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Phonon drag in disordered films and structures
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Abstract

Employing the quantum transport equation, we investigate the effect of electronic disorder on the phonon-drag

thermopower. We consider the electron–phonon interaction via the deformation potential, which is strongly

renormalized due to elastic electron scattering. The scattering potential of impurities, boundaries and defects is modeled

by quasistatic scatterers and vibrating scatterers, which move in the same way as host atoms. In thin films, micro and

nanostructures of the phonons relax mainly in a substrate, and the phonon-drag thermopower substantially depends on

the character of electron scatterers. Vibrating scatterers decrease thermopower, while quasistatic scatterers (e.g. rigid

boundaries) increase it. These changes in thermopower correlate to the disorder-induced modification of the electron–

phonon relaxation rate. r 2002 Elsevier Science B.V. All rights reserved.
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The electron–phonon interaction is strongly
modified in disordered conductors. If impurities
and boundaries vibrate in the same way as the host
lattice, the electron–phonon relaxation rate is
decreased by a factor of qT l (qT l51; qT ¼ T=u is
the wave vector of a thermal phonon, u is the
sound velocity, and l is the electron mean free
path) compared with the rate in a pure bulk
material [1,2]. On the contrary, in the presence of a
quasistatic scattering potential the relaxation rate
is enhanced by the same factor [3,4].
The effects of elastic electron scattering on the

phonon-drag thermopower are studied in the
current work. In the pure case ðqT lb1Þ; the
thermoelectric coefficient ðZ ¼ �Je=rTÞ is given

by [5]

Z0 ¼ �
bn

3p
ebttphðTÞT4

pFu2
; ð1Þ

where t is the electron momentum relaxation time,
tph is the lifetime of a thermal phonon with
frequency oq ¼ T ; b is the dimensionless electron–
phonon coupling constant, pF is the Fermi
momentum, n the exponent in the frequency
dependence of the phonon relaxation rate
ðt�1phpon

qÞ; and bn is the numeric coefficient,
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where NðxÞ ¼ ðexpðxÞ � 1Þ�1: In a degenerate
conductor, the electron–phonon coupling constant
is given by

b ¼
2eF
3
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; ð3Þ
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where eF is the Fermi energy, n is the electron
density of states, and r is the density.
To investigate effects of elastic electron scatter-

ing on the phonon-drag thermopower we use the
following methods. First, we employ the quantum
transport equation based on the Keldysh diagram
technique [2,3]. This approach deals only with
electron self-energy diagrams, while the Kubo
method requires more complicated diagrams to
be considered. Second, we calculate the electric
current of electrons as a response to the tempera-
ture gradient in the phonon subsystems. The
symmetric problem of the phonon thermal flux
due to the electric field turns out to be significantly
more difficult, because one should take into
account specific terms in the form of Poisson
brackets. According to the Onsager relation, both
approaches give the same result for the thermo-
electric coefficient. Third, in considering the
vibrating potential, we employ the Tsuneto trans-
formation [1], which allows one to simplify the
electron–phonon-impurity Hamiltonian.
In the presence of the temperature gradient in

the phonon subsystem, the phonon distribution
function is given by

F ðq;oÞ ¼ F0ðoÞ þ F1ðq;oÞ; ð4Þ

F0ðoÞ ¼ 2No þ 1 ¼ cothðo=2TÞ; ð5Þ

F1ðq;oÞ ¼
o
T

qð2No þ 1Þ
qo

tphurT ; ð6Þ

where tph is the phonon momentum relaxation
time.
The nonequilibrium electron distribution func-

tion fðp; eÞ is determined from the transport
equation. Assuming that the elastic electron
scattering from impurities, boundaries and defects
dominates in the electron momentum relaxation,
one can linearize the transport equation in the
following way:

Ie2imp½f� þ Ie2ph½S0;F1� ¼ 0; ð7Þ

where Ie2imp and Ie2ph are the collision integrals
which correspond to the electron–impurity and the
electron–phonon interactions, and S0 is the
equilibrium electron distribution function. Thus,

the correction fðp; eÞ is given by

fðp; eÞ ¼ tIe2ph½S0;F1�; ð8Þ

where the electron–phonon collision integral takes
into account all processes of electron–phonon
scattering in a disordered conductor. The collision
integral is expressed through the electron self-
energies as [2,3]

Ie2ph ¼ �i½SC � SðSA � SRÞ�: ð9Þ

The nonequilibrium corrections in the form of the
Poisson bracket are absent, because we consider
the response to the temperature gradient in the
phonon subsystem.
Considering effects of quasistatic scatterers, we

take into account renormalization of the electron–
phonon vertex by elastic electron scattering [2–4].
Employing the Keldysh technique, we calculate the
nonequilibrium electron distribution function
(Eq. (8)), which is used to find the electric current.
Calculations show that the thermoelectric coeffi-
cient in the disordered conductor with quasistatic
scatterers is given by

Zst ¼
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6ppFu2T
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where

WstðxÞ ¼
2

p
ðx2 � 1Þ arctanðxÞ þ x
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: ð11Þ

In the limiting cases, this function is given by

Wst ¼
1þ p=ð2xÞ; xb1;

8=ðpxÞ; x51:

(
ð12Þ

Therefore, in the pure limit, qT lb1; the correc-
tion to the thermoelectric coefficient due to elastic
electron scattering is

Zst � Z0
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where numeric coefficients bn are given in Eq. (2).
In the impure limit, qT l51; the thermoelectric

coefficient is given by

Zst
Z0

¼
8
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: ð14Þ

Considering the vibrating potential, it is con-
venient to treat the electron–phonon interaction in
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the frame of reference which moves locally with
the lattice [1]. After this transformation, electron
scatterers are motionless. Taking into account
renormalization of the electron–phonon vertex, we
calculate the electron distribution function and
electric current. Finally, the thermoelectric coeffi-
cient in the conductor with vibrating electron
scatterers is given by

Zvb ¼
ebt

6ppFu2T

Z
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q
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	 tphðoqÞWvbðqlÞ; ð15Þ

where

WvbðxÞ ¼ 2½ð�5x6 � 11x4 þ 39x2 þ 15Þ

	 ðarctanðxÞÞ2 þ ð5x7 þ 17x5 � 78x3 � 90xÞ

	 arctanðxÞ � 11x6 þ 39x4 þ 45x2�=½px3ð1þ x2Þ

	 ðx � arctanðxÞÞ2�: ð16Þ

In the limiting cases, this function is given by

Wvb ¼
1þ ðp=2� 32=ð5pÞÞ=x; xb1;

104x=ðp175Þ; x51:

(
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In the pure limit, qT lb1; the correction to the
thermoelectric coefficient due to elastic electron
scattering is

Zvb � Z0
Z0
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where numeric coefficients bn are given in Eq. (2).
For n ¼ 0; the ratio b�1=b0 is 5.89.
In the impure limit, qT l51; the thermoelectric

coefficient is

Zvb
Zg
0

¼
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u
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Thus, we have shown that the phonon-drag
thermopower in thin films, micro- and nanostruc-
tures is strongly affected by elastic electron
scattering from boundaries, impurities and defects.
The vibrating electron scattering potential sub-
stantially decreases thermopower. In the impure
limit, qT l51; the thermoelectric coefficient is of
the order of ðTl=uÞZ0 (Eq. (19)). On the contrary,

static scatterers, such as rigid boundaries, increase
thermopower by a factor of u=ðTlÞ (Eq. (14)). Such
modification correlates to the effect of elastic
electron scattering on the electron–phonon relaxa-
tion [1–4].
While our results are not directly applicable to

the electron–phonon interaction via the piezo-
electric potential, we may evaluate disorder-
induced modification of thermopower in the
following way. According to Ref. [6] the renorma-
lization of the piezoelectric vertex by elastic
electron scattering is exactly the same as the
renormalization of the electron–phonon vertex
by static scatterers. Diffusion enhancement of the
piezoelectric interaction increases the energy loss
rate by the factor u=ðTlÞ [6]. Our results show that
in the presence of static scatterers the phonon-drag
thermopower is also increased by the same factor.
Thus, correlated disorder-induced changes in the
energy loss and in thermopower are also expected
for the piezoelectric potential. Very recently, the
effect of elastic scattering on the energy loss rate
has been observed in gated GaAS=Ga1�xAlx d-
doped quantum wells [7]. It would be interesting to
investigate the phonon-drag thermopower in these
structures.
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