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We present the results of a new analytical model for the analysis of the dark current in realistic quantum dot infrared
photodetectors (QDIPs). This model includes the effect of the space charge formed by electrons captured in QDs and donors,
the self-consistent electric potential in the QDIP active region, the activation character of the electron capture and its limitation
by the Pauli principle, the thermionic electron emission from QDs and thermionic injection of electrons from the emitter contact
into the QDIP active region, and the existence of the punctures between QDs. The developed model yields the dark current as
a function of the QDIP structural parameters, applied voltage, and temperature. It explains some features of the dark current
characteristics observed experimentally.
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Heterostructure diodes with a quantum dot layer inserted
between heavily doped contacts can serve as infrared pho-
todetectors utilizing bound-to-continuum transitions. Such
quantum dot infrared photodetectors (QDIPs) were proposed
and analyzed theoretically by one of the authors1) (see,
also ref. 2). Recently,3–12) several research groups reported
the fabrication and extensive experimental study of various
InAs/GaAs, InGaAs/GaAs, and InGaAs/InGaP QDIPs. Al-
though expected to have advantages over quantum well in-
frared photodetectors (QWIPs) with similar parameters, most
of the investigated QDIPs exhibited characteristics inferior to
those of QWIPs (see, for example, refs. 13 and 14). The pre-
diction of high performance for QDIPs was based on the de-
vice model1,2) that assumes dense QD layers with a nearly
uniform lateral distribution of the electric potential. In such
an ideal QDIP, small but lightly coupled QDs preserve their
sensitivity to normally incident infrared radiation15) and their
low capture probability due to the effect of phonon bottle-
neck16) maintaining a more or less uniform in-plane distri-
bution of the captured electrons. In contrast, the QDIPs in-
vestigated in the recent experiments contained relatively large
QDs placed far apart. As a result, even substantially charged
QD layers did not form planar potential barriers which could
effectively control the electron transport. It was shown17)

that the presence of the potential repulsive barriers surround-
ing the charged QDs substantially decreases the probabil-
ity of electron capture. Thus, the analysis of such realistic
QDIPs under dark current conditions and under illumination,
requires a more complex model than the existing ones.

In this paper we develop an analytical model for the dark
current in realistic QDIPs. We describe the QDIP dark cur-
rent characteristics, taking into account the following: the in-
fluence of the space charge of electrons captured in QDs and
the space charge created by donors on the spatial distribution
of the electric potential in the QDIP active region; the activa-
tion character of the electron capture and its limitation by the
Pauli principle; the thermionic electron emission from QDs
and thermionic injection of electrons from the emitter contact
into the QDIP active region; and the existence of the punc-
tures between QDs through which a significant portion of the
injected electrons flows.

The QDIP under consideration consists of a QD structure
which includes a series of QD (InAs or InGaAs) layers sepa-
rated by a wide-gap material (GaAs, InGaP, and so on). Each

QD layer comprises uniformly distributed identical QDs with
the density6QD which have a disk-like shape. The QD layers
can be doped by donors whose density is equal to6D. It is as-
sumed that the lateral characteristic size of QDsaQD (the QD
lateral area is equal toa2

QD) is sufficiently large, so that each
of them has a large number of bound states and, consequently,
is capable of accepting relatively large numbers of electrons.
Conversely, the transverse size of QDs,lQD, is assumed to
be relatively small, providing the existence of a single en-
ergy level associated with the quantization in this direction.
It is also small in comparison with the spacing between the
QD layersL (transverse period of the QDIP structure). The
QD structure is clad between doped contact regions made of
the same material as the barrier region between QD layers.
These regions play a role of the QDIP emitter and collector.
A schematic view of the QDIP structure is shown in Fig. 1.

The current arising under applied voltage is determined by
the potential distribution in the QDIP active region. This dis-
tribution depends, in turn, on the space charge formed by
electrons occupying QDs and donors. The space charge of
mobile electrons is, as in QWIPs, usually very small and can
be neglected. In QDIPs with large QDs which can capture a
large average number of electrons, one can assume that the
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Fig. 1. Schematic view of the QDIP structure.
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to eqs. (1)–(3) numbers〈Nk〉 are actually the same for all in-
dexes (i.e.,〈Nk〉 = 〈N〉), the Poisson equation for the average

charges of QDs belonging to the same QD layer are approx-
imately equal. Thus, the average number of electrons in a
QD belonging to thekth QD layer〈Nk〉 can be indicated by
a solitary QD layer indexk (k = 1, 2, . . . K , whereK is the
total number of the QD layers in the QDIP). The numbers of
electrons captured into the QDs with indexk is governed by
an equation describing the balance of electrons captured into
QDs and excited from them. In dark conditions, assuming
that the main mechanism of the electron escape from QDs is
associated with their thermoemission and that the transport of
electrons across the QDIP active region is due to their drift,
the balance equation can be presented as:

〈 j 〉pk = e6QDGk, (1)

where〈 j 〉 is the current density averaged in the in-plane direc-
tions,e= |e| is the electron charge,Gk is the rate of the elec-
tron thermoexcitation from QDs andpk is the capture proba-
bility. The latter two quantities are governed by the following
equations, respectively:

Gk = G0 exp

(
−εQD

kBT

)
exp

(
π h̄2〈Nk〉
mkBTa2

QD

)
, (2)

pk = p0
NQD− 〈Nk〉

NQD
exp

(
−e2〈Nk〉

CkBT

)
. (3)

In eqs. (2) and (3),G0 is the pre-exponential factor,εQD is
the ionization energy of the ground state in QDs,m is the
effective mass of electrons in QDs andh̄ andkB are the Planck
and Boltzmann constants, respectively.T is the temperature,
p0 is the capture parameter for uncharged QWs,NQD is the
maximum number of electrons which can occupy each QD,
C ' (2æaQD/π

√
π) is the QD capacitance, and æ is the

dielectric constant. Equations (1)–(3) are akin to those for
QWIPs.18–21)

Considering the range of not too low voltages,eV >

eV0 À kBT, whereeV0 ' εQD is the height of the poten-
tial barrier in the QDIP active region at equilibrium, the local
dark current density can be presented in the following form:

j = jm exp

[
e(〈ϕ1〉 +1ϕ1)

kBT

]
, (4)

where jm is the maximum current density which can be ex-
tracted from the emitter contact. Equation (4) assumes that
becauseeV > eV0 À kBT, the ridge of the potential barrier
limiting the electron injection from the emitter contact, is in
the first QD layer plane. In eq. (4), the electric potential of
the QD layer withk = 1 is presented as the sum of the aver-
age potential formed by all QDs and donors〈ϕ1〉 at the plane
z = L and the potential1ϕ1 = 1ϕ1(x, y) created at this
plane by the QDs nearest to a given puncture in the potential
barrier. Here, coordinatez corresponds to the direction per-
pendicular to the QD layer plane (growth direction), whilex
and y are the in-plane coordinates. The average potential is
governed by the Poisson equation in which the space charge
is averaged in the in-plane directions. Noting that according

potential can be reduced to the following:

d2〈ϕ〉
d z2

= 4πe

æ

K∑
k=1

(〈N〉6QD−6D) δ(z− kL). (5)

Solving eq. (5) with boundary conditions〈ϕ〉|z=0 = 0 and
〈ϕ〉|z=(N+1)L = V , whereV is the applied bias voltage, we
obtain

〈ϕ1〉 = V

(K + 1)
− 2πKeL

æ
(〈N〉6QD−6D). (6)

It is natural to assume that the propagation of electrons
through a puncture between QDs is affected, apart from by
the average potential, by the potential created by the four QDs
surrounding this puncture, thus (for example, for the puncture
with lateral coordinatesx = y = 0), one can arrive at

1ϕ1 = 4
√

2〈N〉√6QD

æ

[
ξ − 1

2
6QD(x

2+ y2)

]
, (7)

whereξ = √2 ln[(1+ √5)(2+ √5)/2]/√2− 1 ' 0.361.
Using eqs. (4), (6), and (7), for the average current density

〈 j 〉 = 6QD

∫ LQD/2

−LQD/2

∫ LQD/2

−LQD/2
j dxdy,

after integration we obtain

〈 j 〉 ' jm

(
22

〈N〉
)

× exp

[
e

(
V + VD − 〈N〉

NQD
VQD

)/
(K + 1)kBT

]
.

(8)

Here, we have introduced parameters

2 = ækBT

4
√

2e2
√
6QD

,

VQD = 2πe

æ
K (K + 1)6QDL(1− η)NQD,

and

where aB = æh̄2/me2 is the Bohr radius andN0 =
(ma2

QDεQD/π h̄2) ' NQD.
Coupled eqs. (8) and (9) govern〈 j 〉 and〈N〉 as functions

of the QDIP structural parameters, applied bias voltage, and
temperature.

At moderate voltagesV0 < V ¿ (VQD−VD), when〈N〉 is
markedly smaller thanNQD, one can neglect the dependence
of the logarithmic term in eq. (9) on〈N〉. In contrast, at rel-
atively high voltagesV ≤ (VQD − VD), this dependence is
important, and eq. (9) yields〈N〉 ' NQD. In these two lim-
iting cases, using eqs. (8) and (9), we obtain the following

VD = 2πe

æ
K (K + 1)6DL ,

whereη = (2√2ξ/πK L
√
6QD).

Using eq. (1) with eqs. (2) and (3), we obtain

〈N〉
(

1+
√
πaQD

2aB

)
=

N0+
mkBT a2

QD

π h̄2 ln

[ 〈 j 〉p0(NQD− 〈N〉)
eG06QDNQD

]
, (9)

equations for〈 j 〉:
〈 j 〉 ' j0 θ

1/γ exp

[(
e(V + VD)

(K + 1)
− (γ − 1)εQD

)/
γ kBT

]
,

(10)

for V0 < V ¿ (VQD − VD), and
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〈 j 〉 ' j0 θ exp

[
e(V + VD − VQD)

(K + 1)kBT

]
. (11)

for V ≤ (VQD− VD). Here,

j0 = eG06QD

p0
,

θ =
(

jm
j0

)(
22

NQD

)
and

γ = 1+ 2K6QDa2
QD

(
L

aB

)[
1− η

1+ (√πaQD/2aB)

]
.

As can be seen from eqs. (10) and (11), the dark current
exhibits an exponential increase with increasing applied bias
voltage as well as with increasing doping level. Figure 2
shows the calculated and experimental9) dark current-voltage
characteristics of InAs/GaAs QDIPs. In the calculations, we
assumed thatK = 10, 6QD = (1.2 − 1.6) × 1010 cm−2,
L = 100 nm,aQD = 15 nm, andaB = 15 nm atT = 40 K.
Comparison of the theoretical and experimental results re-
veals their good agreement. Thus, the developed model,
which takes into account the features of electron transport in
QDIPs and, primarily, the features of the space charge for-
mation, provides an explanation for the elevated steepness of
the QDIP dark current–voltage characteristics observed ex-
perimentally.7,9) In some cases,22) QDIPs exhibited yet more
steep dark current–voltage characteristics than those in ref. 9
and given by eq. (10). The analysis shows that the dark
current–voltage characteristics of QDIPs with fairly high dop-
ing levels (with about five donors per dot) obtained experi-
mentally22) are in a reasonable agreement with eq. (11). In
such QDIPs, the characteristic voltageVQD−VD is moderate,
thus, except for a narrow range of applied voltages, inequality
V ¿ VQD− VD is not valid, and QDs are totally filled.

It is worth noting that the dark current-temperature depen-
dence given by eq. (10) corresponds to an effective activation
energy which can be markedly smaller than the ground state
ionization energyεQD. Indeed, eq. (10) yieldsεA ' (1 −
γ−1)εQD. The value ofγ obtained in the above calculations
and in the experiment9) is 2.6. Consequently,εA/εQD ' 0.6.
A similar effect of decreased activation energy was observed
in QWIPs with thermionic injection23) whose operation is

very similar to that of QDIPs. Equation (10) also elucidates
why the dark current in real QDIPs is fairly high, exeeding
that in QWIPs with comparable parameters. The point is that
usually the parameter of the QDIP “nonideality”6QDa2

QD is
rather small that leads toγ close to unity and a low activation
energy. As a rough approximation, the QWIP dark-current
characteristics can be obtained from the above formulas by
setting6QDa2

QD = 1 andη = 0 in the expression for pa-
rameterγ resulting in a higher value of this parameter for
QWIPs than that for QDIPs. Thus, an increase in the prod-
uct,6QDa2

QD, should favor lower dark current in QDIPs. Be-
cause the dark current and, predictably, the photocurrent rise
strongly with increasing doping of the QDIP active region, the
doping level is an important parameter for the optimization of
QDIPs.

In summary, we developed an analytical model for real-
istic QDIPs and used this model for the calculation of the
dark current as a function of the structural parameters, applied
bias voltage and temperature. Our results clarify experimen-
tal observations of sharp dark current–voltage characteristics
of QDIPs as well as strong dependence of the dark current on
the density of QDs in the QD layers and the doping level of
the active region. The calculated characteristics of QDIPs are
in good agreement with those obtained experimentally.
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Fig. 2. Comparison of calculated (lines) and experimental (squares) dark
current–voltage characteristics.


