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Relaxation of a two-dimensional electron gas in semiconductor thin films at low temperatures:
Role of acoustic phonon confinement

B. A. Glavin and V. I. Pipa
Department of Electrical and Computer Engineering, Wayne State University, Detroit, Michigan 48202

and Institute of Semiconductor Physics, Kiev, 03028, Ukraine

V. V. Mitin
Department of Electrical and Computer Engineering, Wayne State University, Detroit, Michigan 48202

M. A. Stroscio
U.S. Army Research Office, P.O. Box 12211, Research Triangle Park, North Carolina 27709

~Received 11 September 2000; revised manuscript received 21 November 2001; published 13 May 2002!

We study the effect of acoustic-phonon confinement on the energy and momentum relaxation of a two-
dimensional electron gas in thin films. The interaction via the deformation and piezoelectric potentials with a
complete set of phonon modes in films with stress–free and rigid surfaces is taken into account. We demon-
strate that in thin films the modification of the phonon properties and screening brings about substantial
changes of the electron relaxation rates in comparison to the case of interaction with bulk phonons at low
temperatures, where the effective reduction of the phonon spectrum dimensionality takes place. For suspended
films, relaxation rates are substantially enhanced: the temperature dependence of the momentum and energy
relaxation rates, in films with nonmetallized~metallized! surfaces, is found to beT7/2 (T5/2) for both deforma-
tion potential and piezoelectric mechanisms. The reason for such an enhancement is the strong scattering of
electrons by flexural phonons having quadratic dispersion and a high density of states at low frequencies.
Conversely, for films with rigid surfaces the low-temperature relaxation of electrons is exponentially sup-
pressed due to the formation of a gap in the phonon spectrum.
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I. INTRODUCTION

The problem of electron-phonon interaction in nanostr
tures has been studied for about 20 years. Basically, there
two principal phenomena that modify the process of elect
scattering on the lattice vibrations in nanostructures. F
the reduction of the electron momentum space dimensio
ity brings about interesting properties of the electron-phon
interaction kinematics, controlled by the momentum and
ergy conservation laws.1,2 The second phenomenon aris
due to the modifications of the phonon modes caused by
acoustic and dielectric mismatches of the materials form
the nanostructures. These changes in properties give ris
phonon minibands in superlattices, as well as to confined
interface phonons in quantum wells, quantum wires, a
quantum dots. There is extended literature devoted
electron-phonon interactions in nanostructures embedde
bulk materials~see, e.g. the review in Refs. 3 and 4!. In this
paper we address the less investigated problem of the t
dimensional electron gas~2DEG! interaction with confined,
resonatorlike acoustic phonons in thin films. The compl
confinement of acoustic modes between the surfaces
structure can be ideally achieved in structures that are
tially separated from the substrate for most of their ext
~so-called free-standing or suspendedstructures!. Free-
standing quantum nanostructures made of various semi
ductors and metals fabricated of different shape and s
provide two-, one-, or zero-dimensional confinement of el
trons and acoustic phonons~see, e.g., the review in Ref. 5!.
Such nanostructures have attracted interest because of
0163-1829/2002/65~20!/205315~14!/$20.00 65 2053
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potential applications, and their importance in understand
the physics of low-dimensional systems. The quantization
the acoustic-phonon spectrum in such structures manif
itself in optical,6 electrical,7 and recent heat-transport8 mea-
surements. The effect of extreme confinement of acou
phonons on Peierls transition9 and on electron-phonon
scattering10–12 in free-standing quantum wires has been
vestigated theoretically. Previous results10–12 demonstrated
the profound effect of different mechanical boundary con
tions on electron-phonon scattering rates. In experimen13

and theory14 the temporal behavior of the lowest-order no
equilibrium spheroidal acoustic mode in spherical quant
dots of PbS was investigated. Recently, suspended n
structures received much attention as mesoscopic mecha
systems having the quantum behavior in the conductanc
heat by phonons.15–19

In nanoscale films, the acoustic-phonon spectrum is r
resented by the series of branchesv(q), whereq is a two-
dimensional~2D! phonon wavevector. At high temperature
electrons can interact with a huge number of phonon mod
Commonly, this cancels effect of the phonon confineme
and the electron relaxation characteristics are the same
bulk crystals. However, if the temperature falls below t
characteristic phonon mode spacing, only the lowest pho
branches contribute to electron scattering. In this case
effective reduction of the phonon dimensionality takes pla
which affects essentially electron scattering. Previously, s
eral authors claimed that a reduction of the phonon dim
sionality should modify the temperature dependence of
electron relaxation characteristics causing their enhancem
©2002 The American Physical Society15-1
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GLAVIN, PIPA, MITIN, AND STROSCIO PHYSICAL REVIEW B65 205315
~see, for example, Ref. 20!. For semiconductors, this effec
was observed in Ref. 21 for 2D holes confined in a Ge/S
heterostructure. In this paper we examine the impact
acoustic phonon confinement in isolated films. We dem
strate that a reduction of the phonon dimensionality is not
only reason modifying the electron relaxation. In addition
the reduced dimensionality, low-frequency phonons in t
films possess unique properties strongly dependent on
mechanical properties at the surfaces. So, for free-stan
films, flexural phonons exist that have quadratic dispers
We show that flexural phonons cause effective electron s
tering. This is due to the high density of states of su
phonons. As a result, the momentum and energy relaxa
rates in free-standing films are substantially enhanced c
pared to the case of scattering in bulk crystals, and obe
T7/2 temperature dependence provided that screening is t
into account. It is important that this temperature depende
holds both for deformation potential~DP! and piezoelectric
~PA! mechanisms of electron-phonon interaction. In the
posite case of rigid-surface films, a gap appears in the l
frequency region of the phonon spectrum. Consequently,
electron relaxation rates are suppressed exponentially at
temperatures. Note that a similar effect was detected
quantum dots, where gaps in the phonon spectrum exist
to its the purely discrete character.22,23

Similar problems were addressed previously in Refs. 5
and 25 by means of numerical calculations for the case
unscreened DP electron-phonon interaction. In Refs. 5
24 the choice of a particular system, a free-standing quan
well where the regions of the electron and phonon confi
ment coincide, canceled the interaction of electrons w
flexural phonons due to the symmetry properties of the s
tem. In Ref. 25 a more general case of a quantum well s
ated inside a wider film was analyzed briefly. In the pres
paper we obtain asymptotic dependences of the relaxa
rates in free-standing and rigid-surface films at low tempe
tures for both DP and PA electron-phonon interactions,
present the results of corresponding numerical calculatio
As in Ref. 25, we assume an asymmetric placement of
quantum well inside the film, which allows electron couplin
with flexural phonons. We also analyze the peculiarities
screening of the electron-phonon interaction in films, a
discuss the role of the electrical conditions at the fi
surfaces.

The paper is organized as follows. In Sec. II we descr
the peculiarities of the acoustic-phonon modes in a film w
stress-free and rigid surfaces. In Sec. III, general express
for the matrix elements of the electron-phonon interact
via the deformation and piezoelectric potentials and
equation for momentum and energy relaxation rates are
rived. Then, in Sec. IV, we obtain the low-temperature
ymptotes of the electron relaxation rates. The results of
numerical calculations are presented and discussed in Se
Finally, in Sec. VI, we present the principal conclusions
this work. The phonon modes, screening factor in films, a
the role of the nonequilibrium phonon buildup in fre
standing films are described in the Appendixes.
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II. ACOUSTIC PHONON CONFINEMENT IN FILMS

We consider an infinite film of the widtha, and take thez
axis to be perpendicular to the film surface, the planez50
corresponds to middle plane of the film. The electron co
finement is due to the double heterostructure quantum w
having, in general, a different width and asymmetric pla
ment inside the film. For simplicity, we assume that the el
tic properties of the film are isotropic and characterized
the same constants in the quantum well and the barrier
gions. These assumptions make it possible to consider
main qualitative peculiarities of the electron-phonon inter
tion brought about by the phonon confinement, and, on
other hand, to express the results without very complex
mulas. Assuming that the film is uniform, we do not produ
a large error because typically the elastic properties of
materials forming the nanostructure do not differ a lot. F
example, for a GaAs/AlAs heterostructure the mismatch
the density is about 25%, and the mismatch of the ela
constants is about a few percent.

In the isotropic elastic continuum approximation, the la
tice displacementu obeys the equation

]2u

]t2
5st

2¹2u1~sl
22st

2!¹~¹•u!, ~1!

wheresl andst are the velocities of longitudinal and tran
verse bulk acoustic waves. The confined phonons are p
wavesu5u0(z)exp@i(qr2vt)#, whereq5(qx ,qy) is the in-
plane wave vector andr5(x,y). We will use the following
notations:u0

(z) is thez component ofu0, andu0
(i) andu0

(') are
the in-plane components parallel and perpendicular toq, re-
spectively.

To define a system of the confined modes, Eq.~1! should
be complemented by the boundary conditions at the film s
facesz56a/2. We will concentrate on the following two
limiting cases: a film with stress-free boundaries and a fi
with rigid boundaries. In the first case, the boundary con
tions are imposed on the stress tensor:szx5szy5szz50 at
z56a/2. They reflect the fact that there is not any for
acting on the film surfaces from the surrounding media. F
a film with rigid surfaces, the boundary conditions areu0(z
56a/2)50. Since both these types of boundary conditio
do not depend on the elastic parameters of a surroun
medium, the phonon subsystem in such films can be con
ered as isolated.

The procedure of obtaining the eigenphonon modes
straightforward. For suspended films, it was described
Ref. 26. We briefly present the dispersion equation as we
eigendisplacements for both suspended and rigid-sur
films in Appendix A. Here we would like to summarize th
qualitative properties of the acoustic phonon modes.

There are three types of modes, that differ by the kind a
the symmetry of displacement components. For the firs
them, the dilatational modesu0

(z) is an odd function ofz,
while u0

(i) is an even function ofz ~with respect to the mid-
plane!. For the modes of the second type, the flexural mo
u0

(z) is even andu0
(i) is an odd function ofz. For both of these

modesu0
(')50. Finally, the third type of modes the horizon
5-2
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RELAXATION OF A TWO-DIMENSIONAL ELECTRON . . . PHYSICAL REVIEW B65 205315
tal shear modes, have only a nonzero displacementu0
(')

which is perpendicular to the direction of wave propagat
and lies in the plane of film;u0

(')(z) is either an odd or even
function ofz. In Figs. 1 and 2 we show the dispersion curv
of few lower phonon modes for suspended and rigid-surf
films, respectively. In calculations we assumedst53.02
3105 cm/s andsl55.223105 cm/s.

In the following, the low-frequency phonon modes will b
especially important to us, since such phonons play a
role in the processes of the electron scattering at low t
peratures. One can see from Figs. 1 and 2 that the pho
properties in this range differ drastically for the two types
mechanical conditions at the surface. For a free-surface fi
there are three ‘‘acoustic’’ branches withv→0 atq→0. Two
of them, dilatational modes and horizontal shear modes, h
a linear dispersion at smallq, v;q, while the flexural modes
have a quadratic dispersionv;q2. Accordingly, the flexural
modes have a high density of states at smallq, which, as we
will see below, gives rise to an enhancement of the elec
scattering.

Conversely, in a film with the rigid surfaces there are
‘‘acoustic’’ modes. The phonon spectrum atq→0 has a gap
Dv;pst /a. Therefore, there should be a strong suppress

FIG. 1. Acoustic phonon spectrum for a film with stress-fr
boundaries: dilatational modes~a!, flexural modes~b!, and horizon-
tal shear modes~c!.
20531
n

s
e

y
-

on
f

,

ve

n

n

of the electron-phonon interaction at low temperatures, si
electrons have no phonons to interact with. It is importan
note that the gap in the phonon spectrum is conserved e
for a film with only one rigid surface. For example, for a film
with one free surface and one rigid surface we obtaine
value of the gap which is half that of a film with two rigi
surfaces.

III. EQUATIONS FOR THE RELAXATION RATES
OF 2D ELECTRONS

In this paper, we calculate such characteristics of
electron-phonon interaction as electron momentum and
ergy relaxation rates due to scattering with equilibrium co
fined acoustic phonons with lattice temperatureT. Electrons
will be assumed to be concentrated on the lowest subban
a quantum well with a wave functionx(z)exp(ikr)/AS,
whereS is the normalizing area. Momentum and energy
laxation rates 1/tm and 1/te , respectively, are defined as p
rameters characterizing a transfer of the average momen
per electron and energy per electron to the crystal lattice
to intrasubband scattering. We use the model electron di

FIG. 2. Acoustic phonon spectrum for a film with rigid boun
aries: dilatational modes~a!, flexural modes~b!, and horizontal
shear modes~c!. The spectra of all three types of modes have ga
in the low-frequency region.
5-3
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GLAVIN, PIPA, MITIN, AND STROSCIO PHYSICAL REVIEW B65 205315
bution function for the case of a weak electric field:

f 5F11expS «k2\kvdr2«F

Te
D G21

. ~2!

Here «k5\2k2/2m is the electron energy,m is effective
mass,«F is the Fermi energy,vdr is the drift velocity, andTe
is the electron temperature differing from the lattice tempe
ture T ~the temperature is measured in energy units!. The
shifted Fermi-Dirac distribution function of Eq.~2! is well
justified for the case of strong electron-electron scatter
The time scale for electron-electron scattering is estimate
te-e'(h/«F)(«F /T)2 ~see Ref. 27!. For a 2DEG in GaAs
with an electron concentrationn51011 cm22 and T;1 K,
te-e;10210 s. This value is small compared to the relaxati
times obtained in our calculations: see Figs. 3–6.

For weakly nonequilibrium electrons, the momentum
laxation rate relates the weak electric fieldF and the drift
velocity vdr , while the energy relaxation rate relates sm
temperature differenceTe2T and the rate of electron energ
losses per unit area,W,

vdr5
etm

m
F, ~Te2T!n5Wte , ~3!

wheren is the electron density. Note that in contrast to t
momentum relaxation rate, the energy relaxation rate, be
determined by the scattering with phonons, conserves its
orous meaning in the presence of intensive elastic scatte
on defects. Using the distribution function of Eq.~2!, in the
case of small deviation from thermodynamic equilibrium, w
obtain

1

tm
5

\2

nmST(
k,k8

~k cosw2k8cosw8!2Wk,k8

3@12 f 0~k8!# f 0~k!, ~4!

1

te
5

1

nST2 (
k,k8

~«k2«k8!
2Wk,k8@12 f 0~k8!# f 0~k!. ~5!

Here f 0 is the equilibrium distribution function, correspond
ing to Eq.~2! with vdr50 andTe5T; Wk,k8 is the probabil-
ity of the electron transitionsk→k8, S is the normalizing
area, andw is the polar angle between the electric field a
the electron wave vectork. The probabilityWk,k8 is defined
as

Wk,k85
2p

\ (
l

z^ i uĤlu f & z2ueu22d~Ei2Ef !, ~6!

whereĤl is the Hamiltonian of the electron-phonon intera
tion; l labels the phonon modes;i , f and Ei ,Ef denote the
initial and final states and the energies of the electr
phonon system in theses states; ande is the screening facto
of the 2D electrons derived in Appendix B. We take in
account the DP and PA mechanisms of the electron-pho
interaction. For one mode~we drop for brevity a mode’s
label!
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2rvS
@VDP~z!1efPA~z!#~exp~ iqr!b̂q1H.c.!,

VDP[E1S iqu0
(i)1

du0
(z)

dz D , ~7!

whereE1 is the deformation potential constant,fPA(z) is the
macroscopic electric potential induced by the deformation
the piezoelectric crystal, andb̂q is the phonon annihilation
operator. The simultaneous action of the two mechanism
the electron-phonon interaction in general gives rise to
interference between them, so

z^ i uĤDP1ĤPAu f & z2Þ z^ i uĤDPu f & z21 z^ i uĤPAu f & z2.

FIG. 3. Momentum relaxation rates vs temperature of a 2D
in a film with stress-free surfaces. The dielectric permittivity of
material surrounding the film,es , is different from the lattice di-
electric permittivity of the film,e f . The relaxation rates due to
interaction with confined phonons via the deformation potent
piezoelectric mechanism, and the total rates are presented in
~a!, ~b! and~c!, respectively; the caseses51, e f , and` correspond
to the dashed, dotted, and dot-and-dashed curves. The solid c
correspond to relaxation rates of the 2DEG due to scattering
bulk phonons in unbounded medium.
5-4
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RELAXATION OF A TWO-DIMENSIONAL ELECTRON . . . PHYSICAL REVIEW B65 205315
In the case of interaction with bulk phonons, perturbatio
induced by DP and PA couplings have a relative phase
p/2, and interference vanishes. However, this is not the c
for the confined modes. Qualitatively, this can be explain
in the following way. Confined modes are formed due to
interference between elastic waves, that are reflected m
tiple times from the film surfaces. Reflection causes mut
transformations of the longitudinal and transverse waves
well as phase shifts of these constituting waves. As a re
the interference between the DP and PA interactions does
vanish ~with the exception of the shear modes, which a
purely transverse waves and therefore do not interact with
electron via the deformation potential!. Note that a similar
interference effect was discussed previously for elect
scattering on the acoustic waves of semi-infinite media.28,29

It is worth mentioning that in films interference can be es
cially important. As we demonstrate below, relaxation ra
due to DP and PA scatterings in films have the same t
perature dependence, which is different from the case
scattering in bulk crystals. Therefore, the interference te
can be important in a wide range of temperatures.

In the present paper, we will deal with the case when

FIG. 4. Energy relaxation rates of a 2DEG in a film with stre
free surfaces; the conditions and notations are the same as in F
20531
s
of
se
d
e
ul-
al
as
lt,
ot

e
n

n

-
s
-

of

e

film is made from a material of cubic symmetry and its su
face is parallel to the~100! crystal plane. As we will show
below, for such a case the contributions of interference te
to the relaxation rates are canceled upon averaging ove
final electron states.

For the piezoelectric potential we have an equation

d2fPA

dz2
2q2fPA5

2e14

e fe0
S iqx

du0
(y)

dz
1 iqy

du0
(x)

dz
2qxqyu0

(z)D ,

~8!

wheree14 is the only piezoelectric constant of a cubic cry
tal, e f ande0 are the relative permittivity of the film and th
absolute dielectric constant, and thex and y axes coincide
with the crystal axes of the fourth order. The boundary co
ditions for fPA are

fPAu6a/25fPA
s u6a/2 ,

-
. 3.

FIG. 5. Momentum relaxation rates of a 2DEG in a film wi
rigid surfaces; the conditions and notations are the same a
Fig. 3.
5-5
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S e f

dfPA

dz
2

ie14

e0
~qxu0

(y)1qyu0
(x)! D U

6a/2

5es

dfPA
s

dz
U

6a/2

,

~9!

wherefPA
s is the potential in the medium surrounding th

film, es is the dielectric permittivity of this medium.fPA
s

satisfies Eq.~8! with e1450 and obeys zero boundary co
ditions at z56`. Note that in the limit of es→`, the
boundary conditions of Eq.~9! are reduced to the condition
fPA(z56a/2)50, corresponding to the case of metalliz
surfaces.

As we showed in Sec. II, phonon modes have either co
ponentsu0

(i) , u0
(z) ~dilatational and flexural modes!, or u0

(')

~shear modes!. If we introduce an anglewq between the pho-
non wave vectorq and thex axis, thenfPA(z,q) can be
written asfPA5f̃PA(z,q)g(wq), where

g~wq!5H sinwqcoswq

cos2wq2sin2wq
J . ~10!

FIG. 6. Energy relaxation rates of a 2DEG in a film with rig
surfaces; the conditions and notations are the same as in Fig.
20531
-

Here, the upper line corresponds to the dilatational or fl
ural modes, while the lower line corresponds to the sh
modes.

In order to calculate the momentum relaxation rate, in E
~4! we change the integration over electron wave vectork
andk8, the anglew8 to the integration over the electron en
ergies « and «8, and the anglec between k and k to
c[w2w8. We obtain

1

tm
5

m2

8p\4rnT
(
j ,h

E d«d«8dwdc f 0~«!~12 f 0~«8!!

3uFDP1gFPAu2
„A« cosw2A«8 cos~c2w!…2

3d~«2«81h\v!
1

vueu2
S Nv1

12h

2 D . ~11!

Here and hereafter, we use the common labelj to denote the
acoustic branches of all types of modes;h51 corresponds to
phonon absorption andh521 to phonon emission. The
magnitudesq andwq are determined by the momentum co
servationk85k1hq, Nv5(exp(\v/T)21)21 is the Planck
distribution function for phonons, and

FDP5E dzx2~z!VDP , FPA5eE dzx2~z!f̃PA .

~12!

In Eq. ~11!, the integration over the anglew is carried out
straightforwardly, and cancels the linear terms ing which are
responsible for interference of the DP and PA mechanis
This results in independent contributions of these mec
nisms to the relaxation rate.

For further calculations, it is convenient to change t
integration over the anglec to an integration over the wav
vectorq using the momentum conservation law, giving

q25
2m

\2
~«1«822A««8 cosc!. ~13!

Upon integration over«8, Eq. ~11! can be finally rewritten as

1

tm
5

1

16p2rnT
(
j ,h

E d«dq
q3f 0~«!

vA«

3
12 f 0~«1h\v!

A«1h\vusinchu ueu2
S Nv1

12h

2 D uM j u2.

~14!

HereuM j u2[uFDP
j u21a j uFPA

j u2 anda j is a constant, result-
ing from the integration of the squared matrix element of
PA interaction overw; for the dilatational and flexural mode
a j51/8 and for the horizontal shear modesa j51/2. It is
worth mentioning that the same numerical coefficientsa j
appear in an isotropic model where the squared matrix
ments of PA interaction, initially averaged over azimuth
angle, are used. The anglesch are the values ofc allowed by
the energy and momentum conservation laws. Analogou
Eq. ~5! for the energy relaxation rate reduces to
5-6
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1

te
5

m

8p2rnT2 (
j ,h

E d«dq
qv f 0~«!

A«~«1h\v!

3
@12 f 0~«1h\v!#

usinchu ueu2 S Nv1
12h

2 D uM j u2. ~15!

Equations~14! and ~15! are used in the present paper f
numerical calculations of the momentum and energy re
ation rates. To study the peculiarities which stem from c
finement nature of acoustic phonons, we will also calcul
the relaxation rates in a 2D electron channel placed in
boundless semiconductor. To obtain these bulk relaxa
rates, we calculate the rates given by Eqs.~14! and~15! in a
thick film. The sought-for values, which correspond to t
electron scattering on conventional bulk phonons, are fo
when the calculated rates do not depend on the film th
ness.

We do not provide the general formulas forFDP and
FPA , that are used in numerical calculations, due to th
complexity. In Sec. IV we will present the small-frequen
asymptotes relevant for electron relaxation at low tempe
tures.

IV. RELAXATION RATES AT LOW TEMPERATURES

In this section we obtain analytical expressions for rel
ation rates at low temperatures, where the confinement
ture of the phonon modes is most pronounced. By ‘‘low
temperatures, we mean the region when the interaction
the lowest branches of the phonon spectrum gives the do
nant contribution to the relaxation rates. We introduce a ch
acteristic temperature

Tf5
\st

a
, ~16!

through which the mentioned condition can be rewritten
T!Tf . For real materials,Tf is small. For example, fora
510 nm andst53000 m/s,Tf corresponds to 2 K. Consis
tent with the conditionT!Tf , for typical semiconductor
materials, the two following assumptions can be made. F
electrons can be treated as strongly degenerate even for
erate electron concentrations. Second, we assume tha
Bloch-Grüneisen regime of low-angle electron scattering
realized; it can be shown that the characteristic tempera
of the transition to the Bloch-Gru¨neisen regime is aboutTf
for kF;1/a, kF being the Fermi wave vector.

For degenerate electrons, Eqs.~14! and ~15! are substan-
tially simplified. Due to the small deviation of electron ene
gies from the Fermi energy«F , one can replace the energy«
by «F and neglect the energy transfer\v everywhere in Eqs.
~14! and ~15! except for the rapidly varying functionsf 0(«)
and f 0(«6\v). As a result, Eq.~13! is simplified to the
commonly used relationq52kFsin(c/2). Using the remark-
able relationship between the Fermi and Planck distribu
functions,

E
0

`

d« f 0~«!@12 f 0~«2\v!#5N~v!\v ~17!
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and assuming small-angle scattering, we can express th
laxation rates in the following form:

H 1/tm

1/te
J 5

A2m\2

16pr«F
3/2T2 (

j
E

0

` dquM j u2

ueu2sinh2~\v j /2T!
H Tq2/2m

v j
2 J .

~18!

Here the summation overj can be restricted by the lowes
branches of the flexural, dilatational, and shear modes,
we can use low-q expansions ofM j ande.

First let us analyze the temperature dependence of
relaxation rates in a film with stress-free nonmetallic s
faces. In this case,e(q) is given by Eq.~B6! and varies as
q21. From the dispersion equations given in Appendix A
the small-q limit, one can obtain

v f5stajq2, vd52A3jstq, vs5stq, ~19!

where j5A(12st
2/sl

2)/3. For DP coupling, using expres
sions for the eigendisplacements provided in Appendix A,
flexural (f ) and dilatational (d) modes: we obtain

VDP
( f ) 52

2iE1st
2q2

sl
2Aa

z, VDP
(d) 5

2E1st
2q

sl
2Aa

. ~20!

For shear modes,VDP
(s) 50. Substitution of these expression

into Eq.~18! shows that the contribution of flexural phonon
to 1/tm and 1/te is proportional toT7/2, while the contribu-
tion of the dilatational phonons is proportional toT6 for mo-
mentum relaxation and toT5 for energy relaxation. Thus, a
low temperatures, flexural phonons provide the domin
contribution to the relaxation rates. Neglecting by contrib
tion of dilatational phonons, finally we have

1

tm
5

105

128

z~7/2!

A2pj9/2
E1

2
aB

2m1
2

m1/2ra7/2sl
4st

1/2«F
3/2\5/2S es

e f
D 2

T7/2, ~21!

wherez is the Riemannz function,30 aB is the effective Bohr
radius, andm1 is an integral:

m15
1

aE zx2~z!dz. ~22!

The T7/2 power law is valid whenm1Þ0, i.e., in the case of
asymmetric distribution of the 2D electron density in resp
to the midplane of film.

The long-wavelength asymptotes of the piezoelectric
tentials induced by the lowest modes are given by

f̃PA
( f ) 5P

q2

Aa
S a2

4
2z2D ,

f̃PA
(d)5P

qz

Aa
, f̃PA

(s) 5 iP
qz

2Aa
, ~23!

where P5ee14/(e fe0) and the subscripts mark the type
the phonon mode. It is easy to verify that dilatational a
shear modes give rise to dependenciestm

21;T6 and te
21
5-7
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GLAVIN, PIPA, MITIN, AND STROSCIO PHYSICAL REVIEW B65 205315
;T5. The main contribution to the relaxation rates prop
tional to T7/2 again comes from the flexural modes, and
obtain

1

tm
5

105

164
P2S es

e f
D 2 z~7/2!

A2pj9/2

aB
2m2

2

r«F
3/2\5/2st

9/2a3/2m1/2
T7/2.

~24!

Herem2 is determined according to the equation

m2512E 4z2

a2
x2~z!dz. ~25!

The energy relaxation rates associated with DP and PA s
terings are expressed through the corresponding momen
relaxation rates as

1

te
5

9z~9/2!majst

z~7/2!\

1

tm
. ~26!

According to these results, the momentum and energy
laxation rates have the same temperature dependenceT7/2 for
both considered mechanisms of interaction, in contrast to
case of interaction of a 2DEG with bulk phonons, whe
1/tm;T7, 1/te;T6 for the DP interaction and 1/tm;T5,
1/te;T4 for the PA interaction.31 The resulting weaker tem
perature dependencies show that, at low temperatures,
tron relaxation on confined acoustic phonons is enhance
comparison with the relaxation via scattering on bu
phonons.

In actual films, electron-phonon interaction can be mo
fied due to the presence of close metal electrodes. In
paper we attempt to model their influence by considering
electron relaxation in films with metallized surfaces. Th
case demands special consideration. Calculating the re
ation rates due to phonons in a slab covered by metal fi
we will neglect their change caused by Coulomb coupl
between electrons in the QW and electrons in the metal fi
Measurements32 of the coupling between 2D and 3D electro
gases showed that the drag was small. According to Ref.
due to screening in the passive layer, the influence of
layer on the mobility in a 2DEG decreases as the tempera
decreases and/or the concentration of carriers in the pas
layer increases. In the case of low temperatures~;1 K!,
which is interesting for us the change of relaxation due
interlayer electron-electron collisions can be neglected.

From Eq.~B7! it follows that in metallized film, screening
of the electron-phonon interaction is suppressed: in the lo
wavelength limit,e(q) does not depend onq. The DP inter-
action is altered in the presence of metal only by the cha
in screening. As a result, the previously obtained power
T7/2 is reduced to aT5/2 power law

1

tm
5

15

16

z~5/2!

A2pj7/2
E1

2
m1

2st
1/2

m1/2ra5/2sl
4«F

3/2\3/2em
2

T5/2, ~27!

where the screening factor,em5e(q→0), is given by Eq.
~B7!.
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The PA scattering experiences a dual influence as a re
of the surface metallization. The metal-induced modificat
of the PA interaction originates not only from the reducti
of the screening but also from a modification of the ba
piezoelectric potential, and is also due to the vanishing of
potential at a metal surface. The PA potential associated w
the lowest flexural mode conserves the dominant role in e
tron scattering, and results in

1

tm
5

15A2z~5/2!

Ap49

P2m2
2

r«F
3/2\3/2~stj!7/2a1/2m1/2em

2
T5/2. ~28!

The energy relaxation rates are expressed via the corresp
ing rates 1/tm that are given by Eqs.~27! and ~28! by the
relationship of Eq.~26!, where the factor 9z~9/2!/z~7/2! is
replaced by 7z~7/2!/z~5/2!. Thus in a film with stress–free
surfaces, which make contact with metal, the relaxation o
2DEG is more effective than the relaxation in a film in co
tact with vacuum.

Note that the influence of the surface metallization on
PA scattering is different for a 2D electron channel placed
thin films and near a surface of semi-infinite media.29 For the
latter screening is suppressed, similar to the case of a
film, providing an enhancement of the electron-acoustic p
non interaction. However, the unscreened matrix elemen
the vicinity of the metal is suppressed in such a way that—
the final result—metallization does not change the tempe
ture dependence of the relaxation rates. But in the case o
film, the overall influence of metal results in the enhanc
ment of the PA electron-phonon interaction.

For DP scattering, the factor of the high density of sta
occurs to be so strong that it leads to relaxation rate enha
ment despite the almost transverse character of the flex
modes. As we see from Eq.~20!, the value ofVDP for flex-
ural modes at smallq is less than that for the almost long
tudinal dilatational modes. For PA scattering, the enhan
ment of the electron relaxation occurs to a lesser deg
Qualitatively, this is because of the nonlocal character of
PA interaction. Acoustic vibrations in the film induce an ele
tric field not only inside the film, but also in the region
surrounding the film. The electric field outside the film d
cays exponentially with the characteristic length determin
by the inverse phonon wave vector. At low temperaturesT
!Tf , the major contribution to the relaxation rates is pr
vided by phonons with a value of 1/q much larger than the
film thickness. This means that the electric field ‘‘spread
over large distances; its value inside the film decreases,
the PA interaction of electrons with phonons becomes l
effective. Similar arguments are also valid for the case o
metallized film. Although the electric field in this case is ze
outside the film, its value inside the film is reduced as
result of screening by the electrons of the metal.

It is important to mention that the reduction of the phon
dimensionality in itself leads to an increase in the phon
density of states. As a result, for the DP interaction, the c
tribution of dilatational modes having a linear dispersion e
ceeds the relaxation rates for the case of bulk phonons.
the PA interaction, however, the effect of the electric fie
‘‘spread’’ prevails over the effect caused by the phonon d
5-8



an
th

P
e

ul
ri
tte

th
tu
P

d

ib

o

fo
th
at
as
t

, f

e
ula

es
i

e

th

tio
em
ca
on

s
ca
rs

ted
he

For
ec-
as
is

re-
ith
ith

s of
hen

e of
is

e
PA
m
he
ex-

re-
ing

ore
s is
the

ced
ta-
lue.
tion
lar,
the

ob-
ion
v-
ax-
er
rd-
tron

n-
ent,
ther
an
. In
ra-

udi-
For
q.

or-
es
up-
y
des
can
ates

RELAXATION OF A TWO-DIMENSIONAL ELECTRON . . . PHYSICAL REVIEW B65 205315
sity of states for dilatational and horizontal shear modes,
their contributions to the relaxation rates are less than
values for the scattering on bulk phonons.

An important peculiarity of the obtained results is that D
and PA interactions cause the same temperature depend
of the relaxation rates. For the case of interaction with b
phonons, the PA scattering is stronger than the DP scatte
at temperatures lower than some critical value. The la
depends on the material parametersE1 , e14, ande f . Con-
versely, for the film, the relation between the strengths of
DP and PA scatterings does not depend on the tempera
The ratio between the relaxation rates due to DP and
scatterings is

t (PA)

t (DP)
;S E1e fe0

ee14a
D 2

. ~29!

As we see, besides the material parameters, this ratio
pends on the film thickness. For GaAs parameters34 and a
510 nm we obtain that the ratio of Eq.~29! is of the order of
0.3. As we see, for such parameters the DP and PA contr
tions to the relaxation rates are of the same order.

It is also important to stress that the potential energy
DP interaction for flexural modes,VDP

( f ) , is an odd function of
z. As a result, if the electron wave functionx(z) is even, the
matrix element of the DP electron-phonon interaction
flexural modes vanishes, and the asymptotic formulas for
relaxation rates should be rewritten in order to incorpor
the scattering on the dilatational modes. Finally, in this c
the enhancement of the relaxation rates with respect to
bulk phonons is less pronounced. Such symmetry holds
example, for the free-standing quantum wells~QWs!. How-
ever, even for them the interaction with the flexural mod
can be switched on by the electric field applied perpendic
to the film surface, which breaks the symmetry ofx(z).

Let us now consider the case of a film with rigid surfac
The main peculiarity of the phonon spectrum in such films
the existence of a forbidden gap of the widthDv;pst /a at
q→0. This restricts electron scattering at low temperatur
T,\Dv;Tf . From Eq.~18! it was found that forT!Tf the
relaxation rates are exponentially small:

1

tm,e
;expS 2

\Dv

T D . ~30!

This result is common for the DP and PA mechanisms of
electron-phonon interaction.

V. RESULTS OF THE NUMERICAL CALCULATIONS
AND DISCUSSION

To trace the temperature dependence of the relaxa
rates more rigorously and to find those at intermediate t
peratures, we carried out numerical calculations. These
culations take into account interaction with all phon
branches and exact expressions for the potentialsVDP and
f̃PA , as well as the phonon spectrum obtained by mean
the numerical solution of the dispersion equations. The
culations were carried out for GaAs material paramete34
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and a 5-nm QW with infinite barriers whose center is situa
at a distance 2 nm from the midplane of the 10-nm film. T
electron concentration was 1011 cm22. The model of infinite
barriers is good enough for many actual heterostructures.
example, for GaAs/AlAs heterostructures the barrier for el
trons is about 1 eV, which is great enough to treat it
infinite for a 5-nm QW where the energy of ground level
about 100 meV.

In Figs. 3 and 4 the temperature dependencies of the
laxation rates for the DP and PA mechanisms for films w
stress-free surfaces are shown. The results for films w
rigid surfaces are presented in Figs. 5 and 6. Three type
electrical boundary conditions were studied: the case w
the film is surrounded by vacuum (es51), a medium with
the same dielectric constantes5e f , and a metales5`. For
comparison, the corresponding temperature dependenc
the relaxation rates due to scattering on bulk phonons
shown on each plot. As we see, for a film with fre
surfaces—Figs. 3 and 4—the behavior of the DP and
relaxation rates is qualitatively different if we compare the
with the bulk–phonon values. For the DP interaction, t
temperature dependence is quite close to the asymptotic
pressions of Eqs.~21! and~26!. That is, for sub-Kelvin tem-
peratures the relaxation rates are enhanced strongly with
spect to those for interaction with bulk phonons, exceed
the latter byseveral orders of magnitude. Conversely, for the
PA interaction the behavior of the relaxation rates is m
complex, especially for the case of energy relaxation. Thi
mainly because for PA scattering the enhancement of
contribution of the flexural phonon modes is less pronoun
than for DP scattering, while the contributions of the dila
tional and horizontal shear modes is less than the bulk va
As a result, depending on the temperature, the relaxa
rates can be larger or smaller than for the bulk. In particu
for some temperatures the PA relaxation rates can be of
order of magnitudelower than the bulk value, and the
asymptotic dependencies obtained in Sec. IV can be
served only for very low temperatures, where the criter
T!Tf is well fulfilled. Respectively, such a complex beha
ior leads to a relatively weak difference between the rel
ation rates in the film and in the bulk when we consid
simultaneous action of the DP and PA mechanisms. Acco
ing to these results, the strong enhancement of the elec
relaxation in thin free-surface films is likely to occur in no
piezoelectric materials, where only DP scattering is pres
such as Si, Ge, etc. For multivalley semiconductors, ano
qualitative feature is important. That is, electrons in them c
interact with transverse phonons via the DP mechanism
bulk materials this peculiarity does not change the tempe
ture dependence of the relaxation rates, since both longit
nal and transverse phonons have linear dispersions.
films, however, the situation is different. As we see from E
~20!, the DP potential energy for flexural modes is prop
tional toq2. This is because long-wavelength flexural mod
are almost transverse, and the DP interaction is partially s
pressed forG-valley electrons. Conversely, for multivalle
semiconductors the transverse character of flexural mo
does not suppress DP scattering, in general, and one
expect an even stronger enhancement of DP relaxation r
5-9
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GLAVIN, PIPA, MITIN, AND STROSCIO PHYSICAL REVIEW B65 205315
with respect to the bulk characteristics.
Even more pronounced results are obtained for the e

tron relaxation in a rigid-surface film. Here the relaxati
rates are suppressed exponentially in accordance with
~30!. Note, however, that this result should be applied
real structures very cautiously. This is because the mode
a rigid-surface film is somewhat artificial. As opposed to
suspended film which is completely isolated, the rig
surface condition can be obtained for a film sandwiched
tween the layers of a very rigid material. Rigorously, in su
a system there are two kinds of phonon modes. First, th
are phonons confined in the film. For such phonons, the
in the spectrum really exists. Apart from these, there
phonons penetrating to the film from the surrounding laye
They have a 3D-like spectrum without a gap. However, s
phonons have a relatively small density of states due to
large value of the sound velocity in the surrounding mater
and we expect that their interaction with electrons in the fi
is relatively weak. Note that similar behavior holds for a fil
with one rigid surfaces and one free surface. We have
tained a phonon dispersion equation and found that a l
frequency gap exists for such a system as well. To ana
the abovementioned system quantitatively, it is necessar
find the phonon spectrum using the general boundary co
tions at the film surface in contact with a semi-infinite m
dium, which will be done in a subsequent publication.
should also be mentioned that a fabrication of the rig
surface films is not an easy technological problem. This
because it is quite difficult to find materials having cons
erable elastic mismatch and, simultaneously, a good-qu
interface. Perhaps, such structures can be fabricated usin
epitaxial lift-off method,35 allowing a fusing of a film with
thickness of about several tenths of a micron to a substr
Originally, this method was used for the deposition of t
GaAs film on a LiNbO3 crystal, whose sound velocity i
considerably higher than that of GaAs. A stronger elas
mismatch could be obtained in the case of deposition o
diamond or sapphire substrates. For such relatively th
films, however, the phonon confinement should be ma
fested at lower temperatures, less than 100 mK.

The calculation method derived in the present paper
lows one to investigate the electron relaxation process in
less sophisticated system than a 2DEG inside a film: a m
or semiconductor film with 3D electrons, where the role
the acoustic phonon confinement should be very importan
well. Such a study is important, for example, for the cont
of energy relaxation in modern detector structures.36 Note
that previously some authors detected an anomalous
perature dependence of the electron scattering rates in
metal films at low temperatures.37,38Although the role of the
reduction of the phonon dimensionality was proposed a
possible reason for the modification of the electron-phon
interaction in Ref. 38, the role of specific phonon propert
in films ~for example, the appearance of flexural phonons
the suspended films! was not discussed.

Note that the energy relaxation rate of hot electrons
directly determined by the electron-phonon interaction, wh
the phonon contribution to the electron mobility should
separated on the background of other scattering mechan
20531
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employing Matheissen’s rule. Experiments with h
electrons39,21 as well as mobility measurements40 were suc-
cessfully used to study peculiarities of the electron-phon
interaction in semiconducting structures with bulk phon
spectrum. In particular, the techniques used in Refs. 39
21 allows energy relaxation measurements for weak level
excitation, that assures a probing of the phonon confi
ments. The problem of close-to-equilibrium measureme
can be more important in the case of free-standing film
This is because in such films the removal of the phon
occurs only through the edges of the film; as a result
considerable buildup of the nonequilibrium phonons can
manifested even at weak electric fields. This would give r
to phonon drag and a phonon bottleneck in the electron
ergy relaxation. We analyze these issues in Appendix C.
cording to this analysis, the phonon buildup should not
manifested in films whose length is much less than so
critical value; for a GaAs film with a thickness of about 1
nm, this critical length is about 1 mm. In addition, even
long films the phonon buildup is unimportant in the case
transient measurements. This especially concerns the en
relaxation process, which is a direct result of the low h
capacity of degenerate electrons. We believe that our res
will stimulate experiments with nanostructures, where ph
non confinement significantly modifies the electron ene
relaxation rate and phonon contribution to the mobility.

VI. CONCLUSIONS

In conclusion, we have analyzed in detail the peculiarit
of 2D electron interactions via the deformation potential a
piezoelectric mechanisms with completely confined acou
phonons in thin films. It is shown that, at low temperatur
when the electrons can interact only with a few phon
modes, the peculiarities of the phonon spectrum drastic
modify the temperature dependence of the electron mom
tum and energy relaxation rates. In particular, the relaxa
rates are found to be very sensitive to the mechanical
electrical conditions at the surface. For films with stress-f
surfaces, the relaxation rates normally become larger than
the interaction with bulk phonons, especially for the def
mation potential mechanism of interaction. This is a dire
result of the high density of states of the confined phonon
was found that at low temperatures, the momentum and
ergy relaxation rates for such a film are proportional toT7/2

for both DP and PA interactions, which is essentially diffe
ent from the scattering of 2DEG in the bulk materials. Mor
over, for metallized films, the enhancement of the relaxat
rates becomes even more pronounced due to the suppre
of screening, leading to aT5/2 dependence of the relaxatio
rates. Conversely, if the surface of the film is rigid, the r
laxation rates at low temperatures become exponenti
small due to formation of a gap in the phonon spectru
These results demonstrate a way of electron-phonon re
ation tailoring by means of phonon control in the mode
heterostructures.
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APPENDIX A: ACOUSTIC PHONON MODES IN FREE-
STANDING AND RIGID-SURFACE FILMS

Here we summarize the obtained results for the spect
and eigen displacements of the acoustic phonons in f
standing and rigid-surface films. Let us begin with the ca
of free-standing films. For the dilatational modes the disp
sion equation is

tan
kta

2
1

4q2klkt

~q22kt
2!2

tan
kla

2
50, ~A1!

where

kl5Av2

sl
2

2q2, kt5Av2

st
2

2q2. ~A2!

The eigendisplacements can be written as

u0d
(i)5 iAdqS ~q22kt

2!sin
kta

2
cosklz12klktsin

kla

2
cosktzD ,

u0d
(z)52Adkl S ~q22kt

2!sin
kta

2
sinklz22q2sin

kla

2
sinktzD ,

~A3!

whereAd is the arbitrary constant.
For flexural modes the dispersion equation and displa

ments are

tan
kla

2
1

4q2klkt

~q22kt
2!2

tan
kta

2
50, ~A4!

u0 f
(i)5 iA fqS ~q22kt

2!cos
kta

2
sinklz12klktcos

kla

2
sinktzD ,

u0 f
(z)5Afkl S ~q22kt

2!cos
kta

2
cosklz22q2cos

kla

2
cosktzD .

~A5!

The displacement associated with the shear modes is g
by

u0s
(')~z!5AsH coskt jz, if j 50,2, . . .

sinkt jz, if j 51,3, . . . ,
~A6!

wherekt j5p j /a. The dispersion relation for shear waves
v j5stAkt j

2 1q2.
Let us proceed with the case of rigid-surface films. T

dispersion equation and the eigendisplacements are give

tan
kla

2
1

q2

klkt
tan

kta

2
50, ~A7!

u0d
(i)5 iAdqS cos

kla

2
cosktz2cos

kta

2
cosklzD ,
20531
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u0d
(z)52Adklcot

kta

2 S sin
kla

2
sinktz2sin

kta

2
sinklzD

~A8!

for the dilatational modes, and by

tan
kta

2
1

q2

klkt
tan

kla

2
50, ~A9!

u0 f
(i)5 iA fqS sin

kla

2
sinktz2sin

kta

2
sinklzD ,

u0 f
(z)5Afkl tan

kta

2 S cos
kla

2
cosktz2cos

kta

2
cosklzD

~A10!

for the flexural modes.
The displacements of shear modes are given by

u0s
(')~z!5AsH coskt jz if j 51,3, . . .

sinkt jz, if j 52,4, . . . ,
~A11!

where kt j are the same as for the shear modes in fr
standing films.

We label the solutions of Eq.~1!, i.e., eigenvectors
u(r,z,t), by the complex quantum numberl5(n, j ,q),
wheren5d, f ,s stand for the types of modes, andj labels the
branchesv j (q). The set of complex-valued vectorsul(r,z)
5u0l(z)exp(iqr) represents a full system of orthogon
functions in a volumeV5aS. The constantsAn(v j ,q) are
determined by the normalization rule

E
(V)

drdz@ul~r,z!•ul* ~r,z!#51. ~A12!

This provides the condition that each mode carries ene
\v in volumeV, that is necessary for the procedure of qua
tization of the acoustic waves. In the so-called ‘‘seco
quantization representation,’’ the phonon displacement
erator takes the form

û5(
l

S \

2rvlSD 1/2

@u0l~z!ei (qr2vlt)b̂l1H.c#,

~A13!

whereb̂l is a phonon annihilation operator,r represents the
density.

APPENDIX B: SCREENING FACTOR OF 2D ELECTRONS
CONFINED INSIDE A FILM

To determine screening of the electron-phonon interac
potential energyVe-ph , one should take into account the p
tential energyVel induced by the perturbation of the electro
densitydn in the resulting field,V5Ve-ph1Vel . For Vel we
have the Poisson equation

d2Vel

dz2
2q2Vel52

e2

e fe0
dn. ~B1!
5-11
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The redistribution ofdn is determined by the total perturba
tion V. On the boundaries of discontinuity,z56a/2, stan-
dard boundary conditions for the potential are applied.
the matrix element of the resulting perturbationV, one ob-
tains

E Vx2~z!dz5
1

eE Ve-phx
2~z!dz, ~B2!

wheree is a dynamical screening factor:

e~v,q!511
e2

2qe fe0
P~v,q!~F11F2!. ~B3!

Here P(v,q) is the random phase approximation polariz
tion function.41 The zero-temperature expression forP(v,q)
is given by a simple analytic expression;41 for nonzero tem-
peratures P(v,q,T) has been expressed in terms
P(v,q,T50) in Ref. 42, and calculated in detail in Ref. 4
The functionsF1 andF2 are defined by the equations

F15E x2~z!dzE x2~z8!exp~2quz2z8u!dz8,

F25
2x1x2exp~2qa!~es2e f !

22~x2
2 1x1

2 !~es
22e f

2!

exp~qa!~es1e f !
22exp~2qa!~es2e f !

2
,

~B4!

wherex65*dzexp(6qz)x2(z), ande f andes are the dielec-
tric constants of the film and surrounding material, resp
tively.

Note that the form factorsx6 and hencee(v,q) depend
on the quantum-well~QW! position. In the simplest case
when electrons are degenerate,\v!«F and q!kF , the
functionP(v,q) is reduced to the constantP'm/p\2, and
Eq. ~B3! can be rewritten as

e511
2

aBq
~F11F2!, ~B5!

whereaB54pe0e f\
2/e2m is the effective Bohr radius. Go

ing further, forqaB!1, qa!1 we have

e5
2

aBq

e f

es
, ~B6!

wherees was assumed to be finite. The analogous screen
factor of 2D electrons placed in the bulk isebulk52/(aBq),
i.e., in films, screening of long-wavelength phonons is
hanced fores,e f and suppressed fores.e f . The limiting
case of metallized films can be obtained by puttinges5` in
Eq. ~B4!. For a 2DEG confined in a rectangular infinite
deep QW with widthd we obtain

em511
a

aB
F124

z0
2

a2
2

2d

3a S 12
15

4p2D G ~B7!

in the limit of smallq. Herez0 is the distance from a cente
of the film to a center of a QW. One can see that fo
metallized film in the long-wavelength limit the screenin
factor is of the order of unity and does not depend onq.
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APPENDIX C: ESTIMATE OF THE NONEQUILIBRIUM
PHONON BUILDUP IN FREE-STANDING FILMS

In free-standing films, the relaxation of the phonons em
ted by electrons to equilibrium is a slow process at low te
peratures. This is because, first, the scattering of phonons
to the lattice anharmonicity and defects is characterized
small rates, and, second, because ballistic removal
phonons occurs only through the edges of finite-length film
Obviously, if the length of the film,L, is large enough, this
should cause a considerable buildup of the nonequilibri
phonons even at low electric field and, consequently, a
crease of both momentum and energy relaxation rates. H
we are going to estimate the critical lengthLc , at which the
buildup of the nonequilibrium phonons becomes importa
We consider the momentun relaxation first, assuming t
electric field and, consequently, the electron drift veloc
and deviation of the phonon population from equilibrium a
small. The electron momentum balance equation, taking
account the nonequilibrium character of the phonon distri
tion, is

m
dvdr

dt
5eF2

mvdr

tm
1F$dNl%, ~C1!

where the termF describes drag due to the nonequilibriu
phonons. The phonon distribution function can be writt
down asNl5Nv1dNl , whereNv is the Planck function
and, as in Appendix A,l labels the phonon modes. ForNl

the following kinetic equation can be introduced:

dNl

dt
5Pl

(em)~11Nl!2Pl
(ab)Nl2b~Nl2Nv!. ~C2!

Here Pl
(em,ab) are the rates of the phonon emission and

sorption, andb is the phenomenological parameter chara
terizing removal of the nonequilibrium phonons. Equati
~C2! can be rewritten as

ddNl

dt
5G2~a1b!dNq , ~C3!

whereG describes the process of the nonequilibrium phon
generation by the electron drift (G is proportional tovdr)
anda5P0l

(ab)2P0l
(em) , P0l

(em,ab) being the rates of the phono
emission and absorption withvdr50. Here we do not pro-
vide explicit expressions forF, G, anda, which can be ob-
tained in a straightforward manner with the use of the pre
ously derived Hamiltonian of the electron-phono
interaction.

From Eq. ~C3!, in the steady state,dNl5G/(a1b). It
can be shown by direct calculations that ifb50, then the last
two terms in Eq.~C1! are mutually compensated and n
steady state exists. Physically, this result is obvious: with
the phonon removal, the electron-phonon system posse
no actual momentum relaxation. Therefore, if for a typic
phononb@a, thenF!mvdr /tm and the phonon drag doe
not modify essentially the electron transport. An analogo
5-12
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consideration of the electron energy balance provides a s
lar criterion for the role of the nonequilibrium phonons in t
electron energy relaxation.

Using the previously derived Hamiltonian of the electro
phonon interaction, results for the phonon spectrum, and
screening factor,a can be easily calculated. For flexur
phonons with\v'T, T,Tf , and DP coupling, we obtain
the following approximate expression:

a'
E1

2T5/2m3/2aB
2

a3/2s5/2\9/2r«F
1/2S es

e f
D 2

. ~C4!

Here we assumed that the quantum well and film widths
of the same order. Since we aim to make a rough estimate
do not take into account the difference between the long
dinal and transverse sound velocities, and just put some
erage’’ sound velocitys in Eq. ~C4!. Provided that the
phonon-phonon scattering and phonon scattering by def
is weak, only a ballistic removal of the phonons from t
film is important. In this case, which corresponds to t
lower limit of b, we can estimateb'g/L, whereg is the
group velocity of thermal phonons. Finally, forLc we have
an approximate expression

Lc5
a2s3r\4«F

1/2

E1
2T2aB

2m3/2 S e f

es
D 2

. ~C5!

For the system parameters used in our calculations,es5e f ,
andT51 K, we obtainLc;1 mm. Therefore, the buildup o
the nonequilibrium phonons should not be manifested
films of length about tens of microns or less. Direct calcu
tions for dilatational and shear phonons show that, for th
buildup occurs in even longer films; this is because of
stronger screening of the thermal phonon coupling with e
trons. For piezoelectric scattering,E1 in Eq. ~C5! should be
substituted for byee14a/(e0e f). For a;10 nm, these values
are of the same order of magnitude and, therefore, pro
similar Lc .

On the other hand, the film should be long enough
ensure the diffusive electron transfer. ThusL must satisfy the
conditionL.Le5vFtee, wherevF is the electron Fermi ve
locity and tee is the characteristic time of electron-electro
scattering. Using the estimate for thetee mentioned in Sec.
III, we can obtain
y-

b

B
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Le
'

a2s3r\3

E1
2aB

2m«F
S e f

es
D 2

. ~C6!

This ratio is about 100, which is high enough to provi
simultaneously diffusive electron transfer and fast remo
of the phonons in films withLe,L,Lc . Note that the
simple expression we used for the electron-electron sca
ing time overestimatestee ~see Ref. 44!, and that the ratio of
Eq. ~C6! can be even higher, which facilitates the achiev
ment of this condition.

So far, we treated only the steady-state case. Howeve
is possible to show that a buildup of the nonequilibriu
phonons should not be manifested in transient measurem
even in long films. Indeed, accordfing to Eq.~C1!, in the
absence of nonequilibrium phonons the steady-state drift
locity is onset with a characteristic time on the order oftm .
On the other hand, the steady-state phonon distributio
onset with a characteristic time of about 1/a. Using the ex-
pressions for 1/tm @Eq. ~21!#, anda, we can write

1

tm
'a

T

«F
S \

samD 2

. ~C7!

Since\/(sam)'100 for a510 nm, at not too low tempera
tures the quasi-steady-state drift velocity is onset befor
substantial buildup of the nonequilibrium phonons. Let
now turn to the energy relaxation. The energy balance eq
tion is

dE

dt
5Wn2n

Te2T

te
, ~C8!

whereE is the average electron energy per unit area andW is
the power input to the electron subsystem per unit ar
Therefore, the onset of the electron temperature occurs
the time scaletT5tece /n, where ce is the electron hea
capacity. For degenerate 2D electrons,ce5pmT/(3\2). So,
using the results forte , @Eqs.~21! and ~26!#, we obtain

1

tT
'a

\

sam
. ~C9!

This means that for typical film the quasi-steady-state e
tron temperature onsets before the phonon buildup ta
place. In contrast to the case of the drift velocity onset, t
occurs at an arbitrarily low temperature.
d
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