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Effect of electronic disorder on phonon-drag thermopower

A. Sergeev and V. Mitin
Department of ECE, Wayne State University, Detroit, Michigan 48202

~Received 27 June 2001; published 28 December 2001!

Using the quantum-transport equation and Keldysh diagrammatic technique, we investigate the phonon-drag
thermopower in a disordered conductor. We consider phonon drag of three-dimensional electrons, which
interact with longitudinal phonons via the deformation potential. The scattering potential of impurities, bound-
aries, and defects is modeled by quasistatic scatterers and vibrating scatterers, which move in the same way as
host atoms. In thin films and nanostructures the phonons relax mainly in a substrate, and the phonon-drag
thermopower substantially depends on the character of electron scatterers. Vibrating scatterers decrease ther-
mopower, while static scatterers, such as rigid boundaries and heavy impurities, increase it. These changes in
thermopower correlate to the disorder-induced modification of the electron-phonon relaxation rate. In bulk
conductors, phonon-electron scattering dominates in the phonon relaxation, and the phonon-drag thermopower
just slightly varies with electron mean free path.

DOI: 10.1103/PhysRevB.65.064301 PACS number~s!: 73.50.Lw
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I. INTRODUCTION

Quantum transport in disordered systems has been stu
for many years, yet many open problems remain. One fo
of these investigations is the disorder-induced modificat
of the electron-electron and electron-phonon interactions1–5

Quantum interference of scattering processes violates
Mathiessen rule, according to which the contributions
transport coefficients due to a random potential and phon
are additive.2,6 The quantum transport equation based on
Keldysh technique has been quite successful in descri
transport phenomena, such as the electron relaxa
dephasing and temperature-dependent conductivity.2–4,6–8

The electron-phonon interaction is drastically modified
disordered conductors. In processes of ‘‘pure’’ electro
phonon scattering the transferred momentum is of the o
of the wave vector of a thermal phonon,qT5T/u ~u is the
sound velocity!, and the region of the interaction is;1/qT .
Elastic electron scattering confines an electron to the in
action region. Diffusive electron motion increases t
electron-phonon interaction time to;Dq2 ~D is the diffu-
sion coefficient! and enhances the interaction. Electron sc
tering from vibrating impurities and boundaries generates
other channel of the electron-phonon interaction in
disordered conductor. Various scattering processes inte
with one another, and the interference results in nontriv
changes of kinetic and transport coefficients. If impurit
and boundaries vibrate in the same way as the host lat
the electron-phonon relaxation rate is decreased by a fa
of qTl ~qTl !1, l is the electron mean free path! compared
with the rate in a pure bulk material.1,3,9 This statement is
well known as Pippard ineffectiveness condition.10 On the
contrary, in the presence of a quasistatic scattering pote
of rigid boundaries or heavy impurities, the relaxation rate
enhanced by the same factor.2,8 Even in the pure limit,qTl
@1, electron scattering from static or vibrating potentia
changes the temperature-dependent resistivity fromT5 to T2,
and theT2 term is proportional to the residual resistivity.2,6,11

Effects of the electronic disorder cannot be described
terms of the effective electron-phonon matrix element. T
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ied
s

n

he
o
ns
e
g
n/

-
er

r-

t-
n-
a
re
l

s
e,

tor

ial
s

n
e

quantum-transport equation or Kubo method can be e
ployed to take into account the interference of scattering p
cesses in disordered conductors.

The purpose of this paper is to investigate the effect of
elastic electron scattering on the phonon-drag thermopo
In the pure case,qTl @1, the thermoelectric coefficient
h52Je /“T, is given by12–14 ~for details see Sec. III!

h052
bn

3p

ebttph~T!T4

pFu2 , ~1!

wheret is the electron momentum relaxation time, thetph is
the lifetime of a thermal phonon with frequencyvq5T, b is
the dimensionless electron-phonon coupling constant,pF is
the Fermi momentum,n the exponent in the frequency de
pendence of the phonon relaxation rate (tph

21}vq
n), andbn is

the numeric coefficient

bn5E
0

`

dx x52n
]N~x!

]x
, ~2!

N(x)5@exp(x)21#21. In a degenerate conductor, th
electron-phonon coupling constant is given by

b5S 2eF

3 D 2 n

2ru2 , ~3!

where eF is the Fermi energy,n is the electron density o
states at the Fermi surface, andr is the density.

The measured transport coefficient is the phonon-d
thermopower,S52h/s, wheres is the electrical conduc-
tivity. Considering the phonon drag in disordered system
we accept that the main mechanism of the electron mom
tum relaxation is scattering from boundaries and impuriti
The electrical conductivity is given by Drude formula,s
5e2nvFl /3, wherevF is the Fermi velocity. Thus, in the pur
limit, qTl @1, the phonon-drag thermopower is independ
of the electron mean free path

S0
dr5

pbnbtph~T!T4

2eeF~pFu!2 . ~4!
©2001 The American Physical Society01-1
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A. SERGEEV AND V. MITIN PHYSICAL REVIEW B 65 064301
In the pure limit, qTl @1, the phonon-electron scatterin
time is9

tph-e~T!5
vF

pbuT
, ~5!

andb154p4/15.
Thus, if the phonon-electron scattering dominates in

phonon relaxation,tph5tph-e, the thermoelectric coefficien
is given by the well-known Gurevitch formula12–14

h0
ph-e52

2p2

45

eT3l

pFu3 , ~6!

and thermopower is independent of electron-phon
coupling

S0
ph-e52

h0

s
5

2p4

15

T3

e~pFu!3 . ~7!

In the current paper we calculate the phonon-drag th
mopower in a disordered conductor. We consider thr
dimensional ~3D! electrons interacting with longitudina
phonons via the deformation potential, which is renorm
ized by elastic electron scattering. We study the effects
quasistatic and vibrating scattering potentials. The quasis
potential models rigid boundaries and heavy impurities. T
vibrating potential that moves in the same way as host at
corresponds to the Pippard model. Note, that in the p
limit, qTl !1, correction to the thermopower due to inelas
electron-impurity scattering has been calculated in Ref.
Here we take into account all processes of the electr
phonon-impurity/boundary interference at an arbitra
concentration of electron scatterers.

To solve this problem we use the following method
First, we employ the quantum-transport equation. The tra
port equation deals only with electron self-energy diagra
while the linear-response methods require more complica
diagrams to be considered.6 Second, to find the phonon-dra
thermoelectric coefficient, we will calculate the electric cu
rent of electrons as a response to the temperature gradie
the phonon subsystems. Note, that the symmetric problem
the phonon thermal flux due to the electric field turns out
be significantly more difficult, because one should take i
account specific terms in the form of Poisson brackets2,6

According to the Onsager relation, both approaches give
same result for the thermoelectric coefficient. Third, in co
sidering the vibrating potential, we will employ the Tsune
transformation,16 which allows one to simplify the electron
phonon-impurity Hamiltonian.1

The outline of this paper is as follows. In the followin
section we obtain the quantum-transport equation, which
be used to calculate the electric current under the pho
temperature gradient. In Sec. III we investigate the effec
static scatterers on the drag thermopower. In Sec. IV
study the effect of vibrating scatterers. Discussion of o
main results is presented in Sec. V.
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II. TRANSPORT EQUATION

To find the phonon-drag thermoelectric coefficienthdr we
will calculate the electric current as a response to the te
perature gradient in the phonon subsystems¹Tph

Je5sE1hdr
“Tph1hdf

“Te . ~8!

The last term with the electronic diffusion thermoelectric c
efficienthdf describes the response to the temperature gr
ent in the electron subsystem“Te .

We use the quantum-transport equation method develo
in Ref. 2~for review see Ref. 4! and then generalized in Re
17 for thermoelectric phenomena~details may be found in
Refs. 18 and 19!. This method is based on the Keldysh di
grammatic technique for nonequilibrium processes. In
Keldysh technique the phonon and electron Green functio
D̂ andĜ, and the electron self-energyŜ are represented by
matrices

D̂5S 0 DA

DR DCD , Ŝ5S SC SR

SA 0 D . ~9!

Every matrix consists of three nonzero components: retar
(R), advanced~A! and kinetic~C! functions.

Assuming that the phonon spectrumvq has been renor-
malized due to the electron-phonon interaction, we m
present the retarded component of the phonon Green f
tions as

DR~q,v!5~v2vq1 i0!212~v1vq1 i0!21 . ~10!

In the presence of the temperature gradient the kine
phonon Green function is given by

DC~q,v!52iF ~q,v!Im DR~q,v!1dDC~q,v! ~11!

The second term in Eq.~11! has the form of the Poisso
bracket

dDC~q,v!5
i

2
$ReDR~q,v!,F„v,T~r !…%, ~12!

$A,B%5“TS ]A

]T

]B

]q
2

]B

]T

]A

]q D . ~13!

Thus,dDC(q,v) is proportional to (DR,A)2 and may be ne-
glected.

The phonon distribution function is given by

F~q,v!5F0~v!1F1~q,v!, ~14!

F0~v!52Nv115coth~v/2T!, ~15!

F1~q,v!5
v

T

]~2Nv11!

]v
tphu“Tph, ~16!

where F0(v) is the equilibrium distribution function,
F1(q,v) is the nonequilibrium function, which is propor
tional to“Tph,12,13 andtph is the phonon momentum relax
ation time.
1-2
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EFFECT OF ELECTRONIC DISORDER ON PHONON- . . . PHYSICAL REVIEW B 65 064301
Our aim is to calculate the electric current initiated by t
temperature gradient in the phonon system

Je5sdr
“T52eE dp de

~2p!4 vS~p,e!Im GA~p,e!, ~17!

wherev is the electron velocity, andS(p,e) is the electron
distribution function, which will be found from the quantum
transport equation.

The retarded~advanced! component of the electron Gree
function, taking into account the elastic electron scattering
given by

G0
R~p,e!@G0

A~p,e!#* 5~e2jp1 i /2t!21, ~18!

wherejp5(p22pF
2)/2m. The momentum relaxation rate 1t

is determined by electron scattering from impurities, defe
and boundaries.

In equilibrium, the electron distribution function i
S0(e)52tanh(e/T). In the presence of the temperature g
dient, the electron distribution functionS(p,e) is determined
from the transport equation

2~v•“Te!
e

T

]S

]e
5I e-imp@S#1I e-ph-imp@S,F#, ~19!

whereI e-imp andI e-ph-impare the collision integrals:I e-imp de-
scribes the electron-impurity~boundary! scattering, and
I e-ph-imptakes into account electron-phonon scattering and
interference processes. As we discussed above, the elect
diffusion thermopower is conditioned by the temperatu
gradient in the electron subsystem (“Te), while the phonon
drag thermopower arises due to the temperature gradie
the phonon subsystem. In the kinetic equation for elect
distribution function, the phonon temperature appears onl
the collision integralI e-ph-imp@S,F(Tph)#. Assuming that the
elastic electron scattering from impurities, boundaries,
defects dominates in the electron momentum relaxation,
can linearize the transport equation in the following way:

I e-imp@f#1I e-ph-imp@S0F1#50, ~20!

where f(p,e) is the nonequilibrium electron distributio
function. Employingt approximation for electron-impurity
scattering, we get

f~p,e!5tI e-ph-imp@S0 ,F1#. ~21!

The collision integral is expressed through the elect
self-energy as

I e-ph-imp52 i @SC2S~SA2SR!#. ~22!

The nonequilibrium corrections in the form of the Poiss
bracket betweenS and G are absent, because we consid
response to the temperature gradient in the phonon
system. Using powerful arsenal of the Keldysh diagra
matic technique, we calculate the corresponding elec
self-energies and findf(p,e) in the following sections.
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III. STATIC ELECTRON SCATTERERS

Heavy impurities and rigid boundaries may be conside
as quasistatic electron scatterers. In the model with st
scatterers the electron-phonon interaction is renormalized
elastic scattering in the same way as the electron-elec
interaction.2,5,8We consider the Hamiltonian, which include
electron-phonon interaction and electron scattering fr
static potential

H int5(
p,q

g~q!cp1q
† cp~bq,n1b2q,n

1 !

1 (
p,k•Ra

V~k!cp1k
† cp exp~2 ik•Ra!, ~23!

wherecp
† is the electron creation operator,bq,n

† is the creation
operator of a phonon with a wave vectorq and polarization
index n, V(k) is the scattering potential, andRa are the
positions of static scatterers.

The vertex of the electron-phonon interaction is given

g5
2eF

3

q•en

~2rv!1/2Ki j
k , ~24!

whereeF is the Fermi energy,en is the phonon polarization
vector, andr is the density.

In the Keldysh technique, vertices are tensors with
upper phonon index and lower electron indices in t
Keldysh space. The vertexĝ is given by

ĝ5gKi j
k , ~25!

where Ki j
1 5d i j /&, and Ki j

2 5(sx) i j /&. In what follows,
we will present vertex components with phonon ind
k52, because only these components give a term w
D225DC, which is proportional to the phonon distributio
function, i.e., to the phonon temperature gradient.

The vertex of elastic electron scattering may be expres
through the corresponding momentum relaxation rate

t215pnNscV
2, ~26!

whereNsc is the concentration of short-range scatterers.
Diffusion enhancement of the electron-phonon interact

is described by the vertex dressed by ‘‘impurity’’ ladder~see
Fig. 1!. The dressed vertex is given by

FIG. 1. Renormalization of the electron-phonon vertex due
elastic electron scattering. Electron self-energy diagram.
1-3



of

-

o

n

n
n

g is

t

uc-

ron
y

t

A. SERGEEV AND V. MITIN PHYSICAL REVIEW B 65 064301
G22
2 50, G12

2 5G12
2 5 ig/&,

G11
2 5

ig

&

1

12z0*
@S0~e1v!2S0~e!#. ~27!

Here we introduce the following notations for integrals
electrons Green functions

zn5
1

pnt E dp

~2p!3 ynGA~p,e!GR~p1q,e1v!, ~28!

where y5pq/(pq). The particle-hole asymmetry is de
scribed by the parameterq/(2pF). In the first order in
q/(2pF) the integralszn are given by

zn5E
21

1

dy
yn

11 iql ~y2q/2pF! S 12
qy

2pF
D . ~29!

The factor (12qy/2pF) is due to the energy dependence
the electron density of states.

The vertex G11
2 consists of a factor 1/(12z0* ), its

asymptotic behavior is given by

Re~12z0* !215H 11p/~2x!, x@1

3/x2, x!1,
~30!

Im~12z0* !215
q

2pF
H p/~2x2!, x@1

6/x3, x!1,
~31!

wherex5ql.
The electron self-energy diagram with verticesG is shown

in Fig. 1. Calculating the electron self-energy with the no
equilibrium phonon distribution functionF1(q,v) @Eq.
~14!#, we get

Im SA~p,e!52E dq dv

~2p!4 g2F1~q,v!Im DR~q,v!

3Im GA~p1q,e1v!, ~32!

SC~p,e!522i E dq dv

~2p!4 g2F1~q,v!Im DR~q,v!

3Im
GA~p1q,e1v!@S0~e1v!2z* S0~e!#

~12z* !
.

~33!

Using Eqs.~32! and~33!, we find the corresponding collisio
integral@Eq. ~22!# and determine the nonequilibrium electro
distribution function@Eq. ~21!#

fst~p,e!522tE dq dv

~2p!4 g2F1~q,v!@S0~e1v!2S0~e!#

3Im DR~q,v!Im@~12z* !21GA~p1q,e1v!#.

~34!

Calculating the electric current@Eq. ~17!#, we find the
thermoelectric coefficient
06430
f

-

hst“T52etE dp dq de dv

~2p!8 vF1~q,v!@S0~e1v!2S0~e!#

3g2 Im DR~q,v!Re@~12z!21GA~p!GR~p1q!#.

~35!

Integrating the electron Green functions, we get

hst5
eb lt

6ppFu2T E dvqvq
5 ]N~vq!

]vq
tph~vq!Wst~ql !,

~36!

where

Wst~x!5
2

p

~x221!arctan~x!1x

x~x2arctan@x# !
. ~37!

In the limiting cases this function is given by

Wst5H 11p/~2x!, x@1

8/~px!, x!1
. ~38!

Therefore, in the pure limit,qTl @1, the correction to the
thermoelectric coefficient due to elastic electron scatterin

hst2h0

h0
5

p

2

bn21

bn

u

Tl
. ~39!

where numeric coefficientsbn are given by Eq.~2!. For n
50, the ratiob21 /b0 is 5.89.

In the impure limit,qTl !1, the thermoelectric coefficien
is given by

hst

h0
5

8

p

bn21

bn

u

Tl
. ~40!

Thus, the phonon-drag thermopower in a disordered cond
tor with static scatterers is

Sst
dr5

2bn21btphT
3

eteF
2pFu

. ~41!

If phonon relaxation is determined by the phonon-elect
scattering, the phonon-electron scattering time is given b20

1

tph-e
52bvq

ul

vF

ql arctan~ql !

ql2arctan~ql !
. ~42!

In this case the thermoelectric coefficient is

hst
ph-e5

etvFT3

6p2pFu3 E dx x4
]N~x!

]x
Wst

ph-e~qTlx !, ~43!

where

Wst8~y!5
~y221!arctan~y!1y

y2 arctan~y!
. ~44!

The function Wst
ph-e(qTl ) is shown in Fig. 2. As seen, i

weakly depends on the electronic disorder.
1-4
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IV. VIBRATING ELECTRON SCATTERERS

Vibrating in the same way as a host lattice, electron sc
terers ~boundaries and impurities! weaken the electron
phonon interaction. The phonon-electron scattering rate
given by the Pippard formula1,3,9,20

1

tph-e
52bvq

ul

vF
S ql arctan~ql !

ql2arctan~ql !
2

3

ql D . ~45!

To take into account vibrations of electron scatterers, o
should defineRa in HamiltonianH int @Eq. ~23!# as equilib-
rium positions of scatterers. Also, one should add the ad
tional term corresponding to electron scattering from
potential shifted fromRa ~Refs. 3 and 8!

Hvb5 (
p,k,q,n,R0

2 iV
k•en

~2rv!1/2cp
†cp-k~bq,n1b2q,n

† !

3exp@2 i ~k2q!R0#. ~46!

Thus, the Hamiltonian consists of three terms, which
scribe interactions in the electron-phonon-impurity syste
This gives rise to a very complex interference picture.3,8,20

Considering the vibrating potential, it is convenient to tre
the electron-phonon interaction in the frame of referen
which moves locally with the lattice. As suggested
Tsuneto,16 the transformation of electron coordinates
defined according to

r i→r i1u~r i !, ~47!

where u(r i) is the displacement of the ion with a co
ordinater i . After this transformation, electron scatterers a
motionless and the Hamiltonian is significantly simplified1

H int5(
p,q

G0~q!cp
†cp2q~bq,n1b2q,n

† !

1 (
p,k•Ra

Vsc~k!cp
†cp2k exp~2 ik•Ra!, ~48!

FIG. 2. FunctionsWsb
ph-e(ql) @Eqs.~43! and~44!# andWvb

ph-e(ql)
@Eq. ~61!# which describe corrections to the Gurevitch formula@Eq.
~6!#.
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whereG0 is the vertex at which an electron is scattered fro
p to p1q,

Ĝ05
@~2p1q!•q#@~2p1q!•en#

4r1/2vq
Ki j

k . ~49!

Screening of the vertexG0 results in the vertex1

Ĝs5ĝ1Ĝ0 . ~50!

As we already mentioned, after the transformation giv
by Eq. ~47! all phonon scatterers are motionless. Therefo
the effect of elastic electron scattering is reduced to
renormalization of the vertexGs by the impurity ladder, as it
is shown in Fig. 3. The renormalized vertex is given by

~G f !12
2 5~G f !12

2 5~G f !12
2 0, ~51!

~G f !11
2 5

ig

&
S z̃0* 23z̃2* 1

3q

pF
z1* D S0~e1v!2S0~e!

12z0*
.

~52!

Compared to functionszn @Eq. ~29!#, functionsz̃n consist of
an additional factor (12q/pF) via the energy dependence
G0 .

Three possible electron self-energy diagrams with verti
Gs andG f are shown in Fig. 1. The contribution of the thir
diagram is zero due to the structure ofĜ f in the Keldysh
space@see Eq.~51!#.

The nonequilibrium electron distribution function@Eq.
~21!# corresponding to the first diagram is given by

f1~p,e!522tE dq dv

~2p!4 G0
2F1~q,v!@S0~e1v!2S0~e!#

3Im DR~q,v!Im@GA~p1q,e1v!#. ~53!

The contribution of the second diagram is

f2~p,e!522tE dq dv

~2p!4 g2F1~q,v!@S0~e1v!2S0~e!#

3Im DR~q,v!ImF z̃0* 23z̃0* 16~q/2pF!z1*

12z0*

3GA~p1q!G . ~54!

FIG. 3. Vertices and self-energy diagrams describing electr
phonon scattering in the presence of the vibrating potentia
boundaries and impurities.
01-5
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A. SERGEEV AND V. MITIN PHYSICAL REVIEW B 65 064301
Substituting the nonequilibrium distribution function,fvb
5f11f2 , in Eq. ~17! and integrating the electron Gree
functions we get

hvb5
ebt

6ppFu2T E dvqvq
5 ]N~vq!

]vq
tph~vq!Wvb~ql !,

~55!

where

Wvb~x!52@~25x6211x4139x2115!@arctan~x!#2

1~5x7117x5278x3290x!arctan~x!211x6

139x4145x2#/@px3~11x2!$x2arctan~x!%2#.

~56!

In the limiting cases this function is given by

Wvb5H 11@p/2232/~5p!#/x, x@1

104x/~p175!, x!1
. ~57!

In the pure limit,qTl @1, the correction to the thermoelectr
coefficient due to elastic electron scattering is

hvb2h0

h0
5S p

2
2

32

5p D bn21

bn

u

Tl
, ~58!

where numeric coefficientsbn are given by Eq.~2!. For n
50, the ratiob21 /b0 is 5.89.

In the impure limit,qTl !1, the thermoelectric coefficien
is

hvb

h0
5

104

175p

bn11

bn

Tl

u
. ~59!

Thus, the phonon-drag thermopower in the impure limit i

Svb
dr5

104bn11btphtT5

175e~pFu!3 . ~60!

If phonon relaxation is determined by the phonon-elect
scattering and the phonon-electron relaxation time is gi
by Eq. ~45!, the thermoelectric coefficient may be presen
as

hvb
ph-e5

etvFT3

6p2pFu3 E dx x4
]N~x!

]x
Wvb

ph-e~qTlx !. ~61!

The functionWvb
ph-e(ql) is shown in Fig. 2. As seen, correc

tions to the Gurevitch formula@Eq. ~6!# due to electron
scattering from the vibrating potential are small.

V. CONCLUSIONS

The electron-phonon interaction determines the electr
energy loss rate and also manifests itself in the elec
transport. In a pure conductor, the electron-energy
momentum-relaxation rates are described by the same m
element of the electron-phonon interaction. In a disorde
conductor, the inter-relation of inelastic and elastic scatter
processes is complicated by the interference of scatte
mechanisms. This requires consistent quantum descriptio
06430
n
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energy loss and transport phenomena.
Electron-energy loss and temperature-dependent resi

ity in disordered metallic films have been studied in Re
11,21, and 22. By fitting experimental data to the theory,1,3,6

the coupling constants independently determined from re
tivity and hot-electron measurements have been found to
in a good agreement.

Very recently it has been realized that study of t
phonon-drag thermopower is also a convenient way to de
mine electron-phonon coupling.23,24 Coupling of a two-
dimensional electron gas in a Si metal-oxide-semicondu
field-effect transistor in the temperature range 0.3–4 K
been investigated using the phonon-drag thermopower
energy loss rate. On the basis of this well-developed the
good agreement has been found at the temperature ranT
.1.5 K, which corresponds to the pure limit,qTl @1. At
lower temperatures, whereqTl<1, the available theory ig-
noring the interference of interactions does not provide
consistent description of both phenomena. The paper in
23 has raised a number of issues about the role of elect
phonon-impurity/boundary interference in the phonon-d
and energy loss phenomena.

The current work is concerned with effects of elastic ele
tron scattering on the phonon-drag thermopower in 3D
generate conductors. The quantum-transport equation is
tended to study phonon-drag effects. The electric curren
calculated as a response of electrons to the temperature
dient in the phonon subsystem. This approach allows on
avoid complex diagrams in the Kubo method and numer
Poisson bracket corrections, if response to the electric fie
calculated.18,19 The developed method is also convenient
study drag effects in coupled electron systems~for a recent
review see Ref. 25!.

Note that, as all other thermoelectric coefficients, t
phonon-drag thermopower is proportional to the partic
hole asymmetry, i.e., to the difference between parameter
electron states insidep and outsidep̃ the Fermi surface. In
the pure limit,qTl @1, the phonon-drag thermopower orig
nates only due to asymmetry in the electron energy,jpÞj p̃
~if jp5j p̃5vFup2pFu, the phonon-drag thermopower is a
sent!. In our isotropic model with quadratic electron spe
trum, the asymmetry is given by (jp1q2jp)/jp;qT /pF
;T/uD , where uD is the Debye temperature. Calculatin
drag effects in the impure limit, one should take into acco
particle-hole asymmetry in all other electron characterist
such as density of states@Eq. ~29!# and the velocity. For this
reason thermopower in a disordered conductor is m
sensitive to peculiarities of electron parameters.

We demonstrate that in bulk samples, where phon
electron scattering dominates in the phonon relaxation,
phonon-drag thermopower is just slightly modified due
elastic scattering@Eqs. ~43! and ~61!#. Thus, Gurevitch for-
mula @Eq. ~6!# provides the adequate description
the phonon-drag thermopower even in disordered b
conductors.

In thin film structures phonons mainly scatter in a su
strate, and thermopower is strongly affected by elastic e
tron scattering from boundaries, impurities, and defects. T
vibrating electron scattering potential substantially decrea
1-6
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the thermopower. In the impure limit,Tl/u!1, the phonon-
drag thermopower is of the order of (Tl/u)S0

dr @Eq. ~60!#. On
the contrary, static scatterers, such as rigid boundaries
heavy impurities, increase the thermopower by a factor
u/(Tl) @Eq. ~41!#. Such modification correlates to the effe
of elastic electron scattering on the electron-phon
relaxation.1–3,8

While our results are not directly applicable to th
electron-phonon interaction via the piezoelectric potent
we may evaluate the disorder-induced modification of
thermopower in the following way. According to Refs. 2
and 27, the renormalization of the piezoelectric vertex
elastic electron scattering is exactly the same as the re
malization of the deformation-potential vertex by static sc
terers@Eq. ~27!#. Diffusion enhancement of the piezoelectr
-
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interaction increases the energy loss rate by the fa
u/(Tl).26,27The results of Sec. III show that the phonon-dr
thermopower is also increased by the same factor. Thus,
related disorder-induced changes in the energy loss an
thermopower are also expected for the piezoelectric po
tial. Very recently the effect of elastic scattering on the e
ergy loss rate has been observed in gated GaAS/Ga12xAl x
d-doped quantum wells.28 It would be interesting to
investigate the phonon-drag thermopower in these structu
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