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Abstract

We proposed a simplified quasi-three-dimensional model for nonequilibrium electron transport in quantum dot infrared photodetectors

(QDIPs) based on an ensemble Monte Carlo particle method. Invoking the developed model, we calculated the electric-field and space-

charge distributions, in InAs/GaAs and InGaAs/GaAs QDIPs.
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1. Introduction

Quantum dot infrared photodetectors (QDIPs) [1]

utilizing the electron transitions from bound states in QDs

into continuum states can exhibit advantages over quantum

well infrared photodetectors (QWIPs). The results of

theoretical [1–5]) and experimental (see, for example,

[6–10]) studies of QDIPs based on different QD structures

have been well documented. However, most of fabricated

QDIPs are far short of optimum [5,10]. Because of a three-

dimensionality of the QDIP structure and nonequilibrium

character of the electron transport processes determining

their operation, the optimization of QDIPs is a fairly

complex problem. In the QDIP analytical models developed

and used previously it was assumed that the distribution

function of mobile electrons is a Maxwellian one with the

effective temperature equal either to the lattice temperature

or some value determined by the average electric field.

Under this assumption the electron capture rate into all QDs

is the same, hence, the space charge stored in QDs is

uniformly distributed over the QD structure. However, due

to relatively low concentrations of mobile electrons in

QDIPs under realistic conditions, the energy distribution of

these electrons can be far from a Maxwellian distribution.

Moreover, it can be spatially nonuniform due to a

nonlocality of the electron heating in a nonuniform electric

field.

The role of nonequilibrium and nonlocal effects in

QDIPs is not apriori clear. The solution of this problem

requires the application of computer modeling of the

electron effects in QDIPs. In this communication, we

propose a quasi-three dimensional model for electron

transport in QDIPs based on an ensemble Monte Carlo

(MC) approach which naturally takes into account the

effects in question. This model is used to calculate some

QDIP characteristics.

2. Device model

We consider QDIPs on the base n-type structures with

several two-dimensional QD arrays between the contact

layers under infrared illumination. A schematic view of the

device structures of a QWIP and a QDIP is shown in Fig. 1.

The model under consideration is a generalized version

of that used previously for QWIPs [11]. This model uses an

ensemble MC particle method. Our model takes into

account the following processes:

(i) escape of bound electrons from QDs (photoexcitation,

tunneling, thermoemission);

(ii) injection of mobile electrons from the emitter contact,

their collection by another contact;

(iii) electron transport across the structure in the averaged

self-consistent electric field;

(iv) capture of mobile electrons by QDs and the effect of

their repulsive potential.
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The electron injection from the emitter contact in the

QDIPs under consideration is associated with thermionic

emission from this contact. This injection is controlled by

the space charge of the electrons bound in QDs. The specific

of the QDIP structures is that the electron capture by QDs is

limited by the self-consistent repulsive potential of QDs. To

simplify the model, we assume that the electron dynamics is

determined primarily by the average potential formed by

charged QDs and donors. The probability of electron

passage through the QD array and reflection from this

array, as well as the capture probability are determined by

the QD density, the average number of electrons occupying

QDs of the QD array, and the energy of a mobile electron. It

is assumed that only those mobile electrons which have the

kinetic energy exceeding the repulsive potential of the

charged QD (which is three-dimensional and dependent on

the spacing between QDs and their size and charge) can be

captured by this QD.

The response of a QDIP to infrared illumination is

determined by the rate of the electron photoexcitation from

QDs and the rate of the electron capture into QDs. The rate

of the electron photoexcitation (per unit area) from the kth

QD array (k ¼ 1; 2;…;K; where K is the number of the QD

arrays) is expressed via the average number of electrons

kNkl occupying the QDs of this array as

G ¼ sSQDkNklI; ð1Þ

where s is the photoexcitation cross-section; SQD the sheet

density of QDs in each QD array; I is the infrared photon

flux. The capture rate of the electrons crossing the kth QD

array is proportional to the capture probability pk dependent

on the net electron kinetic energy 1 and average QD charge

ekNkl; where e is the electron charge ðe ¼ lelÞ: We assume

that the electron capture is mainly due to emission of polar

optical phonons. Taking into account that the capture of an

electron is possible if its energy exceeds the average QD

activation energy in the kth QD array 1k associated with the

repulsive potential of the QD charged with electrons [2–5],

one can set.

pk /p0

ffiffi
1

p
nkð1ÞQð121kÞQð10 þ1k 21ÞQðNm 2 kNklÞ: ð2Þ

Here p0 /a2
QDSQD is the probability of the capture of an

electron crossing an uncharged QD array, nkð1Þ is the energy

distribution function of unbound G-electrons at the kth QD

array, i.e. at the coordinate z¼ kL; L is the spacing between

the QD arrays, 1k ¼ e2kNkl=CQD; where CQD is the QD

capacitance, aQD is the QD lateral size (so that pa2
QD is the

QD area), 10 is the polar optical phonon energy, Nm is

the maximum number of electrons which can be accepted by

the QD, and QðxÞ is the unity step function. Formula (2)

reflects the assumption that primarily those electrons which

have the net electron kinetic energy 1 in the range 1k # 1#

10 þ1k can be captured. The last factor in Eq. (2) is due to

the Pauli principle.

The electron injection from the contact and the electron

propagation across the QD structure is determined by the

self-consistent electric field found from Poisson equation in

which the space charge is associated with the charged QDs,

mobile electrons (photoexcited and injected), and donors.

The distribution function of the electrons at the contacts, i.e.

at z ¼ 0 and W (where W ¼ ðK þ 1ÞL is the QD structure

thickness) set to be semi-Maxwellian with the lattice

temperature T : Such distributions are realized by an MC

procedure. The electrons with pz , 0 at z ¼ 0 and with pz .

0 at z ¼ W can freely leave the QD structure. The

propagation of the G2; L2 and X2 electrons is considered

in the framework of an ensemble MC particle technique in

which the electron interactions with phonons, impurities,

and charged QDs are treated as the scattering processes. For

definiteness we study QDIPs with InAs QDs buried in a

GaAs lightly doped (undoped) matrix sandwiched between

heavily doped GaAs contact regions.

The three-dimensional spatial distribution of the electric

potential w ¼ wðx; y; zÞ in the QDIP active region can be

presented in the form:

Dw ¼
4pe

æ

X

i;j;k

½kNklrðx 2 xi; y 2 yjÞdðz 2 zkÞ2 rD�: ð3Þ

Here, D ¼ ›2=›x2 þ ›2=›y2 þ ›2=›x2 is the three-dimen-

sional Laplace operator; æ; the dielectric constant; rðx; yÞ;

and dðzÞ are the QD form-factors in lateral (in the QD array

plane) and transverse (growth) directions, respectively, xi ¼

LQDði þ 1=2Þ and yj ¼ LQDðj þ 1=2Þ are the in-plane QD

coordinates (i; j ¼ 0;^1;^2;… are the in-plane indexes of

QDs), LQD ¼ S21=2
QD is the lateral period of the QD structure,

and rD is the donor concentration, which is assumed to be

uniform across the QDIP active region. For the sake of

definiteness, we assume that transverse size of QDs, lQD; is

much smaller than their lateral size and the spacing in the

transverse direction ðlQD p aQD;LÞ:

In QDIPs with fairly low QD densities (like most of

fabricated QDIPs), the capacitance of a QD having a

flattened (disk-like) shape equals to CQD ¼ ð2æaQD=p
3=2Þ: If

the QD density increases, the spacing between QDs and

their capacitance becomes small. In this case, the QD

activation energy tends to zero. Such a situation corresponds

to the transition from a QDIP to a QWIP. In the model under

consideration, we assume that the most important features

Fig. 1. Schematic view of the QWIP and QDIP structures.
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of the mobile electrons motion in the QDIP active region are

associated with the action of the electric field averaged in

the lateral directions. This field equals kEl ¼ 2dkwl=dz;

where kwl is the potential averaged in the lateral directions.

Thus, the electron dynamics between the events of

scattering with phonons, impurities, and charged QDs are

determined by the averaged (in the lateral directions)

electric field and the equations of the electron motion are

dpx

dt
¼

dpy

dt
¼ 0;

dpz

dt
¼ 2ekEl: ð4Þ

Simultaneously, the electric field lateral nonuniformities

associated with the QD charges are taken into account in

the expression for the electron capture probability (see Eq.

(2) and they can also be considered as an additional

scattering mechanism of mobile electrons. As follows

from Eq. (3), the averaged potential obeys the following

equation:

d2kwl
dx2

¼
4pe

æ
½SQDkNkldðz 2 zkÞ2 rD� ð5Þ

with the boundary conditions kwllz¼0 ¼ 0 and kwllz¼W ¼

V ; where V is the applied bias voltage.

3. Results and conclusions

The developed model was used for the calculation of the

electric field and charge distributions as well as the QDIP

responsivity. It was assumed that the QDIP structural

parameters are as follows: the spacing between QD arrays in

the growth direction L ¼ 30 nm, number of the QD arrays

K ¼ 10; aQD ¼ 15 nm, Nm ¼ 6; p0 ¼ 0:5; and

s ¼ 2 £ 10215 cm2.

The QD density (in each QD array) and the concentration

of donors (distributed uniformly over the QD structure)

were chosen to be in the ranges SQD ¼ ð4–8Þ £ 1010 cm22

and rD ¼ ð0–8=3Þ £ 1016 cm23, respectively. This corre-

sponds to the number of donors per a QD from zero to two.

Some results are shown in Figs. 2 and 3.

Fig. 2 shows the spatial distributions of the electric field

averaged in lateral directions for rD ¼ 1:66 £ 1016 cm– 3 at

different voltages V ; i.e. for different E ¼ V =ðK þ 1ÞL: The

calculated spatial distributions of bound electrons (average

occupancy of the QD arrays with different indices) at

different voltages were used to find how the total number of

bound electrons N ¼
PK

k¼1 kNkl=K per unit area of a QDIP

varies with changing voltage. This dependence shown in

Fig. 3 is akin to that obtained previously from simplified

analytical models.

In conclusion:

1. A simplified quasi-three-dimensional model based on

ensemble MC particle technique for nonequilibrium

electron transport in QDIPs has been developed.

The transfer from exact potential and electric field

distributions described by Eq. (3) to averaged distri-

butions given by Eq. (5) is the main simplification of

our model. Actually, the same assumptions are made in

analytical and numerical models of devices in which a

significant portion of the space charge is stored on

impurities which scatter and trap mobile electrons. The

substitution of the real potential by some effective

potential is used in other applications of the ensemble

MC particle method [12].

2. The spatial potential and electric field distributions, the

spatial distributions of bound electrons, and the

responsivity – voltage characteristics have been

calculated.

3. The obtained preliminary results show that
* the model can be used for evaluation of none-

quilibrium electron transport in QDIPs and esti-

mation of their characteristics
* strongly nonequilibrium electron transport phenom-

ena in QDIPs can significantly complicate the QDIP

operation.

Fig. 2. Spatial distributions of the electric field averaged in lateral directions

(rD ¼ 1:33 £ 1016 cm23).

Fig. 3. Total sheet electron density versus applied voltage.
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