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New type of electric oscillations in bistable resonant tunneling diodes
B. A. Glavin and V. A. Kochelapa)
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V. V. Mitin
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~Received 28 September 1998; accepted 8 December 1998!

We studied a resonant tunneling diode with intrinsic bistability when high and low current states
simultaneously occur in a certain voltage range. We have found a novel type of electric oscillation
in the bistable resonant tunneling diode. Under these oscillations one portion of the diode is in the
high current state while the other is in the low current state. A periodic motion of the boundary
between the high and low current regions gives rise to oscillations of the current in the external
circuit. © 1999 American Institute of Physics.@S0021-8979~99!01206-2#
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I. INTRODUCTION

The intrinsic bistability of the resonant tunneling diod
~RTDs! is an extensively studied phenomenon since its fi
observation.1 The physical reason of the bistability is an a
cumulation of the resonant electrons in the quantum w
i.e., a charge built up between the barriers. Indeed, when
voltage bias shifts the resonant level below the bottom of
emitter conduction band, the built-up charge pushes
resonant level up and can regain the resonant tunneling
ditions. This gives rise to the existence of two current sta
low and high, in the diode at a given voltage bias. Und
such conditions a negative differential resistance is m
mum, and the current–voltage characteristic has the bista
ity of Z type.

Recently we reported that in bistable RTDs transve
patterns can occur spontaneously.2 These patterns are non
uniform distributions of the built-up charge in the quantu
well layer and nonuniform tunneling current. Among diffe
ent types of the patterns, mobile switching waves~SWs!
have been discovered. They correspond to a switching of
diode from one transversely uniform state to another. T
front of a SW can be characterized by the width,LD

;yFtch . The quantitiesyF , tch , are the Fermi velocity of
electrons injected into the well and the characteristic time
their escape from the well, respectively. The velocity o
SW, y, is of the order ofyF and depends on the voltag
applied to the diode,F. Within the bistable voltage rang
F l,F,Fh , as shown schematically in Fig. 1~a!, a critical
voltageFc exists that corresponds to the stationary kink-li
pattern. This pattern is the transient region between the h
and low current states. AtF l,F,Fc SWs perform switch-
ing from the low current state to the high current state.
Fc,F,Fh the reverse switching is possible.

We have shown that SWs can be induced by nonuni
mities within the quantum well or barrier layers. To indu
switching from the low current state to that of the high cu
rent, the nonuniformity should provide an additional inje
tion of electrons from the emitter to the quantum well. Mor

a!Electronic mail: nika@div1.semicond.kiev.ua
3350021-8979/99/85(6)/3359/5/$15.00
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over, to induce switching from the high current state to th
of the low current, the nonuniformity should behave as
drain for the resonant electrons. Consequently, the switch
produced is due to the leakage of the resonant elect
along the quantum well layer away from the nonuniformi
As a result, the low current branch of the RTD curren
voltage characteristic atF l,F,Fc and the high current
branch atFc,F,Fh can become unstable with respect
the spontaneous SW inducement.

Particularly, such nonuniformities can be formed ne
the edges of the heterostructure. For example, they arise
to a depletion layer at the sample surface and due to a va
tion of the quantum well and barrier layers thicknesses,
In such an example, we can refer to the article3 which stated
the influence of the depletion layer on the properties of
RTD as observed experimentally in the case of the high
low charge accumulation in the quantum well. Therefore,
additional source or drain of resonant electrons can be
vided by the means of additional electrodes~see, for example
Ref. 4!.

If the voltage bias of the RTD is constant, the induc
ment of a SW leads to the complete switching of the devi
In fact, the RTD is always coupled with an external circu
Since the switching is accompanied by a change of the
rent, the reaction of the circuit changes the voltage bias
the RTD and, consequently, the velocity of the SW. As
will show below, this feedback gives rise to the compl
dynamics of the whole system consisting of the RTD a
circuit. Particularly, in such a system the SW can slow do
and, then, change the direction of propagation and return
RTD to the initial uniform state. Moreover, such coupling
the RTD and resonance circuit can give rise to the oscillat
behavior of the system.

II. MODEL AND BASIC EQUATIONS

We consider the simple circuit as depicted in Fig. 1~b!. It
consists of a RTD, a resistanceR, and a resonance circu
with capacitanceC and inductanceL* . To be specific, we
will present results for this circuit with an unstable high cu
rent branch atFc,F,Fh with respect to the SW induce
9 © 1999 American Institute of Physics
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ment. Qualitatively the same results can be obtained fo
RTD with unstable low current branch atF l,F,Fc .

The cross-section of the RTD transverse to the curren
the quantum well region is schematically presented in F
1~c!. We assume that the cross-section is rectangular w
dimensions,L and h, along they and z axes, respectively
The current flows along thex axis. In addition, we assum
that the SW can be induced by an additional drain for
resonant electrons within the edge of the structure aty5L.
Such a simple geometry of the device provides a o
dimensional character of the SW, which in this case pro
gates along they direction. We suppose that the SW widt
LD , is much less than the diode dimension,L. Next, we
denote the dimension of the portion of the RTD in the hi
current state asl . This portion is shown as the shaded regi
0,y, l in Fig. 1~c!, while the rest of the RTD,l ,y,L, is
in the low current state.

Stationary states of the system are determined by in
sections of the RTD current–voltage characteristic and l
line as shown in Fig. 1~a!. We assume that the load lin
crosses the high current branch of the RTD current–volt
characteristic atF l,F,Fc and at the low current branch a
Fc,F,Fh . Two possible stationary statesS1 andS3 cor-
respond to the uniform high and low current states, resp
tively. The third stationary state,S2, corresponds to the kink
like state withF5Fc . Obviously, the statesS1 andS3 are
stable with respect to the small perturbations while the s
S2 is unstable. However, the stateS1 is unstable with re-
spect to the large perturbations,DF.Fc2F, since such
perturbations lead to the appearance of a SW.

In Fig. 2 we present the possible types of the tempo
evolution of the voltage bias,F, and the dimension of the
high current region,l , after the SW inducement at the mo
mentt50. Depending on parameters of the RTD and circ
three types of the evolution are possible. Figure 2~a! corre-
sponds to parameters of the system, when the comp

FIG. 1. ~a! A sketch of the current–voltage characteristic of a bistable RT
The load line is shown by the dashed line and stationary states of the sy
are marked byS1, S2, andS3. ~b! The electric circuit under consideration
it consists of the resonance circuit, the RTD and the series resistanceR. ~c!
A schematic cross-section of an RTD. The portion of the RTD of lengthl is
in the high current state~dashed area! while the portion of lengthL2 l is in
the low current state. Aty5L the edge nonuniformity can induce SWs.
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switching of the diode from the high to low current unifor
state occurs during the time intervalta . In this case the volt-
age bias,F, is always greater thanFc , and the SW does no
change the direction of propagation. After the diode

.
em

FIG. 2. Possible types of temporal evolution of values,l andF: ~a! Induce-
ment of the switching wave results in the complete switching of the dio
~b! inducement of the SW leads to the return of the system into the in
uniform high current state;~c! the RTD returns to the high current uniform
state, and the switching wave is induced again.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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switched, the circuit behaves as a damped oscillator, anF
approaches the value,F3 . Figures 2~b! and 2~c! correspond
to the system parameters when at some time,tb , the voltage,
F, becomes less thanFc . Next, the SW reverses its direc
tion of motion, and the RTD returns to the uniform hig
current state. Then, the circuit behaves as a damped os
tor. If F is always less thanFc , then the system is in the
state,S1, as shown in Fig. 2~b!. Alternatively, if at time,tc ,
the voltageF becomes greater thanFc , the SW is induced
again, as shown in Fig. 2~c!. Obviously, if at a time,tc , the
system is returned into the state which coincidesexactlywith
the initial state, the evolution is periodic. Next, we will an
lyze how the temporal evolution of the system depends
the parameters of the RTD and circuit.

We shall consider the dynamics of a RTD in the qua
stationary approach when the instant velocity of the S
v(t), can be assumed to be dependent on the instant valu
the voltage bias,F(t). This assumption is valid if the eige
frequency of the circuit,v0[(L* C)21/2, is much less then
inverse times of intrinsic processes within the RTD. T
RTD intrinsic times include: the time of tunneling escape
the resonant electrons from the quantum well and the tim
the discharge of the RTD intrinsic capacitance.5 The depen-
dencev(F) is obtained from different approaches.2 In evalu-
ating the current, we shall neglect the current contribut
from the transition region between the low and high curr
states because ofL@LD .

As shown in Fig. 2, all possible cycles of the dynam
of the system consist of two different stages. During the fi
stage, a SW propagates through the RTD, and during
second stage, the RTD is in the uniform high current st
For the first stage with SW propagation, the current throu
the RTD is determined by the equation

I ~ t !5
l

L
I ~h!@F~ t !#1S 12

l

L D I ~ l !@F~ t !#, ~1!

and the dimension of the high current region of the RTDl ,
obeys the equation

dl

dt
52v~F!52b~F2Fc!. ~2!

Here I (h)(F) and I ( l )(F) denote the characteristics of hig
and low current branches of the RTD in the uniform sta
respectively, and forv(F) nearF5Fc , we introduce the
linear expansion with respect toF2Fc . The accuracy of
the latter approach is supported by the results of arti2

where it has been found that the dependencey(F) is linear
almost everywhere except at narrow regions of the volt
biases close to the boundaries of the bistability region w
F'F l or F'Fh . In calculations we assumeI (h)(F) and
I ( l )(F) are linear functions ofF nearF5Fc :

I ~h!~F!5I 0
~h!1

1

Rh
~F2Fc!, ~3!

I ~ l !~F!5I 0
~ l !1

1

Rl
~F2Fc!. ~4!

The circuit dynamics is described by electric circuit equ
tions,
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d2U

dt2
1v0

2U5
1

C

dI

dt
, ~5!

U1IR1F5E. ~6!

Here,U is the voltage drop on the resonance circuit andE is
the voltage supply.

For a cycle with a SW during the first stage, the syst
of differential Eqs.~2! and~5! are of the third order. During
the second stage of a cycle when the RTD is entirely in
high current state, this condition is described by Eq.~1! with
l 5L and by Eqs.~5! and~6!. Thus, to determine a dynami
cycle completely, three initial conditions are necessary.
the start of a cycle, two of the three initial conditions a
always the same:l 5L ~since initially the RTD is in the high
current state! andU5U05E2Fc2I 0

(h)R. The latter is nec-
essary to provide the conditionF5Fc . The third initial
condition is described by the value,dU/dt u t50[u8 with
u8,0. Furthermore, for all future cycles the latter value h
to be determined as a function of its value on the previo
cycle. This reduces the study of complete dynamics of
system to theone-dimensional discrete map, uk85 f (uk218 ),
where the index corresponds to the number of the cycle.

It can be easy shown that the system of Eqs.~1!–~6!
contains the five dimensionless parameters. Three param
describe the diode:r h5Rh /R, r l5Rl /R and jc5 l c /L with
l c corresponding to the value ofl in the stationary kink-like
state,S2. The fourth parameter is the quality factor of th
circuit: Q5v0RC. And the fifth parameter,a5 b(I 0

(h)

2I 0
( l ))R/Lv0 , can be considered as the diode-circuit co

pling. It can be estimated as

a;
2p

v0tsw
3

~ I 0
~h!2I 0

~ l !!R

Fh2F l
, ~7!

wheretsw5L/vch is the time of the RTD switching with a
characteristic switching velocity,ych. At this point it is con-
venient to introduce the dimensionless value,

x52
1

v0U0

dU

dt U
t50

.0. ~8!

Now, the evolution of the system is determined by the m
xk5P(xk21). The theory of one-dimensional mapping ca
be found in the Ref. 6.

We have solved Eqs.~3!–~6! for different realistic pa-
rameters of the diodes and circuits. Possible types of
mapping functions,P(x), are presented in Fig. 3. The pa
rameters,a, r h , r l , Q, andjc used in calculations are give
in Table I. The straight line,P5x, is shown by the dashed
lines. According to the theory of mapping, thestationary
points of the map, xst , are determined by the equatio
P(xst)5xst. As discussed above, a stationary point cor
sponds to ordinary oscillations. They are either stable
unstable.6 The condition of the stability at a stationary poin
xst , with stable oscillations isuP8(xst)u,1.

III. MAIN TYPES OF THE SYSTEM EVOLUTION

Considering the general features of obtained dep
dences of the mapping functions,P(x), then for any combi-
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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nation of the parameters, the functionsP(x) exist only forx
less than specific value,xh . At x.xh the RTD always
switches to the low current state, and no further cycles e
as shown in Fig. 2~a!. Then, at smallx two types of the
behavior ofP(x) are possible. In the first typeP(x) does not
exist at smallx at all, or P(0)50 with P8(0),1 (x50 is

FIG. 3. Possible types of one-dimensional mapsP(x) for parameters of the
system presented in Table I.
Downloaded 23 Apr 2003 to 141.217.203.226. Redistribution subject to A
st

the stable stationary point!. The former means that the evo
lution of the system during the second stage does not lea
the following inducement of a SW. For the first type ofP(x)
a weak perturbation of the system decays, and the sys
returns toS1. This corresponds to the temporal evolutio
shown in Fig. 2~b!. The second type of the behavior ofP(x)
requires conditions:P(0)50 and P8(0).1. This type oc-
curs at high resistances,r h and r l , when dissipation in the
system is practically absent during the second stage o
cycle. In this situationx50 is the unstable stationary poin
of the map; even for small initial values ofx the system does
not return to the initial state,S1. Results forr h ,r l→` have
been briefly reported in Ref. 7.

In this article we have dealt with the more realistic fir
type of behavior ofP(x). All P(x) dependences presented
Fig. 3 just correspond to such a case~the region of smallx is
not shown in the figure!. The valuesx, for which P(x) is
presented, correspond to the temporal evolution of the s
tem illustrated in Fig. 2~c!.

Figure 3~a! depicts a system withP(x) dependences tha
can demonstrate oscillatory behavior. For both curves,P1(x)
and P2(x), there are two stationary points,x1

(1) , x2
(1) and

x1
(2) , x2

(2) , respectively. The pointsx1
(1) andx1

(2) are unstable,
becauseP1,28 (x1

(1,2)).1. For the curveP1(x) the second sta-
tionary point is stable,uP18(x2

(1))u,1. This corresponds to
regular oscillations of the system. ForP2(x) the second sta-
tionary point is unstable,uP28(x2

(2))u.1. However, it is easy
to see that there is a region of attraction marked by
dashed rectangular. Once the system exists inside this re
it never leaves it. This property holds becauseP2(xmax

(2) )
,xh

(2) , wherexmax
(2) corresponds to the maximum ofP2(x).

Thus, both cases,P1(x) and P2(x) can provide oscillations
in the system. Sincex2

(2) is an unstable stationary point fo
the mapping function,P2(x), a doubling of the period of
oscillations and a transition to chaotic oscillations can ta
place~see Ref. 6!. It is important to mention that to genera
such oscillations the initial value ofx, xi , should be greater
than the first unstable stationary point,xi.x1

(1,2) ; otherwise,
the system returns to the initial stateS1.

In Fig. 3~b! other P(x) dependences are presented. F
the curveP1(x) two stationary points exist, but the secon
one is unstable:uP18(x2

(1))u.1. In a distinction from the curve
P2 in Fig. 3~a!, there is the curve,P1(xmax

(1) ).xh
(1) without a

region of attraction. ForP(x) dependences of such a type
xi,x1

(1) , the system returns to the stateS1. If xi.x1
(1) , the

situation is more complex; the system can either latch to
oscillatory cycle similar to that of the curveP2(x) in Fig.

TABLE I. Dimensionless parameters of the system, for which on
dimensional maps are presented in Fig. 3.

P a r h r l Q jc

Fig. 3~a!, curve 1 1.3 100 1000 20 0.9
Fig. 3~a!, curve 2 1.6 100 1000 20 0.9
Fig. 3~b!, curve 1 1.8 100 1000 20 0.4
Fig. 3~b!, curve 2 2.5 100 1000 20 0.1
Fig. 3~c!, curve 1 1.2 50 1000 8 0.9
Fig. 3~c!, curve 2 1.5 50 1000 8 0.9
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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3~a! or switch to the stateS3. For the curveP2(x) only one
stationary point,x1

(2) , exists. For such aP(x) dependence
the system either goes to the state,S1 ~for xi,x1

(2)) or to the
state,S3 ~for xi.x1

(2)).
In Fig. 3~c! the next two variants ofP(x) dependences

are presented. ForP1(x) there are P1(xh
(1)),x1

(1) and
P1(xmax

(1) ),xh
(1) . For such a mapping function atxi.x1

(1) , the
system can either oscillate or can switch to the state,S3. For
P2(x) the situation is even more complex. In a distincti
from the case ofP1(x) dependence presented in Fig. 3~b!,
there isP2(xh

(2)),x1
(2) . As a result, the system can be eith

latched to the oscillatory cycle@similarly to that of the curve,
P2(x), in Fig. 3~a!# or switch to the state,S3. And if xi

.x1
(2) , a third possibility appears: the system can return

the state,S1.
Thus, the calculations of functions,P(x), and the map-

ping analysis show that the system of Eqs.~1!–~6! depending
on the value of parameters has different solutions: perio
solutions, oscillations with a period doubling, damped a
over-damped oscillations, chaotic oscillations, etc. Every
lution corresponds to a complex evolution of the circuit a
spatiotemporal dynamics of the RTD. The latter includ
nonuniform tunneling, leakage of electrons over the quan
well layer, nonuniform current, and more.

IV. CONCLUSIONS

It is useful to compare these results with the dynamics
conventional RTDs demonstrating theN-type behavior of the
current–voltage characteristic. For the latter case the R
operates as adiscretenonlinear element in the circuit an
only a temporal evolution occurs. In the case under con
eration, the RTD is accounted as the distributed object w
the Z type of the current–voltage characteristic, where s
Downloaded 23 Apr 2003 to 141.217.203.226. Redistribution subject to A
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consistent temporal evolution of electrical signals in t
resonant circuit. Note, the considered effect is related to
problem of stability of the Z-type current–voltage
characteristic.8

In conclusion, we have demonstrated that a bista
RTD coupled with a resonance circuit can exhibit interest
behavior, including a new type of electrical oscillations a
different types of switching modes.
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