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Abstract

This study addresses the e!ect of proximity of a quantum well to a stress-free surface of the semiconductor hetero-
structure on the momentum relaxation rate of two-dimensional electrons interacting with acoustic phonons via piezo-
electric and deformation potentials. The results obtained demonstrate that for narrow quantum wells placed close to the
surface the relaxation rate at low temperatures (Bloch}GruK neisen regime) is changed considerably in comparison with
that of a two-dimensional electron gas placed in a bulk of semiconductor. For the temperatures where the piezoelectric
potential interaction dominates over the deformation potential interaction, the near-surface relaxation rate is enhanced
in the case of a semiconductor}vacuum system and is suppressed in the case of the surface covered by a thin metal "lm.
The temperature dependence of the near-surface momentum relaxation rate is found to be ¹a for values of ¹ far below
the Bloch}GruK neisen temperature. For a semiconductor}vacuum system, a"3 and 5 for piezoelectric and deformation
potential scattering, respectively; for a semiconductor}metal system, a"5 for both mechanisms. It is predicted that
screening changes the temperature dependences of momentum relaxation rates: for a semiconductor}vacuum system,
a"5 and 7 for piezoelectric and deformation potential scattering, respectively. Screening does not change a in the case of
metal}semiconductor system. ( 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

In recent years, the in#uence of the surface of a
semiconductor heterostructure with an acoustic
phonon scattering of two-dimensional electron gas
(2DEG) attracted substantial interest [1}7]. The
e!ect to be examined in this account is caused
by the di!erence in the acoustic phonon modes
in a bounded medium and the conventional

0921-4526/99/$ - see front matter ( 1999 Elsevier Science B.V. All rights reserved.
PII: S 0 9 2 1 - 4 5 2 6 ( 9 9 ) 0 0 1 7 5 - 1



three-dimensional (3D) phonon modes; it also de-
pends on the mechanical boundary conditions at
the surfaces and on the geometry of the system.
Kinetic phenomena associated with a 2DEG in
free-standing structures (see e.g. Ref. [2] and refer-
ences therein), in slabs [3], and in semi-in"nite
semiconductors [1,4}7] have been studied pre-
viously. It was shown [5}7] that for a 2DEG local-
ized at a "nite distance from the surface, the
modi"cation of the acoustic displacement "eld may
substantially change the relaxation processes com-
pared with that for 2DEG placed in the bulk of
semiconductor. For electron}acoustic phonon in-
teraction via the deformation potential (DP),
a large in#uence on energy and momentum relax-
ation rates occurs at low temperatures when the
scattering processes are inelastic (Bloch}GruK neisen
regime). This regime corresponds to temperatures
¹ which are less than or comparable to the
characteristic temperature ¹

0
"2sp

F
/k

B
where s,

depending on the phonon mode involved, is the
longitudinal or transversal sound velocity, p

F
the

electron Fermi momentum, and k
B

Boltzmann's
constant. In the high-temperature range, ¹<¹

0
,

the scattering processes are quasi-elastic and, ac-
cordingly, we can consider the equipartition energy
distribution of the phonons. In this case, the sensi-
tivity of the scattering to the phonon mode struc-
ture becomes weaker; indeed, the presence of the
surface results in a small change (approximately
10%) of the relaxation rates, and the conventional
bulk phonon results for the mobility and the energy
relaxation rates of 2DEG [8] are appropriate.
A small change of the same order in mobility has
been reported earlier [9] for a 2DEG located at
a Si/SiO

2
interface using a soft-medium approxi-

mation for SiO
2
.

In compound semiconductors without inversion
symmetry, electrons interact with acoustic phonons
through both deformation and piezoelectric poten-
tials. The studies [10,11] of piezoelectric acoustic
(PA) scattering, which is governed by bulk
phonons, demonstrate that this scattering may
dominate over that of the DP interaction at low
temperatures. For GaAs-based heterostructures,
the transition from DP- to PA-coupled phonon
scattering takes place for temperatures close to the
transition temperature ¹

0
; a typical quoted value

of ¹
0
is 6 K [12]. Thus, to study the in#uence of the

surface on the electron kinetics in real semiconduc-
tor materials, one also has to take into account the
PA scattering. Both piezoelectric and deformation
potential interactions of surface acoustic phonons
(Rayleigh waves) with 2DEG have been considered
in Ref. [4]; the corresponding transport relaxation
rates for 2DEG were calculated in Ref. [5]. To the
best of our knowledge, the total near-surface PA
scattering of a 2DEG interacting with the full set of
phonon modes in semi-bounded systems has not
been carried out to this date. As stated previously,
the subject of this paper is the study of the e!ect of
proximity of a 2DEG to a surface of a heterostruc-
ture on the transport relaxation rates due to both
the PA and DP interactions. The in#uence of a sur-
face on PA scattering is not restricted to the e!ects
associated with the modi"cation of phonons; in-
deed, it also depends on the boundary conditions
for the piezoelectric potential. We consider a semi-
bounded heterostructure with a stress-free surface
and we use two types of electrical boundary con-
ditions; one corresponds to the semiconductor}
vacuum system and the other to a semiconductor
covered by a thin metal "lm.

2. Model and basic equations

We shall consider a semiconductor heterostruc-
ture which occupies the half-space z'0 with a
stress-free plane boundary at z"0. At the distance
z
0

from the surface, there is a 2D electron channel
formed by the electrons in a rectangular quantum
well (QW) of width d, see Fig. 1. For the sake of
simplicity, we assume the same elastic and piezo-
electric properties, densities, and dielectric con-
stants for all of the layers of the heterostructure.
The potential outside the QW is taken to be in"nite
so that the proximity of the surface z"0 to the
QW does not disturb the stationary electron states,
and the in#uence of the surface on the electron
subsystem appears only as a result of the scattering
with acoustic phonons modi"ed by the surface.
We assume that electrons occupy the lowest sub-
band, and that the wave function for transverse
movement is t(z)"(2/d)1@2 cos(p(z!z

0
)/d) for

Dz!z
0
D)d/2 and t(z)"0 outside the QW. The
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Fig. 1. Schematic representation of the structure under consid-
eration. Two-dimensional electron channel of width d at the
distance z

0
from the surface of: (a) semiconductor}metal bound-

ary; (b) semiconductor}vacuum boundary.

momentum relaxation rate, l
.
, is introduced by the

balance equation

2

n
4
¸2

+
p

p
mH

J
%}1)

(p)"!l
.
*
$
. (1)

Here p"(p
x
, p

y
) is the 2D momentum of the elec-

trons, n
4

is the electron sheet density, ¸2 is the
normalization area in the xy-plane, mH and *

$
are

the electron e!ective mass and the drift velocity,
respectively. The integral of electron}phonon colli-
sions, J

%}1)
(p), is related to the transition probabil-

ity and to the nonequilibrium electron distribution
function in usual way. Using a shifted Fermi distri-
bution function, in the case of a small deviation
from thermodynamic equilibrium we get

l
.
"

1

n
4
¸2

+
pp{

[(p!p@) ) *
$
]2

k
B
¹mHD*

$
D2
=(p, p@)f

e
(1!f

e{
). (2)

Here =(p, p@) is the transition probability for
a transition from the electron's initial state with 2D
momentum p to the "nal state with momentum p@
within the "rst subband due to the interaction of an

electron with acoustic phonon modes, and f
e
is the

equilibrium Fermi distribution function; the energy
spectrum is taken to be parabolic: e"DpD2/2mH. The
electrons are assumed to be degenerate, i.e ¹;

pn
4
+2/(mHk

B
). The drift velocity is expressed in

terms of the rate l
.

as *
d
"(el~1

.
/mH)E, where E is

the strength of the applied electric "eld. If one uses
for the nonequilibrium distribution function the
ordinary expansion, f

e
!q(p)(p )E)df

e
/de, with the

electron momentum relaxation time q instead of
the shifted Fermi distribution function model, then
for degenerate electrons, the average relaxation
time, l~1

.
, in Eq. (2) equals q(p

F
). We take into

account inelastic scattering in Eq. (2).
The interaction Hamiltonian is given by

H
*/5
"e/#D div u, (3)

where D is the deformation potential constant and
/ is the piezoelectric potential. The displacement
vectors, u, are found from the elastic wave equation
in the isotropic continuum approximation:

R2
Rt2 u"s2

5
+2u#(s2

-
!s2

5
)+(+ )u), (4)

where s
-
and s

5
are the velocities of the longitudinal

and transversal waves, respectively. For cubic
semiconductors, these velocities are taken to be
equal to the appropriate average quantities [13].
The stress-free boundary conditions, namely p

xz
"

p
yz
"p

zz
"0 for the stress tensor p at the surface

z"0, and the requirement that the solutions to be
"nite at zPR, are imposed. Taking into account
the piezoelectric polarization, Poisson's equation
has the following form:

+2/"bA
R2u

x
RyRz#

R2u
y

RxRz#
R2u

z
RxRyB, z*0. (5)

We assume that the z-axis is oriented along the
[0 0 1] direction in a cubic crystal. Accordingly,
the tensor of the piezoelectric moduli has only one
non-zero component, and b"8pe

14
/e

0
, where e

0
is

the lattice dielectric permittivity, and e
14

is the
component of the tensor which relates the strength
of an electric "eld to the strain tensor.

We shall consider the two types of boundary
conditions which are of interest in practice:
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open-circuit and short-circuit conditions [14]. The
open-circuit condition corresponds to the case
when the surface of the semiconductor has an elec-
trically free boundary with a vacuum. For this
condition, the electric potential associated with the
acoustic waves vanishes in vacuum as the distance
from the crystal increases, and the potential and
normal components of dielectric displacement are
continuous at the surface z"0:

/(z"!0)"/(z"#0),

A
R/
RzB

z/~0

"e
0C
R/
Rz!

b
2A
Ru

x
Ry#

Ru
y
RxBD

z/`0

. (6)

The short-circuit condition is applied for a piezo-
electric sample covered with a metal "lm which is
thin enough for the stress-free mechanical bound-
ary conditions to be unchanged. In this case, the
electric potential obeys the condition

/(z"0)"0. (7)

To introduce acoustic phonons in a semi-
bounded medium, one has to construct a complete
set of the orthonormalized vectors u(r, t) by solving
the eigenvalue problem of the elastodynamic equa-
tion (4). Then the phonons are determined using
the second quantization formalism. The full set of
phonon modes in such a semi-in"nite medium is
given in Ref. [15]. In our calculations, we exploit
the more convenient set of modes used in Ref. [7].
In this representation, phonons are characterized
by the set of quantum numbers u, q, and j, where
u is the angular frequency, q"(q

x
, q

y
) is the in-

plane wave vector, and the label j speci"es di!erent
types of the modes. To describe the PA interaction,
we generalized the results of Ref. [7] to the case of
an arbitrarily directed wave vector, q. The jth mode
is expressed as

u
j
(r, t)"u

j
(z)e*(qr~ut),

where the vectors u
j
(z) are some linear combina-

tions of the functions exp($iklz) and exp(!ilz);
kl"(u2/s2l!q2)1@2 and il"(q2!u2/s2l )1@2 are
determined for u'slq and u(slq, respectively;
l"l, t corresponds to longitudinal and transverse
waves, respectively.

The modes are found in di!erent ways depending
on the frequency ranges. In the range u's

5
q, the

vectors u
j
(z) correspond to the di!erent possibilities

for waves incident from the bulk upon the surface.
For u(s

5
q, there are no incident waves, and the

solution is represented by linear combination of
decaying waves only.

In the second quantization representation, the
phonon displacement operator is

u("+
j,q
PduA

+
2ou¸2B

1@2

][u
juq(z)e*(

qr~ut)b
juq#H.c.], (8)

where b
juq is a phonon annihilation operator,

o represents the density, and j"l, th, tv, R. The
"rst three modes correspond to the following
choice of incident waves: longitudinal incident
wave (l-mode), transverse horizontal wave polari-
zed in xy-plane (th-mode), and transverse vertical
wave polarized in the plane of incidence (tv-mode);
the R-mode denotes a Rayleigh wave which has
velocity s

R
and obeys the dispersion law u"s

R
q.

For each mode, the integration is over the range
where the mode exists.

Substituting Eq. (8) in Eqs. (5)}(7) we get the
equations and boundary conditions for the phonon
induced potentials, /

juq(z). The interaction Hamil-
tonian of Eq. (3) is rewritten as the interaction
operator

HK "+
j,q
PduA

+
2ou¸2B

1@2

Ce/j
#DAiqu

j
#

Ru
jz
Rz BD

]e*(qr~ut)b
j
#H.c. (9)

For convenience we drop the subscript uq in the
notations for /

j
, u

j
, and b

j
.

In order to calculate the momentum relaxation
rate, one has to "nd the transition rate =(p, p@)
using perturbation theory with Eq. (9), and then
carry out the summation over the initial and "nal
electron momenta p and p@, respectively.

3. Results and discussion

The transition probability due to the interaction
with the jth mode is calculated within the Fermi
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golden rule approximation:

=B
j

(p, p@)"
2n
+ Pdu

+
2ou¸2

DM
j
D2(Nu#1

2
$1

2
)

]dp{,pY+qd(e@!e$+u), (10)

where the upper (lower) sign corresponds to
phonon emission (absorption), Nu"
[exp(+u/k

B
¹)!1]~1 is the equilibrium phonon

distribution function, and M
j

is the scattering
matrix element

M
j
(u, q)"P

=

0

dzt(z)2Ce/j
#DAiqu

j
#

Ru
jz
Rz BD.

(11)

The l, tv, and R-modes contribute to both the DP
and the PA interactions, and the th-mode contrib-
utes to PA interaction only. For each mode, the
electron}acoustic}phonon interaction is deter-
mined by the square of the absolute value of the
scattering matrix element given by Eq. (11). For
a 2DEG placed in a bulk of semiconductor, colli-
sions with ordinary 3D phonons increase the relax-
ation of electron momentum. In this case, the DP
and PA mechanisms give additive contributions to
the transition rate, so that Matthiessen's rule for
the mobility is valid. In contrast to the case of bulk
phonons, the partial contributions of DP and PA
interactions to the matrix elements, MDP

j
and MPA

j
,

for the scattering on phonons in semi-bounded
medium are not out of phase; thus, an interference
between these two interaction mechanisms may
take place. For the case of scattering on Rayleigh
waves, such a possibility has been shown in Ref.
[4]. However, in the case of interest, when the
surface of cubic crystal is spanned by two lattice
axes, one can use the isotropic (in the xy-plane)
model. In the framework of this model, the DP and
PA mechanisms contribute to the transition rate
additively. Indeed, the quantities MDP

j
depend on

the length of the phonon wave vector q, while the
direction-dependent values MPA

j
are proportional

to the product, q
x
q
y
, (for j"l, tv, R) or the di!er-

ence, q2
x
!q2

y
(for j"th). Upon averaging of DM

j
D2

over an azimuthal angle, the interference terms
which are linear in q

x
q
y

vanish and the quantities
(q

x
q
y
)2 and (q2

x
!q2

y
)2 are replaced by q4/8 and q4/2,

respectively. Thus, in the case of the isotropic
model, DM

j
D2"DMPA

j
D2#DMDP

j
D2.

Upon performing the integration in Eq. (10) we
obtain

=B
j

(p, p@)"
p

+o¸2u
DM

j
(u, q)D2(Nu#1

2
$1

2
) (12)

for the extended modes ( j"l, tv, th) and

=B
j

(p, p@)"
n

+o¸2u
DM

j
(u, q)D2

](Nu#1
2
$1

2
)d(u!s

R
q) (13)

for the localized modes ( j"R). Here and for the
remainder of this paper, u and q are expressed
through the energy and momentum transfer of the
electrons

+u"De!e@D, +q"Dp!p@D (14)

in accordance with the energy and momentum con-
servation laws. Assuming that De!e@D;e

F
and that

the electron velocity is much larger than the speed
of sound (p

F
/mH<s

-
), we put p"p@"p

F
in relation

to q so that q"2k
F
sin h. Here 2h is the angle

between the electron's initial and "nal momenta,
p and p@, respectively.

To calculate the momentum relaxation rate, we
substitute in Eq. (2) the transition probability,
=(p, p@), as a sum of the partial probabilities of
Eqs. (12) and (13). Due to their dependences on the
variables of Eq. (14) only, further derivation of the
total relaxation rate may be carried out analog-
ously that for DP scattering [16]; the procedure
yields the following "nal form:

l
.
"

mH
8p+ok3

F
k
B
¹

+
j
P

=

0

duP
2kF

0

dq

]
q2DM

j
(u, q)D2

J1!(q/2k
F
)2 sinh2(+u/2k

B
¹)

. (15)

The integration domain is divided into three re-
gions each of which is determined by the existence
conditions of the corresponding phonon modes; see
Fig. 2. In range I (u's

-
q), the normal components

of wave vectors, k
-,5
"(u2/s2

-,5
!q2)1@2, of bulk lon-

gitudinal and transversal waves which form the
phonon modes, are real. In this range, the values of
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Fig. 2. Domain of integration over the energy transfer, +u"

De!e@D, and the momentum transfer, +q"Dp!p@D, 0)u(R,
0)q)2k

F
. The ranges I}III specify the domain of existence of

the corresponding phonon modes as described in the text.

M
j

are non-zero for j"l, tv, th. The interval II
(s
-
q(u(s

5
q) corresponds to real k

5
and imagi-

nary k
-
. Here, M

j
O0 for j"tv, th. In range III

(u(s
5
q) both k

-
and k

5
are imaginary, and the

scattering rate is solely de"ned by the con"ned
phonons of R-mode. Here the integration is along
the line u"s

R
q, and the contribution of range III is

described by a one-dimensional integral. For the
particular case of DP interaction, the total matrix
elements for the modes involved in each frequency
range, coincide with those that were obtained in
Ref. [1] using Green functions from the theory of
elasticity.

To obtain accurate results, the integrals in Eq.
(15) have to be calculated numerically. Let us "rst
discuss the character of the temperature depend-
ence of the momentum relaxation rates for the
di!erent types of electrical boundary conditions.
In the low-temperature case, when ¹;¹

0
, one

can use the small-angle scattering approach. For a
narrow QW placed close to the surface and for
¹;¹

0
, the phonon wavelengths are much larger

than the width of the well, d, and the distance z
0
.

The "rst non-zero term in the expansion of
MPA

j
over kz

0
;1, where k"k

-
, k

5
, q is (kz

0
)0 in the

case of boundary condition of Eq. (6) and is (kz
0
)1

for condition of Eq. (7). The corresponding expan-

sion of MDP
j

begins with (kz
0
)0. From Eq. (15) we get

lDP
.
&¹5 regardless of a type of surface; lPA

.
&¹3

for a semiconductor}vacuum system and lPA
.

&¹5

for a semiconductor covered with a thin metal "lm.
Thus, for ¹;¹

0
, the power law for the temper-

ature dependence of the near-surface relaxation
rate lDP

.
coincides with that of the QW in the bulk

of semiconductor. At the same time, the temper-
ature dependence of lPA

.
for near-surface scattering

agrees with the bulk value in the case of a semicon-
ductor}vacuum system and di!ers (decreases faster
with decreasing temperature) for a semiconductor
covered with a thin metal "lm. Such a decrease in
the PA scattering rate stems from a node of the
piezoelectric interaction at semiconductor-metal
interface due the boundary condition of Eq. (7).

In the foregoing consideration, a screening of the
scattering potentials was not taken into account.
The screening factor may be taken into account
dividing the matrix elements M

j
(u, q) in Eq. (15) by

a dielectric function e(w, q). For a 2DEG placed in
a semi-bounded crystal contacting with vacuum
[7]

e(u,q)"1#
2pe2

qe
0

P(u, q)F
4
, (16)

where P is the polarization function and

F
4
"P

=

0

dzt2(z)P
=

0

dz@t2(z@)

]Ce~q@z~z{@#
e
0
!1

e
0
#1

e~q(z`z{)D. (17)

It is worth mentioning that e(w, q) depends on
a QW position z

0
. For low temperature when

q;2k
F
, we have P"mH/p+2. If QW is placed near

the surface so that qz
0
;1, Eq. (16) reduces to

eK
4e

0
(e
0
#1)a

B
q
, (18)

where a
B
"e

0
+2/mHe2 is the e!ective Bohr radius.

Since e
0
<1, the dielectric function of Eq. (18)

which describes the near-surface screening appears
to be two times larger than that for screening in the
bulk semiconductor. Dividing the matrix elements
M

j
(u, q) in Eq. (15) by e from Eq. (18), in the limit of

¹P0 we get the following dependences: lDP
.

&¹7
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and lPA
.

&¹5. These power laws agree with known
results for a 2DEG in the bulk.

For a semiconductor in contact with metal, the
screened potential obeys the boundary condition of
Eq. (7). In this case, the factor (e

0
!1)/(e

0
#1) in

Eq. (17) is replaced with (!1). In the limit of small
q, F

4
becomes proportional to q, and e(u, q) of Eq.

(16) appears to be independent of q. So, for a 2DEG
placed near a metalized surface, screening does not
alter the power laws of the momentum relaxation
rates: lDP

.
and lPA

.
decrease as ¹5. For "nite ¹ and

z
0
, the calculation of the temperature and distance

dependences of the relaxation rates with screening
included, will be presented separately.

In our calculations we have neglected the di!er-
ences in the elastic, piezoelectric, and dielectric
properties of the materials which form the hetero-
structure and have used only GaAs parameters.
Calculations were carried out for the following
parameters: s

-
"5.2]105 cm/s, s

5
"3.0]105 cm/s,

s
R
"2.77]105 cm/s, o"5.3 g/cm3, e

0
"12.5,

mH"0.067m
0
, D"8 eV, and e

14
"0.16C/m2. To

extract the surface e!ect, we calculated the ratio

Fig. 3. Ratio of momentum relaxation rates to bulk values
versus temperature for a semiconductor bounded by a vacuum.
The distance from the crystal surface to the center of a QW
equals the width of the well, d. Sheet electron concentrations
n
4

are (1) 1011 cm~2; (2,4,5) 3]1011 cm~2; (3) 6]1011 cm~2;
well widths, d: (1}3) 40 As , (4) 50 As , (5) 100 As .

l
.
(z

0
)/l"

.
, where the normalization function, l"

.
,

was determined as l
.

(z
0
PR), and z

0
was the

distance of the center of the QW from the surface.
To derive l"

.
from Eq. (15), one has to drop terms in

the matrix element which are decaying exponenti-
ally and oscillating rapidly with functional forms of
cos(2k

-
z
0
) and cos(2k

5
z
0
).

The temperature dependences of the normalized
momentum relaxation rates of a 2DEG placed
close to the surface of a semiconductor with vac-
uum and metal boundaries are shown in Figs. 3 and
4, respectively. The dependences on electron con-
centration, n

4
, and QW width, d, are illustrated by

curves 1}5. Fig. 3 shows that the proximity of the
semiconductor}vacuum interface results in an en-
hancement of the electron}acoustic}phonon scat-
tering. The e!ect is more pronounced for thin QWs
with low electron densities. In the limit ¹P0, the
ratio l

.
/l"

.
reaches a maximum value which does

not depend on n
4
and d. This value is determined by

PA scattering and depends only on the ratio of
sound velocities, s

-
/s

5
.

As seen from Fig. 4, the temperature dependence
of l

.
/l"

.
in a semiconductor-metal system di!ers

radically from that of a semiconductor bounding

Fig. 4. Ratio of momentum relaxation rates to bulk values
versus temperature for a semiconductor in contact with a metal.
The notation used is the same as in Fig. 3.

286 V.I. Pipa et al. / Physica B 270 (1999) 280}288



a vacuum. The most signi"cant result illustrated in
Fig. 4 is a decrease in the near-surface scattering
caused by the suppression of the PA coupling. In
the limit as ¹P0, for both the PA and DP mecha-
nisms, the partial contributions to l

.
depend on

¹ as ¹5. The bulk value of l"
.

determined by the
dominating PA scattering mechanism varies as ¹3,
and it follows that the ratio l

.
/l"

.
scales as ¹2 with

decreasing temperature. It is worth noting that the
characteristic temperature, ¹

#
, which corresponds

to the transition from DP-coupled to PA-coupled
near-surface scattering di!ers from that of a QW in
a bulk of semiconductor. For an electron sheet
concentration of n

4
"3]1011 cm~2 and for d"

40As (curve 3), the critical temperature ¹
#
"4.5K

for the bulk case. For the semiconductor}vacuum
system, the same sheet density n

4
, and z

0
"40 As ,

the calculated values of ¹
#
di!er substantially from

the bulk results: ¹
#
"11.1 K. In the case of the

semiconductor-metal system, the situation is more
complicated. Only in the range of temperatures
¹"1.4}2K, does the PA-coupled near-surface
scattering prevail over the DP-coupled scattering.
For temperatures ¹<2K, deformation-potential

Fig. 5. Ratio of momentum relaxation rates to bulk values as
a function of distance from the crystal surface to the center of
QW, z

0
, for a semiconductor bounded by a vacuum and with

a temperature ¹"5 K. The electron sheet concentrations, n
4
,

are: (1) 1011 cm~2; (2,4,5) 3]1011 cm~2; (3) 6]1011 cm~2; well
widths d: (1}3) 40 As , (4) 50 As , (5) 100 As .

Fig. 6. Ratio of momentum relaxation rates to bulk values as
a function of a distance from the crystal surface to the center of
QW, z

0
, for a semiconductor in contact with a metal "lm and

a temperature ¹"1 K. The notation used is the same as in
Fig. 5.

scattering predominates. The dependences of the
normalized momentum relaxation rates on the QW
position have been calculated for the di!erent elec-
trical boundary conditions; the results are shown in
Figs. 5 and 6. We see that the in#uence of a crystal
surface has a long-distance character and the corre-
sponding scale is larger for thin electron channels
with low sheet concentrations.

4. Conclusions

We have studied the role of surface e!ects as they
in#uence contribution of acoustic-phonon scatter-
ing to the momentum relaxation rate of a 2DEG.
The scattering of the electrons via both the defor-
mation and the piezoelectric interactions were
taken into account. The peculiarities of the near-
surface scattering originate from two sources:
modi"cation of the acoustic-phonon modes caused
by the stress-free crystal surface and dependence of
the phonon-induced piezoelectric potential on the
dielectric properties of a medium in contact with
the semiconductor. The "rst aspect of the problem
has been solved using a complete set of the phonon
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modes existing in a semi-bounded crystal. To study
the boundary e!ect on the piezoelectric potential,
the cases of a semiconductor in contact with vac-
uum and with a thin metal "lm have been con-
sidered. The results presented in this paper
demonstrate a pronounced di!erence in the mo-
mentum relaxation rate of electrons in a narrow
QW placed near a surface and the momentum
relaxation rate of electron in a QW placed in the
bulk of a semiconductor. It is shown that the relax-
ation rate is enhanced near the boundary with the
vacuum; the relaxation rate is suppressed near
a surface covered by a thin metal "lm.
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