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We have shown that for quantum wells placed close to the stress-free surface of the semi-
conductor heterostructure, the energy relaxation rate of two-dimensional electrons inter-
acting with acoustic phonons at low temperatures (Bloch–Grüneisen regime) is changed
considerably in comparison with that of a two-dimensional electron gas placed in a bulk
of semiconductor. The relaxation rate is enhanced in the case of a semiconductor–vacuum
system and is suppressed in the case of the surface covered by a thin metal film. The en-
hanced energy loss is caused by additional scattering at localized and reflected acoustic
waves, and the decrease appears due to suppression of piezoelectric scattering in the vicin-
ity of the metal.
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1. Introduction

At low temperatures scattering with acoustic phonons is a principal process leading to energy losses of
electrons in semiconductor heterostructures [1]. In recent years, the influence of modification of the acoustic
phonon modes in bounded semiconductor heterostructure on the electron relaxation process has attracted
substantial interest; see, e.g. [2] and references therein. It was shown that proximity of a two-dimensional
electron gas (2DEG) to the surface of semi-infinite semiconductor [2–4] or slab [5] may substantially change
the relaxation processes compared with that for 2DEG placed in the bulk of semiconductor. A large change in
energy loss occurs at low temperatures when the phonon scattering processes are inelastic (Bloch–Grüneisen
regime). This regime corresponds to temperaturesT which are less than or comparable to the character-
istic temperatureT0 = 2spF/kB wheres is sound velocity,pF the electron Fermi momentum, andkB

Boltzmann’s constant. The results [2, 3, 5] were obtained for electron–acoustic phonon interaction via the
deformation potential (DP). For GaAs-based heterostructures, piezoacoustic (PA) scattering dominates over
that of the DP interaction [1] at low temperatures and the transition from DP-coupled to PA-coupled phonon
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scattering takes place for temperatures close to the transition temperatureT0. Thus, to study the influence of
the surface on the electron kinetics in real semiconductor materials, one also has to take into account the PA
scattering. To the best of our knowledge, the energy relaxation of 2DEG interacting via DP and PA potentials
with the full set of phonon modes in semi-bounded systems has not been carried out to date, and that is
a subject of this paper. We consider a semi-bounded heterostructure with a stress-free surface and use two
types of electrical boundary conditions; one corresponds to the semiconductor-vacuum system and the other
to a semiconductor covered by a thin metal film.

2. Model and basic equations

We shall consider a semiconductor heterostructure which occupies the half spacez > 0 with a stress-free
plane boundary atz = 0. At the distancez0 from the surface, there is a 2D electron channel formed by
the electrons in a rectangular quantum well (QW) of widthd. For the sake of simplicity, we assume the
same elastic and piezoelectric properties, densities, and dielectric constants for all of the layers of the het-
erostructure. We assume that electrons occupy the lowest subband, and that the wavefunction for transverse
movement isψ(z) = (2/d)1/2 cos(π(z− z0)/d) for |z− z0| ≤ d/2 andψ(z) = 0 outside the QW.

The electron system is described by the Fermi distribution function with electron temperature,Te. The
energy relaxation rate,νe, is introduced through the balance equation

2

nsL2

∑
p

εp Je−ph(p) = −νe(Te− T). (1)

Herens is the electron sheet density,L2 is the normalization area in thexy-plane;p = (px, py), εp =

p2/2m∗ andm∗ are the 2D momentum, the energy and the effective mass of electrons,Je−ph(p) is the integral
of electron–phonon collisions. Electrons are assumed to be degenerate and the case of a small deviation from
thermodynamic equilibrium is considered. The change of electron potential energy due to interaction with
acoustic phonons isV = D divu + eφ, whereD is the deformation potential constant andφ is the sum
of piezoelectric potential and potential induced by redistribution of the electron density. The displacement
vectors,u, are found from the elastic wave equation in the isotropic continuum approximation, the stress-free
boundary conditions at the surfacez = 0 are imposed. In our calculations, we exploit the full set of modes
used in Refs [2, 4]. In this representation, phonons are characterized by the set of quantum numbersω,q,
and j , whereω is the angular frequency,q = (qx,qy) is the in-plane wavevector, and the labelj specifies
different types of the modes. The interaction Hamiltonian is

Ĥ =
∑
j,q

∫
dω

(
~

2ρωL2

)1/2[
eφ jωq+ D

(
i qu jωq+

∂uz jωq

∂z

)]
ei (qr−ωt)b jωq+ H.c., (2)

whereb jωq is a phonon annihilation operator,ρ represents the density, andj = l , th, tv, R. The modesl , th
andtv correspond to the following choice of incident waves: longitudinal incident wave (l -mode), transverse
horizontal wave polarized inxy-plane (th-mode), and transverse vertical wave polarized in the plane of
incidence (tv-mode); theR-mode denotes a Rayleigh wave which has velocitysR and obeys the dispersion
lawω = sRq. For each mode, the integration is over the range where the mode exists.

The potentialφ jωq is determined from Poisson’s equation. We assume that thez-axis is oriented along the
(001) direction in a cubic crystal. We shall consider the two types of boundary conditions. For a semicon-
ductor having an electrically free boundary with a vacuum, the electric potential vanishes in vacuum as the
distance from the crystal increases, and the potential and normal components of dielectric displacement are
continuous at the surfacez = 0. The short-circuit condition,φ jωq(z = 0) = 0, is applied for a piezoelectric
sample covered with a metal film.
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Fig. 1. Ratio of energy relaxation rates to bulk values vs. temperature for a semiconductor bounded by a vacuum (a metal film). The
distancez0 from the crystal surface to the center of a QW equals 3d/2, whered is the width of the well. Sheet electron concentrations
ns are: 1–1011 cm−2

; 2,4,5–2.2× 1011 cm−2
; 3–3× 1011 cm−2; well widths,d: 1, 2, 3–50 Å, 4–40 Å, 5–100 Å. The curves marked

by a circle in the upper part of the figure correspond to a semiconductor in contact with a metal film.

The transition probability due to the interaction with phonons is calculated within the fermi golden rule
approximation. Further derivation of the total relaxation rate may be carried out in analogy to that for DP
scattering [3]; the procedure yields the following final form

νe =
m∗2

4π~ρk3
F (kBT)2

∑
j

∫
∞

0
dω
∫ 2kF

0
dq

ω2
|M j (ω,q)|2

|εe|2 (1− (q/2kF )2)1/2 sinh2(~ω/2kBT)
. (3)

Hereafter,ω andq are expressed through the energy and momentum transfer of the electrons:~ω = |ε −

ε′|, ~q = |p− p′| in accordance with the energy and momentum conservation laws.M j is the scattering
matrix element,εe is the dielectric permittivity of 2DEG, andkF = pF/~. Thel , tv, andR-modes contribute
to both the DP and the PA interactions, and theth-mode contributes to only the PA interaction. In the case
of interest, when the surface of cubic crystal is spanned by two lattice axes, the scattering is isotropic (inxy-
plane), and thus, the DP and PA mechanisms contribute to the transition rate additively:|M j |

2
= |M P A

j |
2
+

|M DP
j |

2. The dielectric permittivityεe of 2DEG depends on a QW positionz0 and is given by

εe(z0,q) = 1+
2

aBq

∫
∞

0
dzψ2(z)

∫
∞

0
dz′ψ2(z′)[e−q|z−z′|

+ g(ε0)e
−q(z+z′)

], (4)

whereaB = ε0~
2/m∗e2 is effective Bohr radius,ε0 is the lattice dielectric permittivity,g = (ε0−1)/(ε0+1)

for contact with vacuum andg = −1 for contact with metal. The screening is taken into account within the
Thomas–Fermi approximation which is a satisfactory one at low temperatures [2].

3. Results and discussion

Let us first discuss the temperature behaviour of the energy relaxation rates for the different types of
electrical boundary conditions. For a narrow QW placed close to the surface and for the temperatureT , small
compared with the transition temperatureT0, the tangential and normal components of phonon wavevector,
q andq j = (ω

2/s2
j −q2)1/2 respectively, are much smaller than the width of the well,d, and the distancez0.

The first nonzero term in the expansion ofM P A
j overkz0 � 1, wherek = ql ,qt ,q is (kz0)

0 in the case of
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Fig. 2. Ratio of energy relaxation rates to bulk values as a function of distance from the crystal surface to the center of QW,Z =
2z0/d, for a semiconductor in contact with a vacuum (a metal film) at temperatureT = 0.2 K. The electron sheet concentrations
ns = 1011 cm−2; well widthsd: 1–40 Å, 2–50 Å, 3–100 Å. The righty-axis refers to a semiconductor in contact with a metal film.
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Fig. 3. Energy relaxation rates as a function of temperature for a semiconductor in contact with: 2: a vacuum, 3: metal film. Curve 1
corresponds to a bulk rate. Sheet electron concentrationns = 2.2× 1011 cm−2, well width of 40 Å.

boundary with vacuum and is(kz0)
1 for a surface covered by metal film. The corresponding expansion of

M DP
j begins with(kz0)

0 regardless of a type of surface. In the limit of smallq, εe increases asq−1 (contact
with vacuum) or appears to be independent toq (metallized surface).

In the case of a semiconductor–vacuum system, from eqn (3) we get the following dependences:νDP
e ∼ T6

for screened and∼T4 for unscreened interaction;νP A
e ∼ T4 andνP A

e ∼ T2, respectively. These power laws
agree with known result for a 2DEG in the bulk [1]. For a semiconductor covered with a thin metal film, we
find νDP

e ∼ T4 andνP A
e ∼ T4 for both the cases of screened and unscreened interactions. In a vicinity of

metallic surface the bare PA interaction is suppressed but simultaneously the screening is decreased, so the
power laws for the screened PA interaction remain the same for both types of surfaces. It should be noted
that eqn (4) does not contain a small parameter which justifies the neglect the screening.

Numerical calculations were carried out for the following parameters of GaAs:sl = 5.2× 105 cm s−1,
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st = 3.0×105 cm s−1, sR = 2.77×105 cm s−1, ρ = 5.3 g cm−3, ε0 = 12.5,m∗ = 0.067m0, D = 8 eV, and
the component of the piezoelectric tensore14 = 0.16 C m−2. The temperature dependences of the normalized
energy relaxation rates of a 2DEG placed close to the surface of a semiconductor with vacuum and metal
boundaries are shown in Fig.1. The normalization function,νb

e, is the bulk value (νe (z0 → ∞)). Figure1
shows that the proximity of the semiconductor–vacuum interface results in an enhancement of the electron–
acoustic phonon scattering. The effect is more pronounced for thin QWs with low electron densities. As seen
from Fig. 1, the temperature dependence ofνe/ν

b
e in a semiconductor-metal system differs radically from

that of a semiconductor bounding a vacuum. The most significant result illustrated in Fig.1 is a decrease in
the near-surface scattering. The rapid increase at the lowest temperatures in Fig.1 illustrates the important
role of PA scattering for a semiconductor bounded by a vacuum. At the same time, the rapid drop of the
rates shown in Fig.1 demonstrates that PA-coupled scattering near a metallized surface is suppressed. The
right part of Fig.1 shows that with the increase of temperature the relaxation rates approach to the bulk
value,νb

e. The temperature dependences in this range are similar for the both types of boundary conditions.
The enhancement of the energy loss is mainly due to additional scattering by surface-reflected and localized
phonon modes. The dependences of the normalized energy relaxation rates on the QW position are shown
in Fig. 2. We see that the influence of a crystal surface has a long-distance character and the corresponding
scale is larger for thin electron channels. Figure3 shows the temperature dependence of the energy relaxation
rate for QW placed in the bulk of semiconductor and near the boundary with vacuum and metal film.

In conclusion, the peculiarities of the near-surface scattering originate from modification of the acoustic-
phonon modes caused by the stress-free crystal surface, dependence of the phonon-induced piezoelectric
potential and a dielectric permittivity of 2DEG on the dielectric properties of a medium in contact with the
semiconductor.
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