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Effect of boundaries and impurities on electron–phonon dephasing
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Electron scattering from boundaries and impurities destroys the single-particle picture
of the electron–phonon interaction. We show that quantum interference between ‘pure’
electron–phonon and electron–boundary/impurity scattering may result in the reduction
as well as to the significant enlargement of the electron dephasing rate. This effect cru-
cially depends on the extent, to which electron scatterers, such as boundaries and impu-
rities, are dragged by phonons. Static and vibrating scatterers are described by two di-
mensionless parametersqT l andqT L, whereq is the wavevector of the thermal phonon,
l is the total electron mean-free path,L is the mean-free path due to scattering from
static scatterers. According to the Pippard ineffectiveness condition [1], without static
scatterers the dephasing rate at low temperatures is slower by the factor 1/ql than the
rate in a pure bulk material. However, in the presence of static potential the dephasing
rate turns out to be 1/qL times faster. Thus, at low temperatures electron dephasing and
energy relaxation may be controlled by electron boundary/impurity scattering in a wide
range.
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1. Introduction

In recent years, the electron dephasing in ultrathin films, nanostructures and mesoscopic devices has been
intensively studied. Temperature-dependent dephasing rate is mainly determined by the electron–electron
and electron–phonon interactions. While theoretical results pertaining to electron–electron scattering are
confirmed by many experiments, the electron–phonon mechanism is still poorly understood. Unfortunately,
most researchers employ the standard clean-limit concept, its uncritical application leads to incorrect and
controversial conclusions. A reliable electron–phonon interaction model taking into account electron scatter-
ing from boundaries, defects and impurities is of vital importance.

If scattering potential of boundaries and impurities is completely dragged by phonons, the inelastic electron
scattering from this potential may be excluded by a transformation to the frame, which moves together with
the phonon. Using transformation to the local frame, Pippard [1] has found that the electron–phonon coupling
depends substantially on the parameterql, whereq is the wavevector of the phonon, andl is the electron
mean-free path. Ifql < 1, the electron–phonon coupling is a factor of 1/ql weaker than the coupling in
the pure limit,l → ∞. This statement is well known as the Pippard ineffectiveness condition [2]. It was
confirmed by microscopic calculations in [3, 4].

0749–6036/00/050499 + 06 $35.00/0 c© 2000 Academic Press



500 Superlattices and Microstructures, Vol. 27, No. 5/6, 2000

Obviously the Pippard’s assumption about completely dragged scatterers is not valid in the presence of
rigid boundaries or heavy defects. To generalize Pippard’s model we take into account additional static po-
tential. We show that even relatively weak static potential drastically changes the effective electron–phonon
coupling and corresponding electron dephasing rate.

2. Model

We start with the Hamiltonian, which describes the ‘pure’ electron–phonon interaction and the interaction
between electrons and scatterers that are completely dragged by phonons [3],

Hint =
∑
p,q

g(q)c+p+qcp(bq,n + b+−q,n)+
∑

p,k,Rα

V(k)c+p cp−k exp(−i kRα)

+

∑
p,k,q,Rα

γ (k, q)c+p cp−k(bq,n + b+−q,n) exp[−i (k− q)Rα], (1)

wherec+p is the electron creation operator,b+q,n is the creation operator of a phonon with a wavevectorq and
polarization indexn, andRα are the equilibrium positions of scatterers.

The first term with the vertexg = (2εF/3)× (q · en)/(2ρω)1/2 (εF is the Fermi energy,en is the phonon
polarization vector,ρ is the density) corresponds to the pure electron–phonon scattering. The second term
describes the elastic electron scattering from the potential of boundaries and impurities,V(k). If this potential
is completely dragged by phonons, the vertex of inelastic electron scattering is given by [3, 5]: γ (k,q) =
−iV (ken)/(2ρωq)

1/2.
Now we take into account the static scatterers, such as rigid boundaries and heavy defects. Then the total

momentum relaxation rate isτ−1
= τ−1

d + τ
−1
s , whereτ−1

d is the electron momentum relaxation rate due to
scatterers that are dragged by phonons, andτ−1

s is the relaxation rate due to static scatterers. It is convenient
to introduce the electron mean-free path,l = vFτ , and the electron-free path with respect to scattering from
static potential,L = vFτs.

3. Electron dephasing rate

Calculations employing the Keldysh diagrammatic technique for nonequilibrium processes show that the
collision integral, which describes the interaction between longitudinal phonons and electrons in a disordered
conductor with static and vibrating scattering potentials, is given by

Ie−l .ph(ε) = −
2βl

(pFul )2

∫
dωq ω

2
q R(ε, ωq)

[
ql arctan(ql)

ql − arctan(ql)
−

(
1−

l

L

)
3

(ql)

]
, (2)

where ζ0 = arctan(ql)/(ql), the dimensionless constant of the electron–phonon interactionβl =

(2εF/3)2ν/2ρu2
l (ν is the electron density of states,ul is the longitudinal sound velocity), andR(ε, ωq)

is the combination of electron (nε) and phonon (Nω) distribution functions:R(ε, ω) = Nωnε(1− nε+ω) −
(1+ Nω)(1− nε)nε+ω. Then the dephasing/relaxation rate of electrons is given by

1

τe−l .ph(0)
=

7πζ(3)

2

βl T3

(pFul )2
Fl (qT l ), (3)

Fl (z) =
2

7ζ(3)

∫ Al

0
dx8l (xz) (Nx + nx) x2, 8l (x) =

2

π

[
x arctan(x)

x − arctan(x)
−

(
1−

l

L

)
3

x

]
, (4)

whereAt (l ) = θDl/ut (l )z (θD is the Debye temperature). In the limiting cases the relaxation rate is

1

τe−l .ph(0)
=

7πζ(3)

2

βl T3

(pFul )2
×

{
1, T l > ul ,

2π3

35ζ(3)
T l
ul
+

3π
7ζ(3)

ul
T L , T l < ul .

(5)
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Fig. 1. Electron dephasing rate due to longitudinal phonons in Al structures with electron mean-free pathl = 0.005µm and 0.05µm.
Solid lines correspond to complete drag of all scatterers (boundaries and impurities) by phonons. Dashed and dotted lines correspond to
the electron mean-free path with respect to the static potentialL = 0.05µm and 0.5µm.

Now we consider interaction of electrons and transverse phonons. The corresponding collision integral has
a form

Ie−t.ph(ε) = −
12βt T2

(pFut )(pF l )

(
1−

l

L

)∫
dωq R(ε, ωq)

[
1+

(
1−

l

L

)
3ql − 3((ql)2+ 1) arctan(ql)

2(ql)3

]
, (6)

where the dimensionless constant isβt = βl (ul /ut )
2, andut is the transverse sound velocity. Then the

electron dephasing/relaxation rate is given by

1

τe−t.ph(0)
=

3π2βt T2

p2
Fut

(
1

l
−

1

L

)
Ft (qT l ), (7)

Ft (z) =
4

π2

∫ At

0
dx8t (xz)(Nx + neq

x )x, 8t (x)

= 1+

(
1−

l

L

)
3x − 3(x2

+ 1) arctan(x)

2x3
. (8)

In the limiting cases the electron relaxation rate is

1

τe−t.ph(0)
=

3π2βt T2

p2
Fut

(
1

l
−

1

L

)
×

{
1, T l > ut ,
l
L +

(
1− l

L

)
π2

10

(
T l
ut

)2
, T l < ut .

(9)

Therefore, in the impure case (T l < ul ,ut ), the total electron dephasing/relaxation rate is given by

1

τe−ph(0)
=
π4T4

5
(pF l )

[
βl

(pFul )3
+

3βt

2(pFut )3

(
1−

l

L

)]
+

3π2T2

2pF L

[
βl

pFul
+

2βt

pFut

(
1−

l

L

)]
. (10)
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Fig. 2. Electron dephasing rate due to transverse phonons in Al structures with electron mean-free pathl = 0.005µm and 0.05µm.
Solid lines correspond to complete drag of all scatterers (boundaries and impurities) by phonons. Dashed and dotted lines correspond to
the electron mean-free path with respect to the static potentialL = 0.05µm and 0.5µm.

4. Discussion

The presence of static and vibrating electron scatterers leads to complex quantum interference between
different scattering mechanisms. If boundaries, defects and impurities are completely dragged by phonons
(L → ∞), we reproduce results of Ref. [4] for the electron–phonon dephasing rate. In agreement with the
Pippard ineffectiveness condition, at low temperatures the electron–phonon dephasing rate isu/(T l) times
slower than the rate in a pure conductor, 1/τe−ph ∝ T4l . Note, that in our model with spherical Fermi
surface, only longitudinal phonons interact with electrons in the pure conductor. Inelastic electron scattering
from boundaries and impurities generates a new channel of the electron–phonon interaction. Due to vibrating
boundaries and impurities, transverse phonons can interact with electrons. In the pure limit,T l/u � 1,
this channel isT l/u times weaker than the pure electron–phonon coupling. In the dirty limit,T l/u � 1,
both channels are enhanced due to the diffusion electron motion, in the same way as the electron–electron
interaction in impure conductors. However, the quantum interference between these two channels of electron
scattering neglects the total effects and results in the Pippard ineffectiveness condition.

This picture is changed in the presence of additional static potential or due to incomplete drag of bound-
aries and impurities by phonons. In the limitT l/u � 1, where the interference is important, the electron
dephasing rate turns out to beu/(T L) times faster than the rate in the pure conductor, 1/τe−ph ∝ T2/L.
Note, that compared with the dephasing rate due to longitudinal phonons, the contribution of transverse
phonons consists of the large factor(ul /ut )

3 and the factor(1− l/L). The factor(1− l/L) has a simple
interpretation: it is proportional to the concentration of vibrating scatterers, which provide the interaction
between electrons and transverse phonons. If this factor is not too small, the effect of transverse phonons
dominates at low temperatures. Note, that theT2/ l -term in the relaxation rate due to vibrating impurities
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Fig. 3. Dependence of the dephasing rate on the electron mean-free path. Solid and dotted lines represent contributions of longitudinal
and transverse phonons, correspondingly.

has been obtained by many authors [6]. This result is wrong and contradicts to the Pippard ineffectiveness
concept. Only in the presence of the static potential do we obtain aT2-term proportional to 1/L.

To illustrate our results, we calculate the electron dephasing rate in Al structures withul = 6.3 ×
105 cm s−1, ut = 3.1 × 105 cm s−1, vF = 1.3 × 108 cm s−1, βl = 1.14, andβt = 4.7 [5]. Temper-
ature dependencies of the dephasing rate in the structures with the electron mean-free path 0.05µm and
0.005µm are presented in Figs1 and2. Solid lines show the dephasing rate under the Pippard ineffective-
ness condition. At low temperatures the dephasing becomes faster in the presence of the static potential.
Comparing Figs1 and2, we see that at low temperatures the electron dephasing is determined by transverse
phonons. Figure3 shows the dependence of the dephasing rate on the electron mean-free path. In the case of
complete drag of boundaries and defects, the dephasing rate is proportional tol at low temperatures. In the
presence of the static potential, the relaxation rate is determined mainly by the electron mean-free path with
respect to scattering from the static potential.

It is important for applications, that the electron–phonon dephasing rate in mesoscopic devices may be
changed in a wide range. It can be increased or decreased compared to the rate in a pure bulk material. Some
experimental data support our conclusions. The enhancement of the electron–phonon interaction due to dis-
order has been found in thin metallic films [7] and semiconducting heterostructures [8]. TheT2-dependence
of the electron–phonon dephasing rate is widely observed in experiments [9]. Some important points, such
as the modification of the phonon spectrum, deserve further theoretical investigations.
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