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Generation of a difference harmonic in a biased superlattice
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We calculate the difference-harmonic susceptibility of a superlattice subject to uniform electric field, where
generation of the difference harmonic is caused by interband transitions between hole and electron states. Both
the electron and hole states are considered in the framework of the Kane model with parabolic dispersion laws.
The hole states are uncoupled while for the electron states we use the tight-binding approximation. We obtain
numerical results for spectral dependencies of the susceptibility under the double-resonant generation condi-
tions, and discuss the efficiency of the double-frequency transformation of near-IR pump signal into THz
radiation and modifications of the obtained nonlinear response with variation of the electric-field magnitude.
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I. INTRODUCTION

The second-order responses of various nonsymme
semiconductor structures to high-frequency electro-magn
field have been intensively studied over the past decade.
second-harmonic generation has been achieved by emp
ing interband transitions of near-surface electrons and in
subband transitions of electrons in nonsymmetric hete
structures~see Refs. 1 and 2, respectively!. Recently, new
mechanisms of the difference-harmonic generation h
come into existence, such as intersubband transitions of e
trons in tunnel-coupled heterostructures~both experimental
data3 and theoretical considerations4,5 have been published!
and electron transitions in quantized metallic films.6 To the
best of our knowledge, the difference-harmonic genera
due to interband transitions in nonsymmetric heterostruc
has not yet been considered. In the present paper, we e
ine this possibility for an undoped superlattice subject
uniform electric field ~biased superlattice, BSL!. We also
discuss numerical results for the efficiency of the proc
under consideration.

The scheme of two-frequency excitation of a BSL w
the photon energies\v1 and \v2 is shown in Fig. 1. We
have performed the calculation of the different-harmo
susceptibility in BSL for the case of weakly coupled S
where the tight-binding approximation is valid for the low
energy electron states, while the hole states are assum
be uncoupled. Based on the Kane model with parabolic
persion laws,2,7 we have calculated the interband transitio
and analyze the spectral dependencies of susceptibility u
the double-resonant conditions.

Both spectral and bias-voltage dependencies of the
ceptibility occur to be sharp nonmonotonic functions of t
difference between the energy of the pumping photons
the level-splitting energy~the last factor is determined b
both the bias voltage and the value of the tunnel-coup
matrix element!. The absolute magnitude of the susceptib
ity, which describes different-harmonic generation for ty
cal parameters of GaAs/AlxGa12xAs-based SL, is on severa
orders of magnitude greater than the magnitude of
second-order response for both the near-surface elec
PRB 620163-1829/2000/62~12!/8192~7!/$15.00
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states of bulk GaAs~Ref. 8! and the quantized electron stat
in heterostructures.9

Note that the system under consideration is of interest
THz emitter among other cases that are actively investiga
now: different modifications of quantum cascade lase10

transient oscillations under ultrafast optical pump,11,12 and
far-infrared emission from electrically driven BSL.13 There-
fore, we also add a brief electrodynamical discussion to
efficiency of transformation of the near-IR pump into TH
signal.

The paper is organized as follows. In Sec. II we transfo
the general expression of the third-order susceptibility t
sor, using the tight-binding electron states and the uncoup
hole states for the BSL under consideration. The numer
results for the susceptibility versus the photon energies\v1 ,
\v2 and versus the electric-field magnitude are presente
Sec. III. The discussion of the assumptions used and

FIG. 1. The energy diagram of a biased superlattice be
pumped by two beams with the photon energies\v1 and\v2.
8192 ©2000 The American Physical Society
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PRB 62 8193GENERATION OF A DIFFERENCE HARMONIC IN A . . .
comparison with the other methods of THz generation
given in the concluding section.

II. INTERBAND SUSCEPTIBILITY

The general expression for the nonlinear susceptib
tensor of the third order,xabg , which describes the genera
tion of the difference harmonic, is written here on the ba
of the eigenstates problemĥun&5«nun&, whereĥ is the Kane
Hamiltonian for SL~see Refs. 2 and 7!, un& and «n are the
eigenstate vector and the energy in SL under a uniform e
tric field, respectively. For the undoped structure, we ta
into account only the transitions between occupiedv-band
states,unv&, and emptyc-band states,unc&. Consideration of
the second-order response on perturbation (ie/v1,2)E1,2v̂,
whereE1,2 are the strengths of electric field of the first a
the second beams andv̂ is velocity operator, gives us th
susceptibility,xabg(v1 ,v2), in the form

xabg~v1 ,v2!5
i ueu3

Dvv1v2L3 (
ncnvn

FQab~nc ,nv ,n!

3
^nvuv̂gunc&

«nv
2«nc

1\v22 il

2Qag~nv ,nc ,n!
^ncuv̂bunv&

«nc
2«nv

2\v12 ilG .

~1!

Here,Dv5v12v2 is the difference frequency,^nvuv̂aunc&
is the velocity matrix element,a, b, g are the Cartesian
coordinate indexes, andL3 is the normalization volume. Be
sides the summations over the statesunc& and unv&, Eq. ~1!
contains the intermediate summation overn, which includes
all the states. TheDv-dependent factor,Qab , has the form

Qab~n,n8,n9!5
^nuv̂aun9&^n9uv̂bun8&

«n92«n2\Dv2 il

2
^nuv̂bun9&^n9uv̂aun8&

«n82«n92\Dv2 il
, ~2!

where the transition broadeningl is a phenomenological pa
rameter that is supposed to be independent of the quan
numbers, i.e., the broadening is the same for all the tra
tions. Restricting the sum in Eq.~1! to the resonant contri
butions only, we transform this equation into

xabg~v1 ,v2!5
i ueu3

Dvv1v2L3

3 (
nvncnc8

^nc8uv̂aunc&^ncuv̂bunv&^nvuv̂gunc8&

«nc
2«n

c8
2\Dv2 il

3$~«nc
2«nv

2\v12 il!21

2~«n
c8
2«nv

2\v21 il!21%. ~3!
e

y

s

c-
e

m
i-

Since the problem is translation invariant for any in-pla
direction, all the velocity matrix elements in Eq.~3! are di-
agonal over two-dimensional~2D! momentum,p. The last
multiplier in Eq. ~3! depends on the momentum only in th
case of parabolic dispersion law. For the near-edge interb
transitions, which are only essential in Eq.~3!, both cv and
cc matrix elements are diagonal with respect to the s
numbers. Thus, the summation in Eq.~3! includes the inte-
gration overp and the summation over the spin numbe
s561. The electron motion and the hole motion along t
growth axis are characterized by the discrete quantum n
bersk andq, respectively~see below!.

The envelope function for the uncoupled hole states
written aswz2kl

(v) ~cf. the discussion of assumptions in Se
IV !, wherewz

(v) is the orbital of the hole ground state in th
quantum well centered atz50, k is the number of quantum
well, andl is the period of SL. The energy of thekth level is
«k

(v)52 «̄g2k« f , « f5ueuF'l being the level-splitting en-

ergy under the transverse electric-field magnitudeF' and«̄g
being the interband gap, which includes the electron and h
confinement effects. Taking into account the in-plane kine
energy of the holes, we obtain the hole dispersion law in
~3! in the form «kp

(v)5«k
(v)2p2/(2mh). Here, mh is the in-

plane hole mass. This mass is essentially smaller than
bulk heavy-hole mass, due to the heavy-hole-light–hole m
ing effect.

Thec-band envelope function is written as a superposit
cqz

(c)5( rC r
(q)wz2rl

(c) . Here,wz
(c) is the orbital of the electron

ground state in the quantum well centered atz50 and r
50,61,62, . . . because the BSL under consideration
supposed to be infinite in both directions. The column vec
C (q) is determined by the eigenstates problemĥ(SL)C (q)

5«q
(c)C (q), where the matrix Hamiltonian of the BSL i

written as

hrr 8
(SL)

5T~d rr 8212d rr 811!1d rr 8« f , ~4!

T is the tunnel matrix element for weakly coupledc-band
states in adjacent quantum wells. The resulting wave fu
tion takes the form

cqz
(c)5Nq(

r
Jq2r S 2T

« f
Dwz2rl

(c) , ~5!

whereJr(z) is ther th-order Bessel function andNq561 is
the normalization of the wave function @Nq

22

5( r 52`
` Jq2r

2 (2T/« f)51#. The corresponding energy i
q« f , q50,61,62, . . . , sothat the electron dispersion law i
as «qp

(c)5q« f1p2/(2mc), wheremc is the c-band effective
mass.

The interband matrix elements of velocity in Eq.~3! are
expressed through the overlap factorI k,q5*dzwz2kl

(v) cqz
(c) , ac-

cording to Ref. 2,

^ksuv̂xuqs&5
P
A2

I k,q , ^ksuv̂yuqs&5s
P

iA2
I k,q , ~6!

whereP is the Kane velocity, and thez component of the
interband velocity is zero. Neglecting the weak tunneling
the hole and electron ground states, we obtain the ove



-

po
ity

th

so

e

n

e

is

nd
-

the

een

ter-
rd

e

of
re-

n-
eV.

eak

he
both
ties
-
bil-
-
d
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factor in the form I k,q.NqJq2k(2T/« f). Using the wave
function of Eq.~5!, we transform the intraband matrix ele
ment in Eq.~3! as follows:

^q8uv̂zuq&. i
« f l

\
Nq8Nq (

k52`

`

kJq82kS 2T

« f
D Jq2kS 2T

« f
D

56
iTl

\
Nq8Nqdq,q861 . ~7!

The right-hand side of this equality has been obtained u
the sum transformation based on the ident
(k52`

` Jk(x)Jk1s(x)5ds,0 . The x and y components of the
interband velocity are proportional todq8q . Thus, under the
resonance approximation, these contributions drop out of
sum in Eq.~3!. Using the matrix elements of Eq.~7!, we
rewrite the nonzero components of the susceptibility ten
xzbg5xzgb as

xzbg~v1 ,v2!5
i ueu3

Dvv1v2L3

3(
sp

(
kqq8

^q8uv̂zuq&^kuv̂buq&* ^kuv̂guq8&

«qp
(c)2«q8p

(c)
2\Dv2 il

3$~«qp
(c)2«kp

(v)2\v12 il!21

2~«q8p
(c)

2«kp
(v)2\v21 il!21%, ~8!

whereb and g are the in-plane indexes. The system und
consideration is in-plane isotropic, so thatxzxy5xzyx50
@upon substitution of the matrix elements~6! in Eq. ~8!, we
obtain (ss50# andxzxx5xzyy[x'i . Substituting the ma-
trix elements of Eqs.~6! and ~7! in Eq. ~8! and performing
the summation overk ~which gives us the normalizatio
length along SL, according to(kl 5L!, we obtain

x'i~v1 ,v2!

5
ueu3P 2T

\Dvv1v2
E dp

~2p\!2

3 (
Dq561

(
k2q

DqJq2k~2T/« f !Jq2k2Dq~2T/« f !

Dq« f2\Dv2 il

3$~« (q2Dq)p
(c) 2«kp

(v)2\v21 il!21

2~«qp
(c)2«kp

(v)2\v12 il!21%. ~9!

Here,Dq is restricted by the conditionDq561, due to the
selection rule in Eq.~7!. The denominators in Eq.~9! contain
the reduced dispersion law«qp

(c)2«kp
(v)5 «̄g1(q2k)« f

1p2/(2m); m5(1/mc11/mh)21 being the reduced effectiv
mass. The integral over the momentum plane in Eq.~9! can
be expressed through the complex logarithm.

Finally, the expression for the susceptibility tensor
transformed into

x'i~v1 ,v2!5
ueu3P 2Tr2D

2\Dvv1v2

F~d«,\Dv!

~Dq« f2\Dv2 il!
, ~10!
n

e

r

r

wherer2D5m/(p\2) is the reduced 2D density of states a
d«5 «̄g2\(v11v2)/2 is the detuning energy. The multipa
rameter functionF(d«,\Dv) is given as

F~d«,\Dv!5(
qDq

JqS 2T

« f
D Jq2DqS 2T

« f
D

3H lnA ~d«1q« f2\Dv/2!21l2

~d«1@q2Dq#« f1\Dv/2!21l2

1 i FarctanS d«1q« f2\Dv/2

l D
1arctanS d«1@q2Dq#« f1\Dv/2

l D G J .

~11!

The contribution withDq5sgn(Dv) is essential only for the
double-resonance condition@the term withDq52sgn(Dv)
occurs to be nonresonant#. Note, thatF(d«,\Dv) is the
even function with respect tod«, i.e., F(2d«,\Dv)
5F(d«,\Dv).

III. NUMERICAL RESULTS

In this section, we obtain the spectral dependencies of
susceptibility~10! and examine the modifications ofx'i un-
der bias voltage variations. The numerical results have b
obtained for GaAs/Al0.3Ga0.7As SL with the following char-
acteristics: the quantum well~QW! layer width is 5 nm and
the barrier layer width is 4 nm. We also have used the in
band gap«̄g that includes confinement effects in the ha
wall QW approximation andm50.04m0, wherem0 is the
free electron mass. The in-plane hole massmh.0.09m0 have
been taken from Ref. 14.

The absolute value of the susceptibility,ux'iu, its real part
Rex'i , and its imaginary part Imx'i , are shown in Fig. 2,
as functions ofd« and \Dv. We put the broadening valu
l51 meV and the splitting energy« f510 meV, which cor-
responds to the transverse electric field magnitude
11.1 kV/cm. The obtained spectra are symmetric with
spect tod«; the results are plotted ford«.0 and\Dv.0,
because we assumev1.v2. Since the divergence ofx'i at
Dv→0 is inessential,1 we have obtained the spectral depe
dencies, starting with the difference photon energy 2.5 m

The spectral dependencies of both Fig. 2~a! and Fig. 2~b!
show the resonant maximum at\Dv.« f , under zero-
detuning energy conditiond«50. The increase ofl sup-
presses this maximum, as shown in Fig. 3, where the p
value of x'i appears to be three times smaller, forl
52.5 meV. However, the second-order nonlinearity for t
system under consideration is substantially greater than
difference-harmonic and second-harmonic susceptibili
for bulk materials~cf. Refs. 15 and 8!. The obtained suscep
tibility is also greater than the second-harmonic suscepti
ity in biased SL~Ref. 16! while the difference-harmonic sus
ceptibility is comparable with that for the tunnel-couple
wells,3 in spite of the fact that the energies\v1,2 are sub-
stantially greater then those used in Ref. 3.

We have considered the near-resonant region\Dv.« f in
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FIG. 2. ux'iu ~a!, Rex'i ~b!, and Imx'i ~c! versus the detuning energyd« and the difference energy\Dv; the splitting energy is taken
« f510 meV, the transition broadeningl51 meV.
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more detail, and analyzed the dependencies of the susc
bility on the detuning energy and on the bias voltage. N
that the imaginary part of the susceptibility equals zero at
resonance. Making use of the resonant condition, we tra
form the expressions~10! and ~11! into

x'i~d«!5
2ueu3P 2Tr2D

l« fv1v2

3(
q

JqS 2T

« f
D Jq21S 2T

« f
D

3arctanS d«1~q21/2!« f

l D . ~12!

This function is shown in Fig. 4 for different splitting ene
gies; all the curves are of steplike form. These steps are
to interband transitions fromv band to several subbands ofc
band having the same energy but different values ofD
pti-
e
e
s-

ue

momentum. If the splitting energy is relatively large@i.e., the
argument of the Bessel functions in Eq.~12! is small#, the
susceptibility is determined by the transitions between
subbands withq50 and61 only. In this situation the sus
ceptibility curve has just two steps. At small splitting ene
gies ~i.e., large arguments of the Bessel functions!, the tran-
sitions between other adjacent subbands become
essential; thus, the number of the steps increases.

Figure 5 shows the dependencies of the absolute valu
the susceptibility on the bias voltage~which determines the
splitting energy!, at different pump frequencies. Thes
electric-field dependencies have maximums at the condi
\Dv.« f and weakly steplike form in the low-field range
These steps are due to the transitions between nonadja
subbands of thec band; the contribution of such transitions
comparatively small.

To estimate the intensity of the THz signal generated
the down-conversion process under consideration, we h
calculated the THz flux along the SL plane~see the Appen-
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8196 PRB 62A. V. KOROVIN, F. T. VASKO, AND V. V. MITIN
dix for details!. The numerical results are obtained for t
500-period SL of the total thicknessd.531024 cm, under
the pump intensity 1.7 kW/cm2, which corresponds toE1,2

.0.3 kV/cm. We assume that the two IR beams impinge
the sample at the angles 64° and 60°, so that the chara
istic scale of the electric field localization in Eq.~A1! is
Dk21'd. Then, the intensity of the total energy flux alon

SL, introduced by Eqs.~A5! and ~A6!, is estimated asS̄
.231027 W/cm. Thus, the power propagating along a S
strip of 0.1 cm width is equal to 20 nW. This value is 3
times greater than the result obtained in Ref. 3.

The output power increasing with the pump intensity
(E1E2)2, at E1,2;3 kV/cm ~which corresponds to the flu
170 kW/cm2) we obtain the THz signal power of abou
0.2 mW/cm. Thus, BSL can be used for effective dow
conversion of a pulse IR pump into THz radiation.

FIG. 3. The same as in Fig. 2~a!, for the transition broadening
l52.5 meV.

FIG. 4. The spectral dependencies ofx'i as functions of the
detuning energy, at\Dv.« f and several splitting energies (l
51 meV).
n
er-
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-

IV. CONCLUDING REMARKS

In this paper, we have obtained and analyzed the dif
ence harmonic susceptibility,x'i , of a based superlattice
Both spectral and bias-voltage dependencies ofx'i have
been obtained, and the double-resonant enhancement ox'i

has been demonstrated for\(v11v2)/2 close to «̄g and
\uDvu close to« f . The typical values of the susceptibilit
are a few times to an order of magnitude larger than th
obtained for other mechanisms in Refs. 8, 9, 15, and 16
that the efficiency of transformation of near-IR pump in
THz signal appears to be noticeable.

Let us discuss the main assumptions we used in our
culations. The phenomenological description of the broad
ing of intersubband and interband transitions is generally
cepted ~see Ref. 1!. The additional assumption of th
broadening energyl being the same for all the transition
does not substantially modify the shape of spectral dep
dencies and does not change the maximum value ofx'i and
presented numerical estimations will not change under m
precise microscopical description of the relaxation proces
Due to significant broadening of the transitions in SL, we c
also neglect all the exciton effects. As it is stated in Ref.
~see also referencies therein! the exciton effects are essenti
for more sensitive nonlinear effects, e.g., ultrafast four-wa
mixing. The resonant character of the interband transiti
allows us to use the parabolic dispersion laws for both
electrons and the holes. Since the heavy-hole underba
penetration is very weak, we consider the hole states as
coupled. It is a satisfactory approximation for the paramet
used in our numerical calculations~general consideration o
the hole states in SL is presented in Ref. 7!. For the same
reason, the effects of heavy-hole–light-hole mixing on t
tunneling are small enough and can be disregarded altoge
~see the discussion on this matter in Ref. 18!. The restrictions
of the tight-binding approach for description of electro
states are also well known2 and errors are small in the cas
under consideration. Thus, all above listed approximati
do not change either the character of spectral or electric-fi

FIG. 5. The electric-field dependencies ofux'iu as functions of
the splitting energy« f5ueuF'l at d«50, l51 meV, and several
values of\Dv.
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PRB 62 8197GENERATION OF A DIFFERENCE HARMONIC IN A . . .
dependencies, nor the absolute values of susceptibility.
Next, look more closely at the comparison the scheme

THz emission suggested here and other methods discuss
literature. The complexity of the method under considerat
is the cumbersome scheme of two-frequency optical pu
At the same time this method has a high enough efficienc
transformation and permits us to obtain monochromatic T
radiation in a continuous regimes. Although the spontane
THz emission under intersubband transitions has been d
onstrated recently,19,20 the quantum cascade laser still r
mains to be unrealized for the THz spectral region. As for
different methods of THz emissiom under ultrafast opti
pump,11,12some are more complicated than the method un
consideration and such schemes permit us only to ob
ultrashort THz pulses with wide spectral characteristics.

To conclude, the obtained results convincingly demo
strate that the difference-harmonic response of biased su
lattices in the situation of double resonance is a promis
method of efficient THz emission due to down-conversion
intense two-color pumping.
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APPENDIX

Here, we discuss the efficiency of the transformation
interband pump into the THz signal, providing the spec
geometry of the problem. We consider two IR beams w
the incidence angles ofu1 andu2 (u1.u2). They excite the
interband transitions in the biased SL of total widthd, placed
into media with dielectric primitivitye. The THz energy flux
along an in-plane directionOX and distribution of THz field
Ez exp(iDvt2iDkx) are determined by the wave equation

F d2

dz2
2Dk2GEz5H 24p~Dv/c!2P' , uzu,d/2

0, uzu.d/2.
~A1!

We consider only the case of localized mode in the dielec
waveguide formed by the BSL@Dk2[Dk22e(Dv/c)2.0#.
The in-plane wave vectorDk is determined as

Dk5k1 sinu12k2 sinu2.Ae«̄g /~\c!~sinu12sinu2!;
~A2!
l

st
f
d in
n
p.
of
z
us
m-

e
l
er
in

-
er-
g
f

f

h

ic

the induced polarizationP' is expressed through the susce
tibility of Eq. ~10! according to the expressionP'

5x'i(v1 ,v2)E1E2, whereE1 and E2 are the electric field
magnitudes of the first and the second beams.

The system of ordinary differential Eqs.~A1! is com-
pleted by the continuity boundary conditions forEz and
dEz /dz at z56d/2 and with zero-field conditions atz
→6`. The straightforward solution of this problem give u
the following distribution of the transverse electric field:

Ez5ĒH 12e2Dkd/2 cosh~Dkz!, uzu,d/2

sinh~Dkd/2!e2Dkz, z.d/2

sinh~Dkd/2!eDkz, z,2d/2,

~A3!

where the characteristic fieldĒ is introduced by the expres
sion

Ē54pS Dv

cDkD
2

x̄E1E2 . ~A4!

To estimate the maximum efficiency of the transformatio
we use in Eq.~A4! the peak value of the susceptibilityx̄,
which is realized under double resonance conditions. T
Poynting vector of the THz radiation along theOX axis is
given as

S5
c2

2pDv
I@E3@“3E#* #5

c2Dk

2pDv
Ez

2 . ~A5!

Thus, in the case of the normal interband excitation (Dk
50), there is no in-plane THz flux at all. The total ener
flux along the SL axis,S̄5*2`

` dzSz , is obtained from Eqs.
~A3!–~A5! as

S̄5
c2Dk

2pDvE dzEz
25

c2Ē2

pDv

Dk

Dk
F~Dkd/2!, ~A6!

where the dimensionless functionF(y)5y23/41(y/2
13/4)e2y2

. Note, that the dimensionality ofS̄ is W/cm,
while the Poynting vectors of the pumping beamsS1,2

5cAeE1,2
2 /(2p) are measured in W/cm2.
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