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We report on the numerical study of plasma waves in two-
dimensional electron systems with contacts using the kinetic
electron transport model. We simulate the time- and position-
dependence of plasma waves in the system by initially adding
small perturbation of the electron concentration from the steady

state. We demonstrate that in such a system the damping of
plasma waves caused by “out of phase” electrons exiting the
channel through the contacts occur. We find that the damping
rate is proportional to the electron average velocity and inversely
proportional to the channel length.

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction Generation and detection of THz
waves by semiconductor devices have been one of the most
challenging issues for decades. For this purpose, utilization
of plasma waves in heterostructure two-dimensional electron
gases (2DEGs) is one possible way [1]. Such 2DEGs
can serve as resonant cavities of plasma waves, and
their frequencies can be up to several THz if the
electron concentration in the 2DEGs is ∼1012 cm−2 and
the channel length is below 1 �m. A number of both
theoretical and experimental works have been conducted
to realize such “plasma-wave devices” for THz generation
and detection (see, for example, Ref. [2] and references
therein).

The most important characteristics of the devices
are the plasma frequency ω and the damping rate γ .
The latter determines the linewidth of resonant peaks
for plasma-wave THz detectors [1], whereas it limits
the condition of Dyakonov–Shur instability [3] and other
instability mechanisms [4, 5] for the generators. In
both cases, the smaller damping rate is preferred for
the better performance of the devices. In the orthodox
theory of plasma-wave devices, the damping rate is
simply proportional to the electron collision frequency
ν:γ = ν/2. Since electron mobilities in heterostructure
2DEGs are extremely high at low temperatures, very

high performance of plasma-wave devices has been
expected.

Experimental reports on the detectors [6, 7], however,
showed very wide broadening of the resonant peaks, i.e.,
very low ω/γ ratio, even at 4.2 K. To explain this discrepancy
between theory and experiments, further theoretical works
have been conducted. Mechanisms such as the decrease
in the plasma frequency by cap regions [8], the radiative
damping [9], and the damping related to the Ohmic loss
in non-ideally conducting contacts [10] were investigated.
Recently, it has been suggested that the plasma-wave mode
in the lateral direction of the 2DEG is responsible for the
discrepancy [11, 12].

In this paper, we demonstrate a mechanism of plasma-
wave damping in 2DEGs with contacts which is related to
the electron average velocity and the channel length. To
our best knowledge, this mechanism is not reported so far
in the literature. We show by the use of electron kinetic
transport model that in the 2DEG with short length, even
though the electron transport can be considered to be ballistic,
the damping of plasma waves occurs. We calculate the
characteristic damping rate extracted from the simulation of
plasma waves in the 2DEG, and find that the damping rate
is proportional to the electron thermal velocity and inversely
proportional to the channel length.
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Figure 1 Geometry of the 2DEG system under consideration.

2 Model of simulation We consider a system
comprising a 2DEG with length L and contacts with
sufficiently large thickness (the geometry of the system is
depicted in Fig. 1). We set the x- and z-axes corresponding
to the parallel and perpendicular directions to the 2DEG,
respectively, and the origin at its center. As standard
heterostructure 2DEGs, we assume the delta-doping of
donors slightly above the 2DEG with the concentration Σd.
The potential at the contacts is assumed to be fixed to zero:
ϕ|x=±L/2 = 0. This implicitly means that the Ohmic loss of
electrons in the contacts, which is an additional damping
mechanism of the plasma waves in the 2DEG discussed in
Ref. [10], is neglected in this study.

We use the quasi-classical kinetic electron transport
model to describe the system under consideration. In case
of the ballistic electron transport, the electron distribution
function f = f(t, x, px, py) obeys the Vlasov equation

∂f

∂t
+ vx

∂f

∂x
+ ∂ϕ

∂x

∣∣∣∣
z=0

∂f

∂px

= 0. (1)

The potential ϕ in Eq. (1) is found from the 2D Poisson
equation to be solved self-consistently with Eq. (1) through
the electron concentration:

∂2ϕ

∂x2
+ ∂2ϕ

∂z2
= 4πe(Σ − Σd)

ε
δ(z), (2)

where e = |e| is the electron charge, ε is the dielectric
constant, and

Σ = 2

(2π�)2

∫ ∞

−∞

∫ ∞

−∞
fdpxdpy (3)

is the electron concentration in the 2DEG. For the sake of
simplicity, we in Eq. (2) assume that the distance between
the delta-doping of donors and the 2DEG can be negligibly
small.

In such a system the hydrodynamic model, which
replaces Eq. (1) by Eular and continuity equations, predicts
undamped plasma modes with the perturbed potential
proportional to cos(ωnt) sin[nπ(x/L − 1/2)], where ωn =√

nω (n = 1, 2, 3, . . .) and ω is the plasma frequency given
by ω = √

2π2e2Σd/mεL, where m is the electron effective
mass.

3 Results and discussion We conducted simulation
of standing plasma waves for the system under consideration
by adding a nonuniform perturbation (whose position-
dependence is expressed as cos(kx), where k = π/L,
corresponding to the first mode of plasma waves in the
system) to a steady-state distribution function of electrons.
We set the perturbation sufficiently small compared with
the steady state so that the plasma wave is linear. The
boundary conditions for the distribution function are given
by f |x=+L/2 = {

1 + exp[(Ep − Ef )/kBT ]
}−1

and similar at
x = −L/2, where Ep = (p2

x
+ p2

y
)/2m, Ef is the Fermi energy

in the contacts, kB is the Boltzmann constant, and T is the
temperature. Here, the contacts are assumed to be made of
heavily doped semiconductor, so that the Fermi energy Ef

is measured from the bottom of the conduction band in the
contacts. We adapted the so-called splitting Scheme [13] to
solve Eq. (1). Besides, in solving Eq. (2) numerically, the
delta function in Eq. (2) was replaced by θ(d/2 − |z|), where
θ is the step function.

Parameters of the system were chosen for GaAs-
based heterostructure (ε = 12 and m = 6.1 × 10−29 g) with
L = 0.4–1.2 �m, Σd = 0.5 × 1012 cm−2, and T = 5–300 K.
The Fermi energy Ef was chosen so that the contacts
provide the effective electron concentration Σc at edges
of the 2DEG, i.e., Σ|x=±L/2 = Σc, for the steady-state
distribution (therefore, it is given by the expression
Ef = kBT log[exp(π�2Σc/m) + 1]). To avoid complication
by the effect of built-in electric field at the edges,
we assume Σc = Σd. This implies that the steady-
state potential and electron concentration are uniform
along the channel. (In the real situation, Σc > Σd

and the built-in electric field that accelerates electrons
toward the contacts appears. Our simulation showed that
this does not affect significantly our results discussed
below).

The time-dependence of the perturbed potential at a
fixed point x = 0 in the 2DEG is shown in Fig. 2. It
evidently illustrates that, contrary to the result predicted
by the hydrodynamic model, the oscillation of the potential
(manifesting the plasma wave) is damped out very rapidly.
We stress that our model does not account for the
collisional damping nor the radiative damping. It should
also be mentioned that the time-dependence of the potential
slightly deviates from ∝ e−γt cos(ωt). Moreover, the position-
dependence is apparently not proportional to cos(kx) as
shown in Fig. 3. These facts show the significant difference
of plasma waves predicted by the kinetic model and by the
hydrodynamic model.

To study the damping quantatively, we evaluate the
characteristic damping rate as follows:

γ = 1

N

N∑
n=1

log(|δϕ|x=0,t=tn−1/|δϕ|x=0,t=tn)

tn − tn−1

, (4)

where the absolute value of the potential at x = 0 has maxima
at t = tn, n = 0, 1, 2, . . . , and N is the number of the maxima.
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Figure 2 The time-dependence of the potential at x = 0 with
different temperatures and different channel lengths.

Figure 3 The position-dependence of the potential distribution in
the 2DEG at t = 0–1 ps.

Equation (4) would give the exact damping rate if the
potential would be expressed as δϕ ∝ e−γt cos(ωt) cos(kx).

Figure 4 shows the characteristic damping rate of
plasma waves as a function of temperature. The damping
rate becomes smaller at lower temperature but becomes
almost constant below some temperature. As can be seen,
the curves in Fig. 4 very much look like the temperature
dependences of thermal velocities. This suggests that the
damping demonstrated in the system might be related to
the spread of electron distribution in velocity (momentum)
space due to the degeneracy and finite temperature. In
fact, those curves match the following empirical formula

Figure 4 Characteristic damping rates versus temperature with
different channel lengths.

of the damping rates (excellent matching especially at low
temperature):

γth = a
vth

L
, (5)

where the constant a is approximately equal to a = 3. The
damping rates calculated using Eq. (5) are depicted by dotted
curves in Fig. 4. Here, vth = 〈|vx|〉 is the averaged absolute
value of vx for the steady-state distribution function with
given parameters:

vth =
∫ ∞

−∞
∫ ∞

−∞ |vx|f0dpxdpy∫ ∞
−∞

∫ ∞
−∞ f0dpxdpy

. (6)

This matching clearly proves that the damping is related
to the thermal distribution of the electron velocity in the
2DEG. Moreover, it is also associated with the presence of
the contacts because such a damping does not occur when the
edges of the 2DEG are reflective, i.e., the 2DEG is bounded
by potential barriers without the contacts (simulation of such
a system using the same model showed plasma waves with
no damping). We shall explain below how these factors lead
to the damping.

First, let us consider how the hydrodynamic model
describes plasma wave in our system. Mathematically,
when Fourier-transforming the linearized hydrodynamic
equations with the Poisson equation, they are reduced to a
single eigenvalue equation (e.g., see Eq. (5) in Ref. [10]).
Plasma modes for the system are determined by solving
that equation, and for any initial condition of perturbed
electron concentration the solution can be expressed as a
linear combination of the plasma modes. Since the plasma
modes do not have any damping factors if we neglect the
collisional damping, so is their linear combinations. It implies
that the plasma wave conserves its energy in the whole
system including the contacts, even though the electrons can
exit/enter the 2DEG and the number of electrons in the 2DEG
oscillates with time (the latter is obvious if one considers the

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com
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electron concentration profile imagined from its relation to
the potential). Thus, the plasma wave is maintained without
damping.

In the hydrodynamic model, electron velocity is
represented by a single position-dependent value and the
spread of the electron distribution in velocity space is
characterized by the pressure term in the hydrodynamic
equations, which contributes to the relatively small change in
the plasma frequency in the system under consideration [14].
This velocity is related to the time-dependent parts of the
potential and the electron concentration by the hydrodynamic
equations. In fact, the electron concentration and velocity
“cooperate” so that the restoring force exerted on the
electrons makes the oscillation of these quantities have no
damping, in spite of the fact that the electrons can exit/enter
the 2DEG. In this sense, we can say that the velocity of
electrons is “in phase” with the plasma wave.

This is not the case when considering, with the use of the
kinetic model, the thermal spread of the electron velocity, i.e.,
when electrons at the same position have different velocities.
Such electrons are “out of phase” with the plasma wave.
Since some electrons move away from the 2DEG faster than
in-phase velocity, the restoring force becomes different from
that “prescribed” by the hydrodynamic model, and so is
the electron concentration. In addition, the faster electrons
exiting the 2DEG are absorbed by the contacts and do not
contribute to the plasma wave any more. This results in the
energy loss, i.e., the damping of the plasma wave. The degree
to which electrons are out-of-phase is characterized by the
mean spead of electrons vth = 〈|vx|〉, and the damping rate is
characterized by vth/L, the inverse of the time that electrons
with that speed spend in the 2DEG. Thus, the damping
rate is described by Eq. (4). Since vth → 0 at T → 0 if
the steady-state distribution would be of Maxwell, electrons
would become in-phase in this limit (our simulation for this
case showed the damping rate given by Eq. (4), where a
is replaced by 1.82). This limit can be considered as the
hydrodynamic limit of the kinetic model. Note, however, that
in reality any systems have Fermi steady-state distribution
at sufficiently low temperatures, so electrons can never be
in-phase.

This damping can also be considered as a ballistic effect
of short-channel transistors, where the effective “ballistic”
mobility severely reduces the overall mobility [15]. The
damping rate (4) is inversely proportional to the “ballistic”
mobility [15] as the collisional damping is inversely
proportional to the collisional mobility. By simply adding the
“ballistic” damping rate to the collisional one, we obtain the
total damping rate γ = ν/2 + γ th. It is worth mentioning that
the condition for the electron ballistic transport, ν < νth/L, is

equivalent to the condition of the validity of the kinetic model
used here.

The electron–electron scattering is essential when the
electron concentration is high. Intuitively, disregarding
relatively weak effects of electron viscosity [3], the
electron–electron scattering might not influence significantly
on the damping since it just brings the local equilibrium to the
2DEG but the fact that electrons are out-of-phase remains.

4 Conclusions In summary, we conducted the simu-
lation of plasma waves in a system consisting of a 2DEG
and source/drain contacts based on the quasi-classical kinetic
transport model of electrons. We demonstrated that in such a
system the damping of the plasma waves occurs even when
neglecting the collisional damping. The mechanism of the
damping is related to the electrons exiting the 2DEG into the
contacts and the characteristic damping rate is proportional to
the average electron velocity as well as inverse of the 2DEG
length.
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