potential with a flat bottom.

The magnetoresistance data also provide evidence of
weak-localization effects (WL), which should contribute
a positive logarithmic temperature-dependent correction to
the conductance. The WL effects are evident as the sharp
peak at zero field shown in the inset of Fig. 2. At magnetic
fields above �100 mT, the effects of WL are suppressed,
and effects of the electron-electron interaction which do
not depend on magnetic field can be observed.

The resistance of the wire as a function of gate voltage
RðVgÞ at T ¼ 1:4 K is shown in Fig. 3, inset (a). The

depletion threshold of the 2DEG underneath the split-gates
is identified by the rapid increase in the resistance at Vg ¼

�0:28 V. This is consistent with the calculated voltage
Vg ¼ �0:27 V for which all electrons underneath the split

gate are depleted and the wire is of the same width as the
lithographic gap between the split gates. In our long wires
with large resistances, the universal conductance fluctua-
tions are small. Measurements of RðVgÞ over the entire

range of temperatures T ¼ 25 mK–10 K did not show any
shift in the depletion threshold voltage. As can be seen in
the inset (a) of Fig. 3, the resistance does not show a linear
dependence on gate voltage, for voltages larger than
threshold. From the above analysis of the magnetoresis-
tance data, a linear dependence of the electron concentra-
tion was found [inset (a) in Fig. 3]. From the low-field
residual resistance, we determined that the channel mobil-
ity decreases with the electron concentration to the power
3=2, which is expected from electron scattering dominated
by ionized impurities [14,17].
The relative conductance, ½�ðTÞ � �D�=�D, as a func-

tion of temperature for various gate voltages is shown in
Fig. 4(a). The data were taken in the presence of a 100 mT
perpendicular magnetic field to suppress the effects of WL.
The data shows that the conductance has a logarithmic
temperature dependence in the range 1 K< T < 10 K at
�1020 mV<Vg <�1200 mV, i.e., for 3 � n � 8.

FIG. 4 (color). Temperature dependencies of the wire conduc-
tance GðTÞ=Gð700 mKÞ for various gate voltages Vg: (a) The

logarithmic temperature dependence dominates at�1020 mV<

Vg <�1200 mV, i.e., 3 � n � 8; (b) Conductance of wider

wires, Vg <�980 mV, i.e., n > 8, shows significant negative

contributions due to electron-phonon scattering; (c) Conduc-
tance of narrow wires, Vg >�1245 mV, i.e., n < 2, shows

transition from logT to power-law dependence.

FIG. 3 (color). Number of subbands (channels) in the wire vs
gate voltage Vg. Arrows indicate position of Vg ¼ �1245 mV

and Vg ¼ �1265 mV. Inset (a): resistance of wire (left axis) and

electron concentration (right axis) vs Vg. Inset (b): Channel

width determined from nðVgÞ for both the parabolic (solid blue

line) and square-well (dashed red line) model potentials vs Vg.
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Evaluating the momentum relaxation time, �, from the
electron mobility, we find that the condition of weak dis-
order, T� > 1, is satisfied at temperatures above 700 mK.
Below 10 K, the samples studied may be considered as
quasi-one-dimensional conductors with respect to the
electron-electron interaction, if w< LT ¼ @vF=kBT ’
200 nm. According to the above analysis, the observed
logarithmic dependence may be associated with the inter-
action correction in weakly disordered quasi-one-
dimensional conductors [8]. In accordance with Eq. (1),
this correction, normalized by the Drude conductance, is
inversely proportional to the number of channels n.
Therefore, the relative correction increases with a decrease
in the width of the wire, as can be seen in Fig. 4(a).
According to the evaluations above, at Vg <�980 mV,

i.e., for n > 8, we expect a transition from the quasi-one-
dimensional limit to the two-dimensional one. However,
such transition is not observed directly, because the phonon
contribution becomes comparable with the two-
dimensional interaction correction. Figure 4(b) shows
that in the transition area the upper temperature limit for
the logT term decreases with an increase of n.

The logarithmic term increases with a decrease in the
width. At Vg ¼ �1200 mV, i.e., at n ’ 3, the logT term at

10 K reaches 30% of the Drude conductance. Further
decrease in the width of the wire results in a crossover
from the logarithmic temperature dependence to a power-
law dependence. As it is seen in Fig. 4(c), at Vg ¼
�1245 mV, i.e., at n ’ 2, the logarithmic temperature
dependence becomes unobservable. The exponent in the
power-law dependence increases with decreasing width. In
the narrowest channel, at Vg ¼ �1265 mV, we observe

the quadratic temperature dependence, which was previ-
ously found in narrow GaAs channels in Ref. [18] and
associated with a phonon-assisted hopping processes.

Finally, let us quantitatively compare our observations
with the theory. Fitting the logarithmic dependencies in
Fig. 4(a) by Eq. (1), we find the constant Cexp to be 0:19�
0:04. According to the theory, the constant C accounts for
the contributions of the singlet and triplet channels in the
electron-electron interaction, so Cth ¼ Cs þ Ctr. In the
unitary limit, Cs ¼ 1=�. The contribution of the triplet
channel depends on the Fermi liquid constant F0 [8]. It
may be evaluated by using the value F0 ¼ �0:15, deter-
mined previously for similar AlGaAs=GaAs 2DEGs [19].
Then, using Eqs. 3.41 and 3.42 of Ref. [8], we obtain Ctr ¼
�0:055. Thus, the experimental value Cexp turns out to be

very close to the theoretical prediction, Cth ¼ 0:26. Taking
into account that the theory was developed for the simplest
white-noise disorder, the above agreement seems to be
very good.

In summary, we present new data on the temperature-
dependent conductance in quasi-1D weakly disordered
wires. The observed logarithmic temperature dependence
is in good quantitative agreement with the theory [8],

developed for the quasi-1D Fermi liquid in the first order
in the dynamically screened electron-electron interaction.
At the same time, the recent theory [9] identifies the logT
term as the first term in the expansion of the Luttinger
power-law dependence and predicts the transition from
the logarithmic to the power-law dependence, when the
logT term reaches 30–40% of the Drude conductivity [see
Eqs. (1) and (2)]. Such a transition is observed in our
experiments.
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