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Abstract

Di�erential equations which describe a propagation of switching waves in thyristor-like structures are derived.
These waves propagate if a gate current, Jg, di�ers from a certain value, Jg0( j), corresponding to neutral
(translationally invariant) equilibrium state for a given current density j in the ON-region. The derivation is based

on the initial equation of theory of semiconductor devices. Our consideration is valid only for bases where widths
are much less than the width of a transition layer between the ON- and the OFF-regions. For the ®rst time, an
explicit analytical formula for the velocity of the switching wave, v, is obtained: v is shown to be directly

proportional to dJg=JgÿJg0( j) and inversely proportional to j for vdJv<<Jg0. The dependence of the velocity v on
parameters of the structure is obtained for low injection levels in both bases. The derived expression for the velocity
has been applied for calculation of transient and modulation processes in the ®nite gate controlled thyristor-like
structures. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

We refer to a thyristor-like structure (TLS) as a cer-

tain p+npn+-structure where two outer pn-junctions

(either homojunctions or heterojunctions) are highly

e�ective emitters. Inner layers (a p-base and an n-base)

provide high enough base transport factors aI and aII
of injected current carriers so that the condition

aI+aII>1 is satis®ed. Here we deal with the ON-state

of a thyristor and we do not consider the problem of

the S-shaped characteristic. It is well known [1±3] that

for large enough TLS's, an inhomogeneous state of

incomplete gate turn o� (IGTO) arises for a certain

gate current range.

Since the earliest investigations of the gate turning

o� in the GTO-thyristors, there exists clear compre-

hension that a process similar to nonstationary squeez-

ing of the current-conducting channel occurs in the

TLS. To our knowledge, any analytical approach of

squeezing has never used the initial equations of theory

of semiconductor devices but has been usually based

on comfortable phenomenological speculations.

Therefore, results of such approaches contain non-

de®ned parameters or even non-de®ned functions. This

relates not only to the pioneer paper of Wolley [4] but

also to later publications (for example, Refs. [2, 5±9]).

A detailed and strict analysis of stationary and nonsta-

tionary gate control is assumed as accessible only for

numerical two-dimensional (2D) simulations which are

described in many publications (for example, Refs. [10±

14]). Such an opinion is well-founded for silicon con-

trolled recti®ers with very long ungated bases where

numerical 2D calculations are inevitable. Here we pre-

sent the analytical approach which can be of a de®nite

interest for controlling light-emitting devices: photo-

thyristors, optothyristors, light emitting and lasing

thyristors. These devices have a completely di�erent

design: they do not usually require excessively long

ungated bases [15±18]. This allows us to promote a

consistent analytical approach for the gated TLS. Such

an approach has been demonstrated in works [19, 20]

for stationary problems. Using the consideration of the

stationary switching waves in the present paper, we

develop the self-consistent set of equations and apply

them to a number of nonstationary problems.
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We consider the simplest structure shown in Fig. 1

with a one-dimensional distribution of the current den-

sity, j( y), in the pn-junction plane. The gates are in

electric contact with one of the bases, which is called

the controlling base (or base I). In the IGTO regime,

the region of the TLS which is distant from the gates

is in a turned on state (ON-region), regions which are

adjacent to the gates are in a blocked state (OFF-

regions) and the boundary layer between the ON- and

the OFF-regions is called the ON/OFF-junction. First

we consider an idealized structure where the size of the

structure, a0, is so large that small shifts of the ON/

OFF-junction dy (vdyv<<a0) do not a�ect the current

density j in the ON-region. We showed that there is a

unique value of the gate current, Jg0 (per cm), which

allows stationary state of a TLS in the IGTO regime
for a de®nite current density j (per cm2) in the ON-

region. (Since the dimension in the direction perpen-

dicular to the plane of the Fig. 1 is not ®xed, we use

currents per unit length of that size.) If Jg=Jg0( j), the

ON/OFF-junction is neutrally stable. A deviation of Jg
from the stationary value Jg0 results (after a transient

process) in a stationary wave of switching. Based on

certain assumptions, we derived the following analyti-

cal expression for the velocity of this wave:

v � J 2
g ÿ J 2

g0� j�
2Jg0 � tj 1 dJg

t � j : �1�

The second (approximate) expression for v in Eq. (1) is

valid for vdJgv<<Jg0, where dJg=JgÿJg0( j). Here t, an
important parameter of speed of operation for the con-

sidered TLS, is determined only by geometry and ma-

terial parameters of the TLS. The direction of the ON/

OFF-junction motion depends on the sign of the devi-

ation dJg and the value of the wave velocity, v, would

remain constant if the condition vdyv<<a is satis®ed.

However, in real devices we control the current

going through the ON-region, Ja=2aj, where a is the

half-width of this region. Hence, the only position of

the ON/OFF-junction and the only value of a corre-

spond to the given Ja and Jg if these currents provide
the IGTO regime. Thus, we applied Eq. (1) to analyze

quasistationary transient and modulation processes of
a ®nite gate controlled TLS. However, the character-
istic time, tr, of these processes is shown not to be

equal to t but proportional to the anode current and
inversely proportional to the gate current. Since Jg<Ja
for our consideration, the characteristic time of the

transient processes is always more than the e�ective
time of the TLS.
In this work, we try to reach several goals. First, we

derive Eq. (1) and determine its validity range. (Within
this range, the e�ective time t depends neither on j,
nor on dJg and is solely de®ned by the structure.) We
calculate t as a function of base geometry and material

parameters for the simplest TLSs. Second, we calculate
transient and modulation processes for the small gate
current deviations in the ®nite TLS.

2. Basic equations and assumptions

As a typical TLS, we consider a structure in which
an applied voltage U is distributed across three pn-

junction layers of spatial charge. Two outer junctions
(1 and 3 in Fig. 1) are called emitters and the inner
junction (2) is called a collector. All these junctions are

forward biased in the ON-state, and these biases are
determined by the current density j. In the blocked
state (the OFF-region at the IGTO-regime), two of the

junctions, the collector and the adjacent to base I emit-
ter, are reverse biased due to the gate current. As a
result, this base is isolated and it becomes a current-

conducting channel for the gate current ¯owing into
the ON/OFF-junction (Fig. 1). The length of the chan-
nel is varying with the motion of the ON/OFF-junc-
tion. This results in the change of capacity charges and

leakage currents of the isolating pn-junctions.
However, we will not take into account the additional
current e�ects related to elongating or shortening the

current-conducting channels. We assume that there is a
given gate current, Jg, which is used only for holding
and moving of the ON/OFF-junction. We neglect a

parasitic transistor current in the system of the for-
ward biased emitter 3, the controlled base (base II)
and reverse biased collector 2 (see Refs. [19, 20]). The
reverse current of reverse biased emitter 1 (Fig. 1) is

neglected as well.
It is assumed that outer layers (emitters) of the TLS,

cathode and anode, are heavily doped and they are

from a wide band gap material. They inject their ma-
jority carriers into the adjacent bases with e�ciencies
which are close to 1. This means that we can neglect

recombination in the emitters. Subjects of our
thorough study are two middle bases separated from
each other by the collector pn-junction. We assume

Fig. 1. Considered thyristor-like structure (TLS) with the dis-

tributions of the current density j( y) and the potential c(x)
there.
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that the speed of operation of the structure is deter-

mined by inertial processes just in these bases. We

have to solve the continuity equations for electron and

hole currents in both bases:

ÿ 1

e

@ jn
@ r
� ÿRn ÿ @n

@ t
,

1

e

@ jp
@ r
� ÿRp ÿ @p

@ t
, �2�

where n and p are concentrations of electrons and

holes, respectively, jn and jp are their two-dimensional

currents with x- and y-components, and r= (x, y) is

the radius-vector. Rn and Rp are the recombination-

generation rates and e is the absolute value of electron

charge. We assume that conditions of quasineutrality,

n= p2N(x), are ful®lled in the bases. They allow us

to solve only one of the equations. Base I is assumed

to be heavily doped with electrons, so that there is a

low injection level. This results in a linear recombina-

tion relation in this base: Rp=p/tI. Since the doping

can depend on x, lifetime tI can be a function of x.

Low injection level and a linear relation Rn=n/tII is
considered in base II as well. Since the widths of the

bases are not greater than several di�usion lengths

there, we can neglect voltage drops across the base

quasineutral regions and take into account only vol-

tage drops across the pn-junctions. We introduce three

voltage drops: cI( y), between the anode and base I;

cII( y), between the anode and base II and c, between
the anode and the cathode. The voltages across three

pn-junctions indicated in Fig. 1 equal:

j1� y� � cI� y�; j2� y� � cI� y� ÿ cII� y�;

j3� y� � cÿ cII� y�,

where signs of j1,2,3 are selected positive for forward

biased pn-junctions. The voltages c, cI,II and j1,2,3 are

presented in dimensionless units and corresponding

dimensional values are V1,2,3=j1,2,3�kT/e, U = c�kT/e,
UI,II=cI,II�kT/e.
As we did before for the stationary problem [19, 20],

it is assumed that the variables change in the y-direc-

tion much slower than in the x-direction in the region

of the ON/OFF-junction. The corresponding inequality

could be presented in the form:

wI,II

����dj1,2,3

dy

����� 1, �3�

where wI and wII are the widths of bases I and II, re-

spectively. The inequality in Eq. (3) allows us to take

into account only the components @� jp,n�x/@x instead of

@jp,n/@r in Eq. (2).

The next assumption makes it possible to derive the

analytical formula for the velocity of the switching

wave and present several dependences explicitly. We

consider a structure where the longitudinal (in-plane)

conductivity of the gated base, sI, is much greater than

the in-plain conductivity of base II (sII):

sI � sII: �4�
This is fairly true for asymmetric structures where the
gated base is doped much heavier than the ungated
base.

Equation of continuity of full currents, JI,II in the
bases are written in the form:

@JI
@y
� j1 ÿ j2,

@JII
@y
� j2 ÿ j3, �5�

where j1,2,3 are current densities through the junctions
1, 2 and 3, respectively. The current densities can be
found from the solutions of Eq. (2). We try to obtain

these solutions in the form of the stationary wave:

p�x, y, t� � p�x, yÿ vt�,

n�x, y, t� � n�x, yÿ vt�,
�6�

where the wave velocity v is assumed to be the same

for both bases. A new variable, yÿ vt, results in a new
version of Eq. (2):

1

e

@ jp
@r
� ÿ p

tI
� v

@p

@y
, ÿ 1

e

@ jn
@r
� ÿ n

tII
� v

@n

@y
: �7�

3. Stationary solution

For v = 0, we start with Eq. (7) written for both

bases:

1

e

@ jpx
@x
� ÿ p

tI
, ÿ 1

e

@ jnx
@x
� ÿ n

tII
: �8�

They are solved with boundary conditions:

p�x � 0� � p01e
j1 � p01e

cI ,

p�x � wI ÿ 0� � p02e
j2 � p02e

cIÿcII ,
�9�

n�x � wI � 0� � n02e
cIÿcII ,

n�x � wI � wII� � n03e
j3 � n03e

cÿcII ,
�10�

where p01,2 and n02,3 are the concentrations of equili-

brium holes in base I and electrons in base II at the
pn-junctions. Since Eq. (8) for low injection levels are
linear di�usion and drift equations (drift may exist in

the built-in electrical ®elds), the current densities j1,2,3
can be written in the form:

j1 � j11e
cI ÿ ~aIj22 0ecIÿcII , �11�
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j2 � j2
0 � j20,

j2
0 � aIj11ecI ÿ j22

0ecIÿcII ,

j20 �ÿ j220ecIÿcII � aIIj33ecÿcII , �12�

j3 � ÿ~aIIj220ecIÿcII � j33e
cÿcII : �13�

In Eqs. (11)±(13), we neglect 1 in comparison with ecI ,

ecIÿcII and ecÿcII because these values are assumed

large. Expressions for coe�cients aI,II, ~aI,II, jik and

j22
0,0 can be calculated for a speci®ed base structure

(see example in Section 5). Coe�cients aI,II and ~aI,II
are usually referred to as forward and reverse base

transport factors. As a result of substitution of the cur-

rent densities from Eqs. (11)±(13) into Eq. (5) and of

the equations for the currents through the bases:

JI � ÿsI kT
e

dcI

dy
, JII � ÿsII kT

e

dcII

dy
, �14�

we obtain:

kT

e
sI

d2cI

dy2
� RI

� j11�1ÿ aI�ecI � � j22 0�1ÿ ~aI� � j220�ecIÿcII

ÿ aIIj33ecÿcII , �15�

kT

e
sII

d2cII

dy2
� RII

� aIj11ecI ÿ � j22 0 � j220�1ÿ ~aII��ecIÿcII

ÿ j33�1ÿ aII�ecÿcII : �16�
The system of two nonlinear equations, Eqs. (15)

and (16), can be solved numerically [20]. Here we con-

sider an asymmetric structure where the inequality in

Eq. (4) allows us to use the approximate solution of

Eq. (16): RII=0 to express eÿcII through ecÿcI and

obtain from Eq. (15):

kT

e
sI

d2w
dy2
� j11

aI � aII ÿ 1

1ÿ aII
ecI�1� e

w�ew ÿ 1�
1� ew=A

, �17�

where w = cIÿcI(1) < 0,

ecI�1� � ec
j33�aI � aII ÿ 1�

j22 0�1ÿ aI ~aI� � j220�1ÿ �1ÿ aI�~aII� , �18�

A �
�

1ÿ aII
aI � aII ÿ 1

�

� j22
0�1ÿ aI ~aI� � j220�1ÿ �1ÿ aI�~aII�

j22 ÿ ~aIIj220
: �19�

Here Eq. (18) determines cI in the depth of the ON-

region. The value of cI(1) corresponds to the unper-

turbed homogeneous conducting state (ON-region) of

the TLS with a certain current density j through the

structure. We calculate the ®rst integral of Eq. (17)

taking into account this condition (i.e. w(1) = 0):

kT

e
sI

�
dw
dy

�2

� j11
aI � aII ÿ 1

1ÿ aII
ecI�1�A�

�1� A�ln
�

1� A

ew � A

�
ÿ 1� ew

�
: �20�

The conditions on the left of the ON/OFF-junction
should be fairly complicated because of the existence

of the electric ®eld ÿ(kT/e)dcI/dy0Jg/sI in the OFF-
region of base I and a similar electric ®eld in the same

region of base II. These ®elds lead to an increase of
the voltage drop, cI±cII, in the depth of the OFF-
region and to strong ®eld e�ects (such as a depletion

of base current conducting channels, a saturation of
the current Jg, etc). Therefore, we assume that the con-

ditions on the left side of the structure are given not
too far from the ON/OFF-junction (both stable and

moving), so we can neglect the ®eld e�ects on the con-
ductivities. Assuming that the electrical potential goes

to in®nity in the depth of the OFF-region (i.e.
w(ÿ1) =ÿ1), we can derive the expression for Jg0

2

from Eq. (20):

J 2
g0 �

�
kT

e
sI

dcI

dy

����
y�ÿ1

�2

� 2kT

e
sI j11

� aI� aII ÿ 1

1ÿ aII
A��1� A�ln�1� Aÿ1� ÿ 1�ecI�1�: �21�

For Jg=Jg0, there exists an inhomogeneous steady-
state solution of Eq. (17), which corresponds to the

steady-state IGTO regime: the right hand side of the
TLS is in the unperturbed conducting state, the left

hand side of the TLS is in the blocking state due to
the gate current (see Fig. 1). The detailed consideration

of this problem was discussed in Ref. [19].
The explicit dependence Jg0( j) is important for the

future consideration. Keeping in mind that in the
depth of the ON-region j = j1=j2=j3, we obtain:

j � ~j11e
cI�1�, where ~j11 �

j11
j22
0�1ÿ aI ~aI� � j220�1ÿ aII ~aII�

j22 0�1ÿ ~aI � ~aIaII� � j220�1ÿ aII ~aII� , �22�

Jg0� j� �
������
jI1

p
, where I1 � 2kT

e
sI

j11
~j11

� aI � aII ÿ 1

1ÿ aII
� A��1� A�ln�1� Aÿ1� ÿ 1�: �23�
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4. Motion of the ON/OFF-junction

If Jg di�ers from Jg0( j), the ON/OFF-junction

moves with a ®nite velocity v. Here the boundary con-

ditions in Eqs. (9) and (10) for Eq. (7) remain the

same. In the frame of the linear approximation on v,

we obtain new expressions for the current densities

through the pn-junctions:

j1 � j10 � v

�
l11

d

dy
ecI ÿ l12

d

dy
ecIÿcII

�
, �24�

j2
0 � j20

0 � v

�
l21

d

dy
ecI ÿ l22 0

d

dy
ecIÿcII

�
, �25�

j20 � j200� v

�
ÿ l220

d

dy
ecIÿcII � l23

d

dy
ecÿcII

�
, �26�

j3 � j30 � v

�
ÿ l32

d

dy
ecIÿcII � l33

d

dy
ecÿcII

�
, �27�

where j10,30 and j20
0,0 are given by the RHS expressions

of Eqs. (11)±(13) for j1,3 and j2
0,0, respectively. The

coe�cients lik, l22 0
,0 have the dimensionality of surface

charge density and they have to be calculated from

Eq. (7) for a speci®ed base structures. An example of

the calculation of l-coe�cients is presented in Section

5. The substitution of Eqs. (24)±(27) into Eq. (5) gives

us:

kT

e
sI

d2cI

dy2
� RI � vSI, �28�

kT

e
sII

d2cII

dy2
� RII � vSII, �29�

where

SI � �l11 ÿ l21� d
dy

ecI ÿ �l12 ÿ l22� d
dy

ecIÿcIIÿ

l23
d

dy
ecÿcII ,

SII � l21
d

dy
ecI ÿ �l22 ÿ l32� d

dy
ecIÿcII � �l23 ÿ l33�

d

dy
ecÿcII , l22 � l22 0 � l220:

We restrict our consideration by the inequality in

Eq. (4) which allows us further analytical approach.

As in the stationary problem, the RHS of Eq. (29)

assumed to be 0. Substituting eÿcII from the solution

RII+vSII=0 into Eq. (28) and taking into account just

linear on v terms, we obtain:

kT

e
sI

d2w
dy2
� j11

aI � aII ÿ 1

1ÿ aII

� ecI�1� e
w�ew ÿ 1�
1� ew=A

� v � �SI � gew=Aÿ d
1� ew=A

SII�, �30�

where g= ( j22ÿj22 0 ~aI)/( j22ÿj220~aII), d= aII/(1ÿ aII).
We have modi®ed our problem to the di�erential

nonlinear equation of the second order. Multiplying

Eq. (30) by dw/dy, integrating it on y from ÿ1 to
+1 and taking into account Eq. (21) for the steady-
state problem, we calculate v:

v � �J 2
g ÿ J 2

g0� j�� �
�
2sI

kT

e

�0
ÿ1

dw
�
SI

� gew=Aÿ d
1� ew=A

SII

��ÿ1
, �31�

Since we believe that slowly propagating stationary
wave does not change its form, we can use the steady-

state solution to calculate the integrand of Eq. (31)
which can be rewritten in the form:

SI � gew=Aÿ d
1� ew=A

SII � ecI�1� dw
dy

F�ew�, �32�

where

F�z� � zfl11 ÿ l21 � �l22 ÿ l12��s� s2�BAÿ1z
ÿ l23Cs2 � �gAÿ1zÿ d� � s�l21 ÿ �l22 ÿ l32�
�s� s2�BAÿ1zÿ �l33 ÿ l23�Cs2�g,
s � s�z� � �Aÿ1z� 1�ÿ1,
B � aIj11=� j22 ÿ ~aIIj220�,
C � aIj11=� j33�1ÿ aII��: �33�

Since (dw/dy)2 is proportional to ecI�1� in accordance
with Eq. (20) and ecI�1� is proportional to j (see
Eq. (22)), we can obtain Eq. (1) from Eq. (31). The

e�ective time t in Eq. (1) is given by the expression:

t � 1

~j11

�1
0

dz
F�z�
z

�
�
ln��1� A�=�z� A�� ÿ �1ÿ z�=�1� A�

ln�1� Aÿ1� ÿ �1� A�ÿ1
�1=2

: �34�

5. Analysis of the e�ective time

Parameters A, B, C, g and d in Eq. (33) are the com-
binations of the parameters for the stationary problem
and parameters lik are introduced for the nonstation-

ary problem. We calculate the parameters for the
structure with homogeneously doped bases
(p01 � p02=p0 and n02 � n03=n0), when only the di�u-
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sion transport of minority carriers occurs at low injec-

tion levels:

j11 � j22
0 � ep0DIbI=tanh zI,

j33 � j220 � en0DIIbII=tanh zII,
�35�

aI � ~aI � �cosh zI�ÿ1, aII � ~aII � �cosh zII�ÿ1, �36�

l11 � l22 0 � ep0
2bI
� cosh zI sinh zI ÿ zI

sinh2zI
,

l33 � l220 � en0
2bII
� cosh zII sinh zII ÿ zII

sinh2zII
,

�37�

l12 � l21 � ÿ ep0
2bI
� zI cosh zI ÿ sinh zI

sinh2zI
,

l23 � l32 � ÿ en0
2bII
� zII cosh zII ÿ sinh zII

sinh2zII
:

�38�

Here zI,II=bI,II�wI,II and bI,II=(DI,II�tI,II)ÿ1/2 are

inverse di�usion lengths of minority carriers in bases.

DI,II and tI,II are the di�usion coe�cients and lifetimes

of minority carriers in bases, respectively. The detailed

derivations of Eqs. (35) and (36) can be found in

Ref. [19].

An analytical expression for t in the structure with

uniformly doped bases can be found in Appendix A.

The e�ective time t depends on ®ve parameters; four

of them are dimensionless: zI, zII, tII/tI, ( p0DIbI)/
(n0DIIbII) and the ®fth parameter is lifetime tI. It is

very di�cult to clarify such a complicated dependence

on all the parameters simultaneously. Therefore, we

start from the symmetric structure:

bIwI � bIIwII � z,

tI � tII � t0,
p0DIbI
n0DIIbII

� 1,
�39�

where we obtain from Eq. (A.3):

t=t0 � f �z�

� �2 cosh zÿ 1��sinh z cosh zÿ z�
4 sinh3z

�
K1,0

ÿ K1,2

cosh zÿ 1

�
� 2z cosh z

4 sinh z�cosh zÿ 1�
�
K1,1

� K1,3

2�cosh zÿ 1�
�
: �40�

Here the functions K1,m described in Appendix A

depend on z as well. A graph of f(z) is presented in

Fig. 2. The argument z varies from 0 to critical value

zcr=ln(2+
���
3
p

)21.3, which corresponds to the con-

dition aI+aII=1. The smallest possible value of t in

such a structure is equal to tmin=t(zcr)20.57t0, t rises

rapidly with shortening of the bases (decreasing of z)

and diverges as zÿ2 at z4 0. It is worth to stress that

the consideration of this symmetric structure is of only

academic interest because the base conductivities

should di�er greatly (see Eq. (4)). But we have to note

that the equations in Eq. (39) do not contradict for-

mally with Eq. (4) and their simultaneous ful®llment is

not excluded.

The second example consists of an extremely asym-

metric structure where base II is doped much lighter

than base I:

p0DIbI
n0DIIbII

ÿ40,
p0bII
n0bI

ÿ40: �41�

Here we can write t as a sum of two terms:

t � tIfI � tIIfII, �42�

where

fI � �cosh zI ÿ 1��sinh zI � zI�
sinh 2zI

K1,0 ÿ �zI cosh zIÿ

sinh zI� cosh zIIK1,0 ÿ �coshII � 1�K1,1

sinh 2zI�cosh zII ÿ 1� ,

Fig. 2. The dependence of the e�ective time for the symmetric

TLS, t/t0, on the dimensionless width of the bases z.
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fII � �cosh zII � 1��K1,1�sinh zII � zII� ÿ K1,0zII ÿ K1,2�sinh zII ÿ zII��
2 cosh zI � sinh zII�cosh zII ÿ 1� , �43�

and the argument A of the functions K1,m depends on

zI and zII as well. Graphs of fI and fII versus zII for
several values of zI and versus zI for several values of
zII are presented in Fig. 3(a) and (b). It is worth noti-

cing the features of the obtained results. Shortening of

base I leads the function fI to 0 but relatively slightly
changes the function fII. On the contrary, a shortening
of base II leads to the increase of both fI and fII. They

diverge as zII
ÿ2 at zII40. Therefore, the speed of oper-

ation of the TLS is determined mainly by parameters
of the base II. Thus, to avoid large inertia we should

not shorten base II excessively.

6. Examples of application in ®nite structures

In this section, we use Eq. (1) in order to consider
the motion of the ON/OFF-junction in ®nite structures

where the half-width of the ON-region, a(t), is time-
dependent. The anode current, Ja, is constant; thus a
current density, j(t) = Ja/2a(t), varies in the ON-

region. Eq. (1) can be rewritten (for vdJgv<<Jg0) in the
form:

ÿda

dt
� 2a

Jg�t� ÿ Jg0�Ja=2a�t��
tJa

: �44�

Taking into account Eq. (23), we can write a general

solution of Eq. (44) with the initial condition a = a(0):

��������
a�t�

p
�

��������
a�0�

p
exp

�
ÿ 1

Ja

�W
0

Jg�W 0� dW 0
�
�

�������
I1
2Ja

r

�
�W
0

dW 0 exp
�
ÿ 1

Ja

�W
W 0
Jg�W0� dW0

�
, �45�

where W = t/t. Below we consider two examples.
Example 1: if a gate current, Jg, is constant, we

obtain:

���
a
p �

�����������
a�1�

p
� �

��������
a�0�

p
ÿ

�����������
a�1�

p
�exp

�
ÿ Jg
Ja

t

t

�
, �46�

where a(1) = I1Ja/(2Jg
2). Since we consider that

vdJgv<<Jg0, we have to assume that de¯ection of a(0)
from a(1) is not too large. The characteristic time of
relaxation which describes the transient process is not

equal to the e�ective time t introduced in Eq. (1):

tr � t � Ja=Jg: �47�
In contrast to t, which depends only on structure

parameters, tr depends on Ja and Jg (i.e. it depends on
a regime of operation, even for assumed low injection
levels). Since we can consider only relatively small

de¯ections from the stationary regime where Jg<Ja,
we can obtain only tr>t.
Example 2: a gate current is a sum of dc and small

ac signals: Jg(t) = Jg+ig cos ot. We select a(0) = I1Ja/
(2Jg

2) and obtain the stationary solution for ig=0. For

Fig. 3. The contributions of the lifetimes in the bases to the

e�ective time (t = fItI+fIItII) versus (a) zII for given values of

zI; (b) zI for given values of zII.
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ig<<otJa, a solution can be written in the form:���
a
p �

��������
a�0�

p �
1ÿ ig

Ja

�
sin�o t� x�
t
������������������
o 2 � o 2

c

p
ÿ o c exp�ÿo ct�

t�o 2 � o 2
c�

��
, �48�

where

o c � 1

t

���������������
I1

2a�0�Ja

s
� tÿ1r , tan�x� � o c

o
:

Eq. (48) is valid for the following frequency range: ig/

Ja<<ot<<Jg/Ja.
Thus the ON/OFF-junction oscillates harmonically

after a transient process. At o<<oc, Eq. (48) leads to:���
a
p ' ��������

a�0�p
(1ÿ ig/Jg cos ot), which shows that the os-

cillations of the ON/OFF-junction are quasistationary.
In the high-frequency limit (o>>oc) we obtain���
a
p ' ��������

a�0�p
(1ÿ ig/Jaot sin ot). Here the ON/OFF-

junction oscillation phase is shifted by p/2 in compari-
son with the phase of the gate current and the ampli-
tude of oscillations is inversely proportional to o.

7. Discussion and conclusion

We have considered a behaviour of the TLS with a
stationary gate current, Jg, di�erent from the current,
Jg0, which provides a stationary size of the ON-region.

We have modi®ed this problem to the standard pro-
blem of propagation of the switching wave in a homo-
geneous medium.

It is worth noting some restrictions which are im-
portant for our approach. First, we assume that the
velocity of the ON/OFF-junction motion is compara-
tively small and does not perturb the stationary distri-

bution of the current density noticeably. The
assumption allows us to modify Eq. (7) to the system
of Eqs. (28) and (29) instead of a system of integro-

di�erential equations which should be considered gen-
erally. Second, we assume that only one of two bases
has substantial in-plane conductivity, so we neglect the

in-plane conductivity of base II. The restriction allows
us to reduce the system of two di�erential equations,
Eqs. (28) and (29), to a single equation, Eq. (30), and
to exploit the theory of localized waves [21] for its sol-

ution.
The obtained results for asymmetric structures show

that the ungated base contributes to the characteristic

time t greater than the gated base. This statement con-
tradicts to a prevalent opinion that base I determines
the speed of operation for most cases. Below are sev-

eral tips which can be used for increase of the speed of
operation for a TLS. We can obtain a desired value of
the e�ective time, t, by varying the parameters of the

bases: t is small for a small length of the gated base
and for a moderately long ungated base (zIIr0.4); t
grows rapidly with shortening of base II. Besides, to
decrease t one can pick up the material with small tII
or dope the ungated base by e�ective recombination

centers. But the characteristic time for the transient
processes, tr, in the gate controlled TLS is shown to be
not equal to t. This time depends on the regime of op-

eration of the TLS: tr is proportional to the ratio of
the anode current to the gate current. Hence, for the
discussed range of the gate current de¯ection, the

characteristic time of the transient process in gate con-
trolled TLS is always greater than the e�ective time, t.
We have to notice that the assumptions mentioned

above deprive us of the possibility of considering the

fastest processes that could take place for a large
amplitude of the gate current. Such gate currents per-
turb not only the potential form in the ON/OFF-junc-

tion but also the homogeneous distribution of current
density in the ON-region. These processes are interest-
ing for high-speed dual modulation of light emission

of light-emitting and lasing TLSs. However, we would
like to point out a number of advantages of the pre-
sented calculations. For the ®rst time, an explicit ana-

lytical formula, which is derived from the initial
equations of semiconductor theory and contents no ®t-
ting parameters, is obtained for the velocity of the
switching wave. This formula allows us to separate the

operation regime dependence from the dependence on
the structure parameters. In addition, using Eq. (45),
we can calculate transient processes for an arbitrary

time-dependent gate current which can depend on the
peculiarities and the purpose of the circuit. We do not
have to consider just a particular form of the gate cur-

rent signal (as a step signal in Ref. [4] or a ramp in
Ref. [8]). Although, our approach is restricted by the
gate current deviations which are not too large or not
too fast.

We believe, that the presented approach can be suc-
cessfully applied also for modulation doped (layered)
bases and bases with inner heterojunctions or quantum

wells which can be used for real light-emitting devices.
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Appendix A

To simplify the right side of Eq. (34), we introduce
functions:
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Kn,m�A� �
�1
0

znÿ1 dz
�Aÿ1z� 1�m�

ln��1� A�=�z� A� ÿ �1ÿ z�=�1� A�
ln�1� Aÿ1� ÿ �1� A�ÿ1

�1=2

,

�A:1�
which are linked to each other by obvious recurrent
formulas:

Kn,m�A� � AKnÿ1,mÿ1�A� ÿ AKnÿ1,m�A�: �A:2�
These functions allow us to write t in the form:

t � 1

~j11
f�l11 ÿ l21�K1,0 � l21�gK1,0 ÿ �d� g�K1,1�

� �l22 ÿ l12�B�K1,0 ÿ K1,2� � �l22 ÿ l32�B��d

� g��K1,1 ÿ K1,3� ÿ g�K1,0 ÿ K1,2�� � �l33
ÿ l23�C��d� g�K1,3 ÿ gK1,2� ÿ l23CK1,2�g: �A:3�

Fig. 4 shows the dependences of K1,m versus A for
m= 0, 1, 2, 3. For A>>1 (or aI+aIIÿ1<<1) functions
Kn,m(A) lose their dependence on A and m:

Kn,m�A� ' 1

n�n� 1� ÿ
m

A�n� 1��n� 2� :

All of these four functions tend to 0 if A4 0 but in
di�erent ways:

K1,0�A� ' 1

2

����������������
p

�ÿln A�
r

, K1,1�A� ' 2

3
A�ÿln A�,

K1,2�A� ' A, K1,3�A� ' 1

2
A:
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