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Abstract

Using an analytical model of electron con2nement in quantum dots, we have calculated the tunnelling rates for elec-
tron quasi-bound states. Schr5odinger equation for the disk-shaped system in consideration is readily solved both in the
time-dependent and time-independent versions, and the quantitative importance of tunnelling phenomena in low temperature
electron emission from quantum dots is revealed. Results of the quantum mechanical analysis are transferred into the device
characteristics of common multi-layer quantum dot hetero-structures.
? 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is generally recognized that the properties of multi-layer
quantum dot (QD) devices, such as photodetectors, critically
depend on the number N of electrons occupying the QD,
and the electron capture/emission rates. This is because the
electric current under applied voltage, j ∼ e�QD=pG, is
proportional to the electron escape rate, G = G(N ) (due to
photo-induced, thermionic or any other mechanism), density
of QDs, �, and inversely proportional to the electron capture
probability, p= p(N ).

The thermal dark current and photocurrent in QD struc-
tures have been studied in detail previously [1]. However,
for the calculations of the dark current characteristics at
low temperatures, the explicit dependence of the electron
tunnelling escape rate on N and other parameters is indis-
pensable. Speci2c features of QDs studied in the recent ex-
periments are low QD density �QD and a Aattened shape.
This provides the possibility of spontaneous electron tun-
nelling in the lateral directions when QDs are markedly
charged.

∗ Corresponding author. Fax: +81-242-37-2596.
E-mail addresses: lukas@u-aizu.ac.jp (L. Pichl),

v-ryzhii@u-aizu.ac.jp (V. Ryzhii).

2. Model quantum dot

Let us review a typical QD in hetero-structures consid-
ered above. The important QD parameters are especially (i)
the lateral radius, a, (ii) the thickness of QD, l, (iii) the
con2nement potential VQD (conduction band o!set), (iv) di-
electric constants, �, �QD, (v) electron masses , QD, and
(vi) the total con2ned charge N . The 2D axially symmetric
hamiltonian is
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where m is the azimuthal quantum number. Let us invoke
the Aat disk quantum dots, assuming only one quantum level
in the z-direction, lQD�a. Supposing further a QD with a
number of electrons (thus closer to a uniform charge distri-
bution), the z-dimension may be reduced out, and the poten-
tial function V (r; z) � V (r) includes both the QD attraction
and electrostatic repulsion,
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This potential is shown in Fig. 1 for N = 16.
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Fig. 1. Schematic view of QD. Bold line: the potential curve
(N = 16, centrifugal terms excluded). Dotted lines: energy levels,
thin lines: wave functions (arbitrary units). Numbers in bracket in-
dicate: [quantum numbers n, m, maximum level occupation num-
ber, and minimal N for which tunnelling may occur].

Fig. 2. Tunnelling dynamics in time.

3. Results and discussions

The nth bound-state wave function of single electron,

Jm(
√

2QD(En − VQD)r=˝) for r6 a; (3)

H (1)
m (i

√
2(−En)r=˝) for r¿ a; (4)

is to be matched numerically at r= a. The ratio of logarith-
mic derivatives between the Bessel and Hankel functions
[2] is prescribed as 2=1, which yields the energy spec-
trum, {−|En|}n. The electrostatic potential in Eq. (2) is a
perturbation, which e!ectively lowers the con2nement po-
tential at large r. The energy levels En ¿ − Ne�=(2a�QD)
thus become open for tunnelling (cf. Fig. 1). The tunnelling
rates are then obtained by solving the time-dependent
Sch5odinger equation with the initial wave packet given by
Eq. (3), for which several time-space grid method or the
split-operator technique can be employed (see Fig. 2). We
adopt the Vischer algorithm, since it is suOciently fast and
also unitary. Absorbing boundary condition is implemented
(i.e., a small negative imaginary part added to V at large
values of r). Invoking the well-studied InAs/GaAs QD sys-
tem, let us choose the typical QD parameters a = 10 nm,

Table 1
The tunnelling rates �k (in ns−1)

N 11 12 13 14 15 16

n = 0, m = 2 0.01 0.20 1.03 2.73 5.88 11.5
n = 1, m = 0 72 101 131 162 195 222
n = 0, m = 3 389 432 476 519

Fig. 3. Electron total tunnelling rate as a function of charge.

�QD = 15:15, � = 12:91, QD = 0:027m0,  = 0:067m0,
VQD = 0:37 eV and N=(0–16). Energy levels follow from
Eq. (3), results are shown in Fig. 1. For each level k, the
population number 06 �k 6 1 is time dependent, �k(t) =∫
QD | k(r; t)2| dr, with �k(t) � exp(−�kt). The tunnelling

rates �k (in ns−1) are shown in Table 1. The total tunnelling
rate reads−dN (t)=dt|t=0=

∑
k Nk�k , whereNk is the number

of electrons occupying the kth level. In Fig. 3, the total tun-
nelling rate as a function of charge N is displayed (the above
InAs/GaAs QD parameters were used). The increase in the
tunnelling rate with N is due to two factors, (1) increase of
electron repulsion inside QD (∼ N ), and (2) occupation of
higher lying QD states closer to the barrier top. The slope
change in Fig. 3 from N = 11; 12 to N = 13; : : : ; 16 is, e.g.,
due to a newly occupied level n = 0, m = 3 at N¿ 13 (cf.
Fig. 1). Figs. 1 and 3, and the state-resolved tunnelling rate
tables are the main results used in low temperature device
models.
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