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Abstract. – The Pippard ineffectiveness condition —that electrons strongly scattering from
impurities and defects are ineffective in scattering phonons— is based on the assumption that
electron scatterers vibrate in the same way as the host lattice. Then the relaxation rate of a low-
energy phonon with the wave vector q is 1/τph-e ∼ u2q2l/vF (u and vF are the sound velocity and
Fermi velocity, l is the electron mean free path). Boundaries and defects moving differently from
host lattice drastically change the character of the interference between scattering processes and
increase the phonon-electron coupling. In the presence of the quasistatic potential the phonon
relaxation is (q2lL)−1 times faster: 1/τph-e ∼ u2/(vFL) (L is the electron mean free path with
respect to scattering from the quasistatic potential). Analogous effect is expected for phonons
with ω ∼ 0.01ωD (ωD is the Debye frequency) in conductors with substitutional disorder.

In many cases the interference between different scattering mechanisms significantly mod-
ifies their total effect. More than six decades ago such problems were discussed by Peierls [1],
who studied the interaction between the long-wave phonons and other phonons with short
mean free path. Extending this work, Pippard [2] has considered the interaction between
phonons and electrons scattering from impurities and defects. According to ref. [2], the
phonon-electron interaction depends essentially on the parameter ql, where q is the wave
vector of a phonon, and l is the electron mean free path. In the hydrodynamic limit, ql < 1,
the phonon-electron coupling is a factor of ql weaker than the coupling in the pure limit,
l → ∞. This statement is well known as the Pippard ineffectiveness condition [3, 4]. It was
employed in many areas of metal and semiconductor physics [3–5]. Pippard’s results were
confirmed by microscopic calculations by Grünvald and Sharnberg [6].

Pippard’s consideration is based on the assumption that due to scattering from impurities
electrons relax to the equilibrium distribution in the local coordinate system moving with the
local lattice. The local lattice velocity plays a role of the hydrodynamical variable. Such treat-
ment assumes that electrons are dragged by scatterers (impurities and defects), which in turn
are completely dragged by the host lattice. Obviously this assumption is not valid in the pres-
ence of rigid boundaries or defects with mass significantly different from mass of the host atom.

In the current paper we calculate the relaxation rate of longitudinal and transverse phonons
in metallic stuctures, where electrons scatter from impurities dragged by the lattice and also
from the quasistatic potential. We also evaluate the effect of substitutional disorder on phonon-
electron coupling.

Following Grünvald and Sharnberg [6], we consider the Hamiltonian, which describes the
“pure” electron-phonon interaction and the interaction between electrons and impurities that
are completely dragged by lattice [7],
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Hint =
∑
p,q

g(q)c†p+qcp(bq,n + b†−q,n) +
∑

p,k,Rα

Ve-imp(k)c†pcp−k exp[−ikRα] +

+
∑

p,k,q,Rα

γ(k, q)c†pcp−k(bq,n + b†−q,n) exp[−i(k − q)Rα], (1)

where c†p is the electron creation operator, b†q,n is the creation operator of a phonon with a
wave vector q and polarization index n, and Rα are the equilibrium positions of impurities.

The vertex of pure phonon-electron scattering is given by

g = (2εF/3) ((q · en)/(2ρω)1/2) , (2)

where εF is the Fermi energy, en is the phonon polarization vector, ρ is the density.
The second term describes elastic electron-impurity scattering. The screened electron-

impurity potential is

Ve-imp = −4π(Zimp − Zion)/κ2, κ2 = 4πe2ν, ν = mpF/π2. (3)

The vertex of inelastic electron-impurity scattering is given by [6,8]

γ(k, q) = −iVe-imp(ken)/(2ρωq)1/2 . (4)

The inelastic electron-impurity scattering is characterized by a large value of the electron
momentum transferred to impurity (k ∼ pF), while the transferred energy is the same as in
the pure phonon-electron interaction.

The electrical resistivity determined by the Hamiltonian in the form of eq. (1) is

ρ(T ) = ρ0 + ρBG(T ) + ρint(T ), (5)

where ρ0 is the residual resistivity due to elastic electron-impurity scattering, ρBG is the
Bloch-Grüneisen term due to the pure electron-phonon scattering. The interference term,
ρint, is determined by the inelastic electron-impurity scattering and quantum nonequlibrium
corrections to the processes of pure electron-phonon scattering [8]. If T > u/l, the interference
term has the form ρint = Bρ0T 2, the longitudinal phonons give a negative correction to the
resistivity, while the transverse phonons result in a positive correction [8, 9].

Now we modify the Grünvald and Sharnberg model. We suggest that the elastic electron
scattering is not only due to the potential that moves together with vibrating atoms of the
host lattice. We accept that the electron lifetime in the electron Green function is shorter
than the momentum relaxation time due to vibrating scattering potential. We will show
that any additional electron damping destroys interference compensation of strong scattering
processes and results in an enhancement of the phonon-electron interaction due to disorder.
In our opinion, this model is relevant to the electron scattering from rigid boundaries of micro
and nanostructures. It also allows one to evaluate the effect of substitutional disorder on
phonon-electron coupling.

We present the total momentum relaxation rate (1/τ) in the form

τ−1 = τ̃−1 + τ−1
qs , (6)

where 1/τ̃ is the electron momentum relaxation rate due to scattering from vibrating impu-
rities, and 1/τqs is the relaxation rate due to the additional quasistatic potential. Therefore,
in our case the residual resistivity is ρ0 = 3/(e2νv2Fτ).

Note that the vertex of inelastic electron-impurity scattering also consists of the impurity
potential, which may be expressed through the corresponding momentum relaxation rate,

NimpV
2
e-imp = (πντ̃)−1, (7)
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where Nimp is the concentration of impurities.
Electron retarded (advanced) Green function taking into account the elastic electron scat-

tering from impurities and boundaries is given by

GR
0 (p, ε) = [GA

0 (p, ε)]
∗ = (ε− ξp + i/2τ)−1, (8)

where ξp = (p2 − p2F)/2m. Here we introduce the following notations for integrals of electrons
Green functions:

ζn =
1
πντ

∫
dp

(2π)3
GA(p, ε)GR(p + q, ε+ ω)yn, (9)

where y = (p · q)/(pq). If ωτ � (ql)2,

ζ0 = arctan(ql)/(ql), iζ1 = (1− ζ0)/(ql), ζ2 = (1− ζ0)/(ql)2.

In the model under consideration, phonons scatter only from electrons due to the pure
electron-phonon interaction and also by means of vibrating impurities. These processes will
be taken into account in the first order of perturbation theory. Thus, we may ignore phonon
damping in the phonon Green function,

DR(q, ω) = (ω − ωq + i0)−1 + (ω + ωq + i0)−1. (10)

Employing the Keldysh diagrammatic technique, we describe the electron and phonon
systems by the matrix Green functions with retarded (GR = G21), advanced (GA = G12) and
kinetic (GC = G22) components. The kinetic components may be presented as

GC(p, ε) = (2nε + 1)2iImGA(p, ε), DC(q, ω) = (2Nω + 1)2iImDR(q, ω), (11)

where nε and Nω are the electron and phonon distribution functions.
In the Keldysh technique, vertices are multiplied by the tensor Kk

ij (K1
ij = δij/

√
2, and

K2
ij = (σx)ij/

√
2) with an upper phonon index and lower electron indices. In what follows,

we will present only vertex components with phonon index k = 2. In the canonical collision
integral, these components give a term, which is proportional to (2Nω + 1)(nε+ω − nε).

Following refs. [6,8,10], we build effective vertices Γ and Λ, shown in fig. 1. The vertex Γ,
taking into account elastic and inelastic electron-impurity scattering, is

Γ2
11 =

p · en

τ̃(ρω)1/2
(nε − nε+ω), (12)

for k = 2 all other components are zero.
The vertices Γk

ij and gk
ij are strongly renormalized due to elastic electron scattering. As a

result, we obtain the vertex Λk
ij shown in fig. 1,

Λ2
11 =

2ig√
2

(
ζ∗0

1− ζ∗0
− 3

(ql)2
τ

τ̃

)
(nε − nε+ω). (13)

The kinetic equation for the phonon distribution function N(ωq) has the form

dN(ωq)
dt

= −i
∫

dω
(2π)

ImDR(q, ω) [2i(2Nω + 1)ImΠR(q, ω)−ΠC(q, ω)], (14)

where the right-hand side of the last equation is the collision integral I(ωq) expressed through
the phonon self-energy, ΠA(C) is the advanced (kinetic) phonon-electron self-energy. All pos-
sible phonon self-energy diagrams with vertices γ, Γ, g, Λ are presented in fig. 2.

Let us first consider longitudinal phonons. The collision integral based on the first diagram
is given by
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Fig. 1 Fig. 2

Fig. 1 – Electron self-energy due to elastic scattering (the thick dashed line presents the total potential)
and vertices of the phonon-electron interaction γ,Γ, g and Λ.

Fig. 2 – Phonon self-energy diagrams.

I1(ωq) =
∫

dε
2π

dω
2π

dp

(2π)3
g2ReGR(p, ε)GA(p + q, ε+ ω)ImDR(q, ω)R(ε, ω), (15)

where
R(ε, ω) = Nωnε(1− nε+ω)− (1 +Nω)(1− nε)nε+ω. (16)

Integrating, we present I1 in the form

I1(ωq) = −2βlωqτ

∫
dεR(ε, ωq)ReF1(q), F1(q) = ζ0(q), (17)

where the dimensionless coupling constant is given by βl = (2εF/3)2ν/2ρu2l , and ul is the
longitudinal sound velocity.

Calculations show that contributions of all other diagrams may be presented in the form
of eq. (17) with the following functions:

F2 =
τ

τ̃

3
(ql)2

, F3 = −
(
τ

τ̃

)2 9
(ql)2

ζ2, F4 = −τ
τ̃

6i
ql
ζ1,

F5 =
(

ζ0
1− ζ0 − τ

τ̃

3
(ql)2

)
ζ0, F6 = −3i

τ

τ̃

(
ζ0

1− ζ0 − τ
τ̃

3
(ql)2

)
ζ1, F7 = 0. (18)

Substituting the functions Fi into eq. (17) and summing the contributions of all diagrams,
we obtain the collision integral, which describes the interaction between longitudinal phonons
and electrons in a disordered conductor,

Il.ph-e = −2βl
ul
vF

∫
dεR(ε, ωq)

(
qlζ0
1− ζ0 − τ

τ̃

3
(ql)2

)
. (19)

The phonon relaxation rate is determined as

1
τph-e(ε)

= −δIph-e
δNω

(Nω = N equ
ω , nε = nequ

ε ), (20)

where N equ
ω and nequ

ε are equilibrium distribution functions. Using eq. (19), we find

1
τl.ph-e

= 2βlωq
ul
vF

[
ql arctan ql
ql − arctan ql

− τ
τ̃

3
ql

]
. (21)

Only the second and third diagrams give a contribution to the relaxation of transverse
phonons. The corresponding collision integral is
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Fig. 3 Fig. 4

Fig. 3 – Relaxation rate of longitudinal phonons in Al structures. Solid curves correspond to complete
drag of scatterers, L =∞. Dashed (l = 0.1µm), dotted (l = 0.01µm) and dash-dotted (l = 0.001µm)
curves: the electron mean free paths with respect to scattering from the quasistatic potential L are
0.1µm and 1µm.

Fig. 4 – Relaxation rate of transverse phonons in Al structures. Solid curves: L = ∞. Dashed
(l = 0.1µm), dotted (l = 0.01µm) and dash-dotted (l = 0.001µm) curves: L = 0.1µm and 1µm.

It.ph-e = −2βt
ut
vF

τ

τ̃

∫
dεR(ε, ωq)

3
ql

[
1− 3

2
τ

τ̃
(ζ0 − ζ2)

]
, (22)

where βt = (2εF/3)2ν/2ρu2t , and ut is the transverse sound velocity.
The relaxation rate of a transverse phonon is

1
τt.ph−e

=
6βtu2t
vFl

τ

τ̃

(
1 +

τ

τ̃

3ql − 3(ql)2 arctan(ql)− 3 arctan(ql)
2(ql)3

)
. (23)

Note, that the factor (1− τ/τ̃) may be expressed as l/L, where L is the electron mean free
path with respect to the scattering from the quasistatic potential. Then, in the impure limit
ql < 1, the phonon relaxation rate may be presented as

1
τl.ph-e

=
6βlu2l
vFL

+
8
5
βlτω

2
q , (24)

1
τt.ph-e

=
6βtu2t
vFL

(
1− l

L

)
+

6
5
βtτω

2
q

(
1− l

L

)
. (25)

The second term in eq. (24) and in eq. (25) represents the Pippard result: the relaxation
rate is ql times slower than the relaxation rate of longitudinal phonons in a pure conductor.
The first terms describe a new effect: due to scattering from quasistatic potential, the phonon
relaxation rate enhances by a factor ∼ 1/(q2lL) when compared to the Pippard result.

To illustrate our results, we calculate the phonon-electron relaxation rate in Al structures.
We use the following parameters of Al [8]: ul = 6.3 · 105 cm/s, ut = 3.1 · 105 cm/s, vF =
13 · 107 cm/s, βl = 1.14, and βt = 4.7. Temperature dependencies of the phonon-electron
relaxation rate are presented in figs. 3 and 4. Solid curves correspond to the Pippard case
of complete drag of electron scatterers by phonons. The relaxation rate of longitudinal and
transverse low-energy phonons is proportional to ω2

q l. The relaxation rate of high-energy
longitudinal phonons is proportional to ωql

0, the corresponding relaxation rate of transverse
phonons is independent of ωq and proportional to l−1. The dashed, dotted and dashed-dotted
curves present the phonon relaxation rate in structures with quasistatic electron scattering
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potential of rigid boundaries and heavy defects. The electron mean free path with respect
to the quasistatic potential, L, is taken to be 0.1µm and 1µm. The phonon relaxation rate
depends on both parameters, l and L. As is seen from figs. 3 and 4, even if the electron mean
free path with respect to the total scattering potential, l, is significantly shorter than L, the
relaxation rate of low-energy phonons changes drastically. As we have already mentioned, the
asymptotic value of the relaxation rate turns out to be ∼ u2/vFL.

Finally, we calculate the heat flux from hot electrons with the temperature θ to phonons
with the temperature T . It is expressed in terms of the phonon-electron collision integral,

Q =
∫

dq

(2π)3
ωqIph-e(θ, T ). (26)

Using eqs. (19) and (22), we obtain that at low temperatures, θ < u/l, the heat flux is

Q =
π4ν

5pFL

[
βl
pFul

+
2βt
pFut

(
1− l

L

)]
(θ4 − T 4) +

96π6ν

925
(pFl)×

×
[

βl
(pFul)3

+
3βt

2(pFut)3

(
1− l

L

)]
(θ6 − T 6), (27)

where the first term describes the increase of the phonon-electron coupling due to static
disorder, and the second term corresponds to the Pippard ineffectiveness condition [10, 11].
Note that in the pure conductor the heat flux is proportional to θ5−T 5 [12]. Thus, the second
term is approximately (θl/u)−1 times smaller, while the first term is (θL/u)−1 times larger
than the heat flux in a pure conductor [12].

Possible interpretation of the results obtained is as follows. In the absence of U-processes,
only longitudinal phonons scatter from electrons in a pure conductor. In processes of “pure”
phonon-electron scattering the transferred momentum is ∼ q, the region of the interaction is
∼ 1/q, and the interaction time is ∼ 1/qvF. In an impure conductor, under condition ql < 1,
the electron diffuses slowly in the interaction region. Therefore, the interaction time increases
up to ∼ 1/Dq2 (D is the diffusion coefficient), and the process of pure phonon-electron scat-
tering enhances by a factor 1/ql, thus 1/τph-e ∼ u2/D. Electron scattering from vibrating
boundaries and defects generates another channel of phonon-electron scattering. In these pro-
cesses the transferred electron momentum is ∼ pF, and the corresponding phonon-electron
scattering rate is also of the order of ∼ u2/D due to large phase space for scattered states. If
impurities and boundaries vibrate identically to the host atoms, the strong processes cancel
each other. This cancellation corresponds to the fact that the deformation potential (or the
phonon-electron vertex in the comoving frame [10, 11]) averaged over the Fermi surface is
equal to zero. The interaction turns out to be by a factor 1/ql weaker than in the pure case,
1/τph-e ∼ ω2

qD/v
2
F. In other words, the effective phonon-electron coupling is 1/(ql)2 (ql � 1)

times weaker than the coupling due to separate constituent processes discussed above. How-
ever, even a small amount of static scatterers results in an incomplete cancellation of the strong
processes (the effective interaction is only by l/L factor weaker than the electron scattering
from vibrating potential or disorder-enhanced pure phonon-electron interaction). Boundaries
of conducting micro and nanostructures and rigid materials characterized by large acoustic
impedance (diamond, Si3N4, SiO2) are often described by the clamped-surface boundary con-
dition [13], i.e., zero displacement at the boundary. According to our results, such boundaries
should drastically change the phonon-electron scattering in micro and nanostructures.

Vibrations of substitutional atoms result in the effect analogous to the effect considered
here for static scatterers. We consider phonon modes with eigenfrequencies in the acoustic
band of the host crystal. Rearrangement of the phonon states and change in the amplitude of
vibrating atoms are given by the phonon Green function [14]. Relative amplitude of vibrations
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of defects may be presented as 1 + δ, where δ depends on the mass and bound mismatches
as well as on the phonon frequency (it goes to zero for long-wave phonons). If the mass of
defects is 2-3 times larger or smaller than the mass of host atoms, the parameter δ is ∼ 5 ·10−3

at ωq ∼ 0.01ωD (ωD is the Debye frequency) [14]. In the frame of our model, the effect of
substitutional atoms may be evaluated by L, which is ∼ l/δ. For disordered metals with
l ∼ 0.5 nm, the corresponding value of L is ∼ 0.1µm, and according to our calculations
(see figs. 3 and 4), the effective phonon-electron coupling should significantly increase due to
disorder. In our opinion, this effect has been observed in AuPd, TiAl disordered films at low
temperatures [15]. The measured exponent, n, in the temperature dependence of the heat
flux (Q ∝ θn −Tn, see eq. (27)) in metallic nanostructures has been found to be smaller than
5 [16] in agreement with our conclusions.

In summary, we calculate the phonon-electron relaxation rate (eqs. (21) and (23)) and the
heat flux from hot electrons to phonons (eq. (27)) in a disordered conductor with the vibrating
scattering potential and quasistatic scattering potential, which, for example, may be associated
with rigid boundaries of micro and nanostructures. Contrary to the case of complete drag of
electron scatterers by lattice, the presence of the quasistatic potential leads to enhancement
of effective phonon-electron coupling. The relaxation rate of low-energy phonons enhances by
a factor (q2lL)−1 compared with the Pippard result.
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