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Abstract
We propose a device model for quantum dot infrared photodetectors
(QDIPs) with relatively large lateral spacing between QDs as occurs in
QDIPs fabricated and experimentally investigated recently. The developed
model accounts for the self-consistent potential distribution and features of
the electron capture and transport in realistic QDIPs in dark conditions. The
model is used for the calculation of the dark current as a function of the
structural parameters, applied voltage and temperature. It explains a rather
sharp increase in the dark current with increasing applied voltage and its
strong sensitivity to the density of QDs and the doping level of the active
region. The calculated dependences are in good agreement with available
experimental data. The obtained characteristics of QDIPs are compared to
those of QWIPs with similar parameters.

1. Introduction

Quantum dot infrared photodetectors (QDIPs) utilizing
intersubband transitions proposed and analysed theoretically
a few years ago [1] have since been extensively studied
experimentally [2–10]. In particular, different InAs/GaAs,
InGaAs/GaAs, InGaAs/InGaP and SiGe/Si QDIPs have
been fabricated and measured. Although QDIPs are
expected to exhibit several potential advantages over quantum
well infrared photodetectors [1], most of the investigated
QDIPs have worse characteristics than QWIPs with similar
parameters [11, 12]. This pertains to the dark current
and the responsivity of QDIPs. The prediction of rather
high performance of QDIPs [1] was, in particular, based
on the device model that assumes that QDs form dense
QD layers (arrays) in which the lateral distribution of the
potential is nearly uniform. In such ideal QDIPs, the QDs
being small and lightly coupled preserve their sensitivity
to normally incident infrared radiation (see, e.g., [13])
and low capture probability simultaneously maintaining
more or less uniform in-plane distribution of the captured
electrons. However, the QDIPs investigated in the recent

experiments comprise relatively large QDs placed fairly far
from each other. As a result, even substantially charged
QD layers do not form the planar potential barriers which
could effectively control the transverse electron transport
through them (as in QWIPs with thermionic injection [14,
15]). This is due to the existence of ‘punctures’ in
such potential barriers located between the QDs. Hence,
the main stream of electrons injected from the emitter
contact passes through these holes resulting in elevated dark
current.

In this paper, we develop a device model which accounts
for the features of the realistic QDIPs associated with the
distinctive properties of the electron capture into QD and
the electron transport through the punctures in the planar
potential barriers formed by the charged QDs. The model
is applied to calculate the QDIP characteristics in dark
conditions, focusing on the effects of the strong dependence
of the dark current on the applied voltage, density of QDs
and doping. We also compare the calculated characteristics
of the realistic QDIPs with those of QWIPs with similar
parameters.
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Figure 1. Schematic view of the QDIP structure. Arrows indicate
possible trajectories of electrons.

2. The model

We consider a QDIP which constitutes an N+–N–N+-diode
with a stack of planar arrays of QDs buried in the N-layer.
This layer plays the role of the QDIP active region. It is
assumed that the QDIP active region is lightly doped by
donors. Heavily doped N+-regions serve as the emitter and
collector contacts. The QDIP structure under consideration
is shown schematically in figure 1. The current flowing in
such a diode under applied voltage is limited by a space
charge in the active region. The feature of the current flow
in the QDIP diode structure in question is that the space
charge is substantially determined by the charges of QDs
with the captured electrons. The operation of the QDIP as a
photodetector is associated with the photoescape of electrons
from QDs due to electron intersubband transitions stimulated
by the absorption of infrared photons. The photoexcited
electrons contribute to the current and, more importantly,
change the space charge in the active region, that leads, in
turn, to an increase of the current injected from the emitter
contact.

If the numbers of electrons in QDs are sufficiently large,
we may assume that these numbers are approximately the same
for all QDs in a particular QD array, i.e. Ni,j

k = 〈Nk〉, where i

and j are the in-plane indices of QDs and k is the index of the
QD array. In this case, the distribution of the electric potential
ϕ = ϕ(x, y, z) in the active region is governed by the Poisson
equation(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂x2

)
ϕ = 4πe

æ

[∑
i,j,k

〈Nk〉δ‖(x − xi)

×δ‖(y − yj )δ⊥(z − zk) − ρD

]
. (1)

Here, e is the electron charge (e = |e|), æ is the dielectric
constant, δ‖(x), δ‖(y) and δ⊥(z) are the QD form-factors
in lateral (in the QD array plane) and transverse (growth)
directions, respectively, xi and yj are the in-plane QD
coordinates, zk = kL is the coordinate of the kth QD array
(where k = 1, 2, 3, . . . , K and K is the number of the QD

arrays in the QWIP) and ρD is the donor concentration in the
active region. The form-factors correspond to the lateral and
transverse sizes of QDs equal to aQD and lQD, respectively. The
boundary conditions supplementing equation (1) are given by

ϕ|z=0 = 0, ϕ|z=W = V, (2)

where W = (K + 1)L is the width of the active region and V

is the applied voltage.
In the realistic QDIPs, the transverse size of QDs, lQD, is

smaller than their lateral size aQD and both of them are smaller
than the transverse and lateral spacings between QDs, L and
LQD = √

�QD, where �QD is the density of QDs in each QD
array. We shall assume that the QD transverse size is such
that the QDs have only one quantum level associated with
the electron confinement in the transverse direction, while the
lateral size is so large that the total number of quantum levels
in QDs and, hence, the maximum number of electrons they
can capture NQD 	 1. The electron system in each such a
QD can be considered as a degenerate two-dimensional Fermi
gas. Similar consideration of many-fermion systems is used
in nuclear physics [16].

In equilibrium (V = 0), the potential distribution in
QDIPs with a moderate doping of the active region exhibits
a minimum at the centre of the latter, creating a potential
barrier for electrons. This barrier occurs due to the space
charge formed by equilibrium electrons occupying QDs (see
the appendix). At low voltages (V < V0, where V0 is
the doubled modulus of the potential at its minimum), the
systems of electrons in QDs are still close to equilibrium with
the contacts, so the space charge is weakly affected by the
applied voltage. Thus, in this voltage range, the potential
barrier is lowered by the value eVWm/W and its position,
Wm = Wm(V ), shifts to the emitter contact when the voltage
increases. This gives rise to an increase in the injected current
that is very sharp as long as Wm is comparable with W .

In the range of elevated voltages when eV > eV0 	 kBT

(where kB is the Boltzmann constant and T is the temperature),
that is more interesting for practical applications, the electron
distribution over QDs becomes nonequilibrium. In such a
situation, the numbers of electrons in QDs are substantially
determined by the current density and the former and the latter
should be found self-consistently. The number of electrons
occupying a QD of the kth QD array versus the average current
density across this array can be obtained using an equation
governing the balance of the electron capture into and emission
from this QD. Because the electron transport across the active
region under the effect of sufficiently strong electric field is
associated with the drift, the balance equation can be presented
in a form much like that for QWIPs [17, 18]:

〈j〉
e�QD

pk = Gk + σI 〈Nk〉. (3)

Here, 〈j〉 is the current density average in lateral directions,
pk is the phenomenological capture parameter (capture
probability), Gk is the rate of nonradiative (thermionic or/and
tunnelling) emission, σ is the cross section of electron
photoescape from QDs and I is the intensity (photon flux)
of incident infrared radiation. When the thermionic emission
of electrons from QDs dominates the tunnelling emission, one
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can use the following formula based on the assumption that
electrons in QDs are two dimensional (see, e.g., [14, 18]):

Gk = G0 exp

(
− εQD

kBT

)[
exp

(
πh̄2〈Nk〉
mkBT a2

QD

)
− 1

]


 G0 exp

[(
πh̄2〈Nk〉
ma2

QD

− εQD

)/
kBT

]
, (4)

where G0 is the pre-exponential factor, εQD is the ionization
energy of the ground state in QDs, h̄ is the Planck constant and
m is the effective mass of electrons in QDs.

The electron capture processes in QDIPs exhibit distinct
features [1, 19]. A discrete energy spectrum of electrons in
QDs can result in the photon bottleneck effect [20] suppressing
the capture of electrons accompanied by the optical phonon
emission. This effect can be particularly important in QDIPs
with small QDs having a small number of markedly separated
bound states. In such QDIPs, the effective suppression of
the capture can be also associated with the Pauli exclusion
principle when QDs are nearly totally filled with electrons [1].
The electron charges in QDs form potential ‘hills’ with the
tops at the QD centres. These hills are well pronounced in
QDIPs with QDs located sufficiently far from each other, i.e.
in QDIPs with not too high densities of QDs. The potential
hills in question can be rather high, preventing the capture of
the electrons propagating in the potential ‘valleys’ (playing
the role of punctures) between QDs [19]. Due to this effect,
capture into a QD depends on its potential, which, in turn,
is determined by the number of electrons occupying this QD.
Indeed, the potential of the QD with indices i, j and k can
be estimated as ϕ

i,j

k = −eN
i,j

k /C 
 −e〈Nk〉/C, where C

is the QD geometrical capacitance. Accounting for the effect
of limited filling [1] of QDs and the activation character of
the electron capture [19] by QDs, the capture parameter as a
function of the numbers of electrons in QDs can be taken as
being governed by the following equation:

pk = p0
NQD − 〈Nk〉

NQD
exp

(
−e2〈Nk〉

CkBT

)
, (5)

where p0 ∝ NQD�QDa
2
QD is the capture parameter for

uncharged QDs. As follows from equations (3) and (4), the
numbers of electrons occupying the QDs depend on the QD
array index k only if the capture parameter is different for
the QD arrays with different index. The difference in the
capture parameters of different QD arrays can be associated
with a nonuniformity of the electric field in the active region,
which, in turn, results in a nonuniform heating of electrons. A
similar situation occurs in QWIPs with multiple QWs [21,22],
in which the capture rate can be fairly sensitive to the electron
heating [23, 24]. However, the electron heating is a nonlocal
effect. Hence, the electron capture rate into the QDs of each
specific QD array depends on the distribution of the electric
field in some area surrounding this QD array (compare with the
case of QWIPs [22, 24, 25]). If the energy relaxation length
of mobile electrons in the active region is comparable to or
longer than the width of this region, the average energy of
such electrons and the rate of their capture are determined by
the average electric field E = V/W . In this situation, the
capture parameters of different QD arrays should be the same.

Taking this reasoning into account, we (as in some models of
QWIPs [18]) put in the following pk = p and 〈Nk〉 = 〈N〉.

When V > V0, the injected current is controlled by
a potential barrier formed by a series of the potential hills
belonging to the QD array located near the emitter contact.
Apart from the charges of electrons occupying the first QD
array, the charges of remote QDs and donors participate in
the formation of this barrier. The potential barrier height has
maxima at QDs and minima between them. These minima
form the punctures through which the main part of the injected
current flows. To calculate the current one needs to find
the height of the potential barrier as a function of the in-
plane coordinates using equations (1) with conditions (2).
Considering the effect of different charges on the punctures,
we discriminate the average contribution of distant QDs and
donors and the immediate contribution of the charges of four
QDs of the first QD array surrounding each puncture. Thus,
the potential of the first QD array can be presented in the form

ϕ1 = 〈ϕ1〉 + (ψ − 〈ψ〉). (6)

Here and below, ϕk = ϕ(x, y, kL). Averaging equation (1) in
the lateral direction, one can arrive at

d2〈ϕ〉
d z2

= 4πe

æ

[
�QD〈N〉

K∑
k=1

δ⊥(z − kL) − ρD

]
. (7)

A rigorous solution of equation (7) with conditions (2) for
QDIPs with arbitrary numbers of the QD arrays can be
presented as

〈ϕk〉 = V
k

(K + 1)
+

2πeL2

æ

(
ρD − 〈N〉�QD

L

)
(K + 1 − k)k.

(8)
Equation (8) immediately yields

〈ϕ1〉 = V

(K + 1)
+

2πeL2K

æ

(
ρD − 〈N〉�QD

L

)
. (9)

Considering QDIPs with aQD � LQD = �
−1/2
QD , for ψ near the

puncture at the point (xi = 0, yj = 0, z1 = L) and for 〈ψ〉
one obtains

ψ = −e〈N〉
æ

[
1√

(x − LQD/
√

2)2 + y2

+
1√

(x + LQD/
√

2)2 + y2
+

1√
x2 + (y − LQD/

√
2)2

+
1√

x2 + (y + LQD/
√

2)2

]


 − 4
√

2e〈N〉√�QD

æ

[
1 +

1

2
�QD(x

2 + y2)

]
(10)

and

〈ψ〉 
 − 1

L2
QD

∫ LQD/2

−LQD/2

∫ LQD/2

−LQD/2
dx dy ψ

= −4
√

2e〈N〉√�QD

æ
(1 + ξ), (11)
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Figure 2. Conduction band edge versus coordinate. Solid and
dashed curves correspond to the active region cross sections passing
through the centres of QDs and between them, respectively.

where

ξ = 1√
2

ln
(1 +

√
5)(2 +

√
5)

2
− 1 
 0.361.

A qualitative view of the cross sections of the conduction
band edge profile is shown in figure 2.

The current through each puncture is proportional to
jm exp (eϕ1/kBT ), where jm is the maximum current density
which can be supplied by the emitter contact. Hence, the
average current density 〈j〉 is given by

〈j〉 
 jm�QD

∫ ∞

0
dr2 exp

(
eϕ1

kBT

)
, (12)

where r2 = x2 + y2 and the upper limit of integration is
extended to infinity.

Using equations (5) and (9)–(12), one can arrive at the
following equation relating the average current density 〈j〉 and
the number of electrons in QDs 〈N〉:

〈j〉 
 jm

(
2)

〈N〉
)

exp

[ 〈N〉
)

(
ξ − πK

2
√

2

√
�QDL

)]

× exp

[
e(V + VD)

(K + 1)kBT

]
. (13)

Here, the following notations are used:

) = ækBT

4
√

2e2
√
�QD

and VD = 2πeρD

æ
L2K(K+1).

3. Dark current

In dark conditions (I = 0), equations (3)–(5) yield

〈N〉
(

1 +
CQD

C

)
= N0

+
mkBT a2

QD

πh̄2 ln

[ 〈j〉p0(NQD − 〈N〉)
eG0�QDNQD

]
, (14)

where CQD = me2a2
QD/πh̄2 is the quantity that can be called

the QD quantum capacitance [26], and

N0 = ma2
QDεQD

πh̄2 

(
aQD

lQD

)2

,

so N0 
 NQD. Assuming that QDs have the form of
a circular disc (lQD � aQD � L), one can obtain [27]
C 
 (2æ aQD/π

3/2) and CQD/C = √
πaQD/2aB, where

aB = æh̄2/me2 is the Bohr radius.
One may anticipate that at the voltages when the current

density is not too large (see below), one has 〈N〉 < NQD.
Substituting 〈N〉, following in this case from equation (14),
into (13) and introducing the dimensionless current densities
i = 〈j〉p0/eG0�QD and im = jmp0/eG0�QD, we obtain the
following equation:

iγ 
 im

(
2)

N0

)
exp

[(
e(V + VD)

K + 1
− (γ − 1)εQD

)/
kBT

]
(15)

or

i 

(
im

2)

N0

)1
γ

exp

[(
e(V + VD)

(K + 1)
− (γ − 1)εQD

)/
γ kBT

]
.

(16)

Here,

γ = 2K�QDa
2
QD

(
L

aB

)[
1 − η

1 + (
√

πaQD/2aB)

]
+ 1, (17)

where η = (2
√

2ξ/πKL
√
�QD) 
 0.324/KL

√
�QD. In

QDIPs with sufficiently large number of QD arrays and high
density of QDs in each array, the parameter η is small. This
means that the averaged action of the QD and donor charges
dominates if KL

√
�QD > 1. However, in QDIPs with a few

QD arrays and relatively low density of QDs (i.e. with large
punctures), this parameter can be comparable to unity, resulting
in a small value of γ . The latter case corresponds to a very
low potential barrier between QDs and, hence, a large current
through the punctures.

Estimating γ for QDIPs with K = 20, �QD = (1010–
1011) cm−2 and L = 30 nm, aQD = 15 nm, aB = 15 nm, i.e.
similar to QDIPs studied experimentally [6], one can obtain
γ 
 3–21. For QDIPs having K = 3, �QD = (1010–
1011) cm−2 L = 40, aQD = 15 nm and aB = 15 nm (as in [10]),
one has γ 
 1.5–5. Thus, in realistic QDIPs, parameter γ can
be both moderate and fairly large. The value im can be large
due to high maximum current density that can be provided by a
heavily doped emitter contact. Conversely, one has)/N0 � 1.
If γ is sufficiently large in comparison with unity, one may
assume that with a good accuracy (2im)/N0)

1/γ 
 1. Hence,
from equation (16) one can obtain

〈j〉 

(
e�QDG0

p0

)
exp

[(
e(V + VD)

(K + 1)

−(γ − 1)εQD

)/
γ kBT

]
. (18)

Substituting 〈j〉 from equation (18) into (14), one can
obtain

〈N〉 
 NQD

VQD

[
V + VD + (K + 1)

εQD

e

]
, (19)
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where VQD = 2πeK(K + 1)�QDL(1 − η)NQD/æ. As can be
seen from equation (18), the number of electrons occupying
QDs increases with increasing voltage and formula (18) for the
dark current derived above is valid when 〈N〉 < NQD. Invoking
equation (19) and assuming for simplicity that VQD 	 (K +
1)εQD/e, one can arrive at the following limitation:

V0 < V � (VQD − VD) = 2πeK(K + 1)L2

æ

×
(
NQD

�QD

L
− ρD

)
. (20)

For a QDIP with a large number of QD arrays and a high QD
density, for example, for K = 20, L = 30 nm and �QD =
1011 cm−2, one obtains (VQD − VD) 
 90 × (NQD − ND) V.
Here, the number of donors per QD, ND = ρDL/�QD, is
introduced. Taking into account that V0 is about a few tenths
of a volt (see the appendix), this estimate implies that the
voltage range in which QDs are not totally filled and, hence, the
range of validity of the formulae for the dark current obtained
above can be very wide (except the case when the number of
donors per QD is close to the maximum number of electrons
captured by each QD). However, for a QDIP, say, with K = 5,
L = 30 nm and �QD = 1010 cm−2, the estimate yields
(VQD − VD) 
 0.56 × (NQD − ND) V. In the latter case, the
validity of equation (18) is questionable.

When V becomes comparable to (VQD − VD), all QDs in
the QDIP active region can be strongly filled (〈N〉 
 NQD).
In such a situation, simultaneous solution of equations (13)
and (14) results in the following formula:

〈j〉 
 jm

(
2)

NQD

)
exp

[
e(V + VD − VQD)

(K + 1)kBT

]
. (21)

Due to the smallness of quantity )/NQD, up to the voltages
V � (VQD − VD), one has 〈j〉 � jm. One can see from
equation (21) that in the case under consideration the dark-
current–voltage characteristic is determined by lowering of the
potential barrier by the value eV/(K + 1) (compare with [1]),
which is larger than in the case when QDs are filled with
electrons only partially. Due to this, the dark-current–voltage
characteristic (21) is steeper than that given by equation (18).
The point is that in the situation when QDs are not filled totally
and, consequently, are able to capture additional electrons,
the further accumulation of electrons with increasing voltage
prevents a steep decrease in the potential height.

At higher voltages V > (VQD − VD), the electron space
charge accumulated in QDs becomes fixed. In such a regime,
which is certainly not interesting for the application of QDIPs
as photodetectors, the dark current in QDIPs becomes limited
by the space charge of the injected mobile electrons, eventually
tending to the saturation value jm.

4. Analysis

Considering the behaviour of the potential barrier in the QDIP
active region in the states when the numbers of electrons in
QDs are close to their equilibrium values, one can find that in
the range of very low voltages (when eV < kBT )

〈j〉 ∝ eV

kBT
. (22)

When kBT � V � V0, the dark-current density increases
exponentially with the characteristic voltage about V0.

At elevated voltages V > V0, as can be seen
from equation (18), the shape of the dark-current–voltage
characteristic strongly depends on the parameter γ . In QDIPs
with a large parameter γ , the dark current practically does not
depend on jm, i.e. on the emitter contact parameters such as
jm. Equation (18) yields a steep (exponential) dark-current–
voltage characteristic, so that

ln〈j〉 ∝ V

V1
, (23)

where the characteristic voltage is given by

V1 = (K + 1)γ

(
kBT

e

)
, (24)

when V0 < V � (VQD − VD), and

V1 = (K + 1)

(
kBT

e

)
, (25)

when V0 � V � (VQD − VD).
The electric-field dependence of the QD ionization energy

can also affect the dark-current–voltage characteristic, making
it slightly steeper. In the simplest approach, setting εQD =
ε0

QD − [elQDV/2(K + 1)L], one can find that quantity V −1
1 in

equation (23) should be substituted for (V1 +V2)/V1V2, where
V2 
 2K( L

lQD
)( kBT

e
). The ratio of these characteristic voltages

is equal to

V1

V2
= K�QDa

2
QD(1 − η)

1 + (
√

πaQD/2aB)

(
lQD

aB

)
.

In QDIPs with not too large K and �QD, one has V1/V2 < 1.
The characteristic voltageV1 that determines the steepness

of the QDIP dark-current–voltage characteristic depends on
many structural parameters. According to equations (24), for
a QDIP with K = 10, �QD = 1.4 × 1010 cm−2, L = 100 nm,
aQD = 15 nm and aB = 15 nm at T = 40 K, V1 
 0.1 V. The
theoretical dark-current–voltage characteristics calculated for
these parameters in some range of the QD densities and the
experimental one [8] are shown in figure 3, demonstrating
excellent agreement over three orders of magnitude. For
a QDIP with K = 20 and L = 30 nm (similar to those
studied experimentally in [6]), assuming that aQD = 15 nm,
aB = 15 nm and �QD = 1010 cm−2, we obtain eV1/kBT 
 35.
The experimental data extracted from [6] in the temperature
range T = 60–100 K correspond to eV1/kBT 
 30–31.

Equation (18) with equation (24) describe the following
dependence of the dark current versus the density of QDs at
not too high voltages:

ln〈j〉 ∝ 1

K(K + 1)�QD
. (26)

Figure 4 shows the dark current as a function of relative density
of QDs �QDa

2
QD at different applied voltages calculated using

equation (18).
Equations (18) and (21) explicitly show that the dark

current strongly increases with increasing doping level of the
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Figure 3. Calculated and experimental dark-current–voltage
characteristics.

QDIP active region. Indeed, from equations (18) and (21), for
the ratio of the dark current in QDIPs with doped (〈j〉) and
undoped (〈j0〉) active regions one can obtain (when aQD 
 aB)

ln
〈j〉
〈j0〉 ∝ ρD. (27)

For QDIPs with donors placed directly in the QD array planes,
in all the above formulae one should substitute ρD for �D/L,
where �D is the sheet donor concentration in each QD array.

In our calculations we did not discriminate the effective
temperatures of electrons in the contacts, QDs and punctures.
However, the electrons propagating through the punctures
can be markedly heated if the average electric field across
the QDIP active region is sufficiently strong. The electron
heating can affect the capture processes and, consequently,
the QDIP characteristics. To include this effect, one can
replace the lattice temperature T in equation (5) by an effective
temperature Teff . This results in the renormalization of the
parameter γ , which, in such a case, is given by

γ 
 2K�QDa
2
QD(L/aB)(1 − η)

[1 + (
√

πaQD/2aB)(T /Teff)]
+ 1. (28)

According to equation (28), the transition from Teff = T

to Teff > T can result in a twofold increase in γ and,
consequently, in V1.

5. Comparison of QDIPs and QWIPs

The direct comparison of QDIPs and QWIPs is complicated
by distinctions between the injection mechanisms in QDIPs
under consideration and those studied experimentally and
QWIPs, in most of which the injection is of tunnelling origin
(except [15,28], where fabrication and testing of QWIPs with
thermionic injection were reported). Because of this, we
shall compare the QDIP characteristics obtained above and the
characteristics of QWIPs with thermionic injection calculated
in [29], bearing in mind that such QWIPs do not always exhibit
the best performace. Roughly estimating the ratio of the dark
currents in QDIPs and QWIPs with thermionic injection, we

0.0 0.1 0.2 0.3 0.4 0.5

QD density (ΣQD aQD

2
)

10
− 10

10
− 9

10
− 8

D
ar

k 
cu

rr
en

t 
(A

)

V = 0.6 V
    0.5
    0.4

K = 10
L = 100 nm
aB = 15 nm
T = 40 K

Figure 4. Dark current versus relative QD density �QDa
2
QD at

different voltages.

leave aside, for simplicity, the effect of electron heating. The
calculation of the dark-current density in QWIPs with a large
number of QWs and thermionic injection of electrons from the
emitter contact (such QWIPs with a single QW were studied
theoretically in [14]) results in the following formulae [29]:

〈jQW〉 =
(

eg0

pQW

)(
jmpQW

eg0

) 1
γQW

× exp

[(
e(V + VD)

(K + 1)
− (γQW − 1)εQW

)/
γQWkBT

]
.

(29)

Here,

γQW = 2K

(
L

aB

)
+ 1, (30)

g0 is the characteristic rate of the electron thermionic emission
from a QW per unit of its area, pQW is the capture parameter
and εQW is the QW ionization energy. Comparing γ and
γQD by application of equations (17) and (30), one can see
that γ < γQW. This is mainly owing to the smallness of
�QDa

2
QD. The relative smallness of parameter γ is associated

also with factors (1−η) and [1+(
√

πaQD/2aB)]−1, arising due
to the lowering of the potential barrier in the punctures with
increasing density of QDs and the exponential decrease in the
capture rate when the number of electrons in QDs increases.

Consider γQW 	 1 equation (29) can be simplified and
reduced to the following:

〈jQW〉 

(

eg0

pQW

)
exp

[(
e(V + VD)

(K + 1)

−(γQW − 1)εQW

)/
γQWkBT

]
. (31)

Using equations (18) and (30), for QDIPs and QWIPs with
equal doping levels and ionization energies and γ , γQD 	 1,
we find

〈j〉
〈jQW〉 


(
�QDG0

g0

)(
pQW

p0

)

× exp

[
e(V + VD)

(K + 1)kBT

(
1

γ
− 1

γQW

)]
. (32)
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Taking γ and γQD from formulae (17) and (30), respectively,
and employing equation (32), one can obtain

ln
〈j〉

〈jQW〉 
 ln
pQW

p0
+

(
V + VD

V1

)

×
[

1 − �QDa
2
QD(1 − η)

1 + (
√

πaQD/2aB)

]


(
V + VD

V1

)
. (33)

As follows from equation (33), if pQW and p0 are of the
same order of magnitude, the dark current in QDIPs with
�QDa

2
QD � 1 is markedly higher than that in QWIPs. One

needs therefore to recall that p0 can be much larger than p

given by formula (5).
The QDIP dark-current–voltage characteristics are

pronouncedly steeper than those for a QWIP. This conclusion
is confirmed by the comparison of the experimental
dark-current–voltage characteristics of QDIPs [6, 8] and
QWIPs [15].

6. Conclusions

In summary, we have proposed a device model for realistic
QDIPs in dark conditions. This model self-consistently
accounts for (a) the effect of the electron charges captured
in QDs and the donor charges on the spatial distribution of the
electric potential in the QDIP active region, (b) the activation
character of the electron capture and the limitation of the
capture rate due the Pauli principle, (c) the thermionic electron
emission from QDs and thermionic injection of electrons
from the emitter contact into the QDIP active region and
(d) the existence of the punctures between QDs through which
the main portion of the injected current flows. Using the
developed model, we have derived the average dark current
density as a function of the QDIP structural parameters, applied
voltage and temperature in explicit analytical form. The
obtained results explain a rather sharp dark-current–voltage
characteristic of QDIPs and strong dependence of the dark
current on the density of QDs in the QD arrays and the
doping level of the active region observed in experiments.
The calculated characteristics of QDIPs are in good agreement
with those obtained experimentally. We have also carried out a
comparison of the characteristics of QDIPs and QWIPs having
similar parameters.
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Appendix

In equilibrium when there is no applied voltage, considering
that the electron systems in QDs are two dimensional and
degenerate, and that their Fermi level coincides with the Fermi
level of the electron gas in the contacts, we have

〈Nk〉 = ma2
QD

πh̄2 [e〈ϕ(kL)〉 + εQD − εF], (A.1)

where εQD and εF are the QD ionization energy and the Fermi
energy of electrons in the contacts counted from the edge
of the conduction band in the latter. Substituting 〈Nk〉 from
equation (A.1) into (3), we arrive at

d2〈ϕ〉
d z2

= 4�QDa
2
QD

aBL
(〈ϕ〉 + ϕQD), (A.2)

where ϕQD = εQD/e − εF(πeρD/æ)(aBL/�QDa
2
QD).

Normally, i.e. at not too high doping levels of the contacts
and the active region, ϕQD > 0. In the case K 	 1, solving
equation (A.2) with boundary conditions (2) for V = 0, we
obtain

〈ϕk〉 = ϕQD

[
cosh (2kL − W)/LS

cosh (W/LS)
− 1

]
, (A.3)

where LS =
√
aBL/�QDa

2
QD. The averaged potential has

a minimum at z = Wm = W/2, where 〈ϕ〉 = 〈ϕm〉.
Using equations (A.1) and (A.3), one can obtain the following
expression for 〈ϕm〉:

〈ϕm〉 = ϕQD

[
1

cosh (W/LS)
− 1

]
. (A.4)

When V > 0, the minimum shifts to the contact. The voltage
at which the minimum shifts from the centre of the QDIP
active region to the first array of QD can be estimated as
V0 
 −2〈ϕm〉. Choosing K = 10–20, εQD = 150–200 meV,
�QD = (1010–1011) cm−2, L = 30 nm, aQD = 15 nm and
aB = 15 nm and neglecting doping one can find V0 
 0.2–
0.4 V.

References

[1] Ryzhii V 1996 Semicond. Sci. Technol. 11 759
[2] Phillips J, Kamath K and Bhattacharya P 1998 Appl. Phys.

Lett. 72 2020
[3] Kim S, Mohseni H, Erdtmann M, Michel M, Jelen J and

Razeghi M 1998 Appl. Phys. Lett. 73 963
[4] Pan D, Towe E and Kennerly S 1998 Appl. Phys. Lett. 73 1937
[5] Maimon S, Finkman E, Bahir G, Schacham S E, Garcia J M

and Petroff P M 1998 Appl. Phys. Lett. 73 2003
[6] Xu S J et al 1998 Appl. Phys. Lett. 73 3153
[7] Horiguchi N, Futatsugi T, Nakata Y, Yokoyama N, Mankad T

and Petroff P M 1999 Japan. J. Appl. Phys. 38 2559
[8] Phillips J, Bhattacharya P, Kennerly S W, Beekman D W and

Dutta M 1999 IEEE J. Quantum Electron. 35 936
[9] Pan D, Towe E and Kennerly S 1999 Appl. Phys. Lett. 75 2719
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