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Substantial contribution of effective mass variation to electron-
acoustic phonon interaction via deformation potential
in semiconductor nanostructures
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Using the approach of deformed ions and the tight binding, we have demonstrated that the
interaction of electrons confined in a nanostructure with acoustic phonons in a cubic crystal is
described by a deformation potential tenDPT) whose symmetry is determined by the geometry

of the nanostructure. Here in, we present additional contribution to the DPT which is caused by the
deformation dependence of the electron effective mass and it increases 2asvhen the
characteristic size of a nanostructute,decreases. For narrow GaAs-based quantum wells, this
contribution is comparable with and can overcome that from the usual deformation potential
coupling. © 1999 American Institute of PhysidsS0003-695(99)00911-0

Interaction via the deformation potentidP) is one of lowest subband of a rectangular quantum weéW) has
the most important mechanisms of the coupling betweeteen written in the form
electrons and acoustic vibrations in semiconductors. For a 2
. : 1
hqmogeneous'semlcondu'ct.or of the cublg crysta] symmetry  {MOP— Z 21y (x,y,0)— uy(X,y,L)], )
with a conduction band minimum at thépoint, the interac- L

tion Hamiltonian is given by where E,,=7?42n?/2m* L2, m* is the isotropic effective

mass, and the planes=0 andz=L are at the positions of
Hin=D divu, (1) the interfaces. An interaction of the same nature, known as
the “ripple mechanism”(RM), which is applicable for all
whereD is the deformation potential constant, and the diver-nanostructure geometries, was introducefi by
gence of the lattice displacement, determines the relative RM
change of crystal volume due to deformation. In the frame- Hint = u(r)Vu(r), €

work of the effective-mass approximation, the theory of DPyhereU(r) is a confinement potential. In contrast to the case
has been shown to be valid for slowly varyifan the scale  of the bulk mechanism of Eq(1), which allows only the
of the lattice periogldeformations. interaction with longitudinal phonons in isotropic media,
At low temperatures, DP interaction plays an importantyransverse acoustic phonons contribute to the interactions of
role in the kinetics of confined electrons. It determines tthQS(Z) and(3) as well. The MDP interaction is weak com-
phonon limited mobility and energy losses of a two- pared with the bulk interaction of Eql) as 2, /D<1. For
dimensional(2D) electron ga&and acoustic-phonon emis- small dot sizes, it was foufidhat the RM contribution to the
sion may be the only process responsible for electron energylectron scattering rates can be larger than that fron{ Hg.

relaxation in dot structuresThe accepted procedure in the  The finite-size effect in quantum heterostructures is not
calculation of the deformation interaction in semiconductorimited to the MDP (or RM) interaction. The deformation

heterostructures is to use the bulk interaction Hamiltonian O(/ariation of the electron effective mass also gives rise to a

Eq. (1). It is assumed that the paramefmoes not depend sjze-dependent contribution. Let us consider a change of
on a size and a shape of the quantum heterostructure. OnBfectron energy in a rectangular QW, under an applied
acoustic field modifications which result from the differenceynjaxial strain: the displacement(z)=—yz with vy

in the elastic properties of materials forming the heterojunc—=const. Pressure is accommodated by shifting of the zone-
tions are taken into accouhRecently, a new mechanism of center energy of the bulk semiconductor according to Eq.
electron-acoustic phonon interaction, which is intrinsic to(1), and by shifting of the energy levels in the QW. Taking
semiconductors that have interfaces, and is additional tehto account the change &; both due toL(y)=L(0)(1
usual deformation potential coupling of E@l), has been — ) and m*(y)=m*(0)(1+ yx), where y is a phenom-

. 6 . . . N A i
CO“Sldere(j. It arises when acoustic waves cause the |nter'eno|og|ca| parameter, in the first ordernﬂ)ﬁ\/e get the overall
face spacing to change and thereby to perturb the electraghergy shift

states. This additional interactidrknown as “macroscopic

deformation potential’(MDP), for electrons occupying the OE=y[-D+(2-x)E;]. 4
Here the term 3E; coincides withHM°P. The sign of this

3Electronic mail: mitin@ece6.eng.wayne.edu shift corresponds to that of the relative change of QW width:
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in the case of compressiof;>0, the energy level moves up normalized amplitude. In this approach, the presence of in-
[the perturbation of Eq(3) gives —2yE,]. For electrons terfaces in Eq(6) is accounted for entirely by the lattice
with three-dimensiondl3D) wave vectork, the contribution  potential.

of the pressure dependence mf to shifting the electron Consider first a 2D electron layer bounded by=8
energy is proportionalto k?, and the effect is negligible for <L. Introducing the periodic boundary conditions in the
energies near band edgle-{0). In the case of heterostruc- plane containingN,N, elementary cells, one can write the
tures, the minimum of the electron energy is determined byigenfunctions in the undeformed crystal as

the finite energy of spatial quantization, and this contribution _ 12 ikr

is not small. To estimate this effect, one can exprgss Wrie=(NNy) =€ i), )
through the slopelE,/dP of the pressure band gap energy wherek= (k,,k,) stands for the 2D electron wave vector,
dependence, which is measured experimentally under an agk,(r) is a periodic function ovek andy with the lattice
plied hydrostatic pressure. Using the known expressions foperiod, and describes the localized states inzhrection
m* from k-p perturbation theory, in the case when the in-(n=1,2,...,¢(r) =0 atz= +«). The matrix element of the
teraction of nearest nondegenerate bands is substantial, omerasubband transitions between the stalesandnk’ is
obtains for relative changes the relationghipm*/m*

=0E4/E4. Taking int_o e_lccount that thg value pfin Eq. (4) M s k= _iuof dzf dpeiQZZ,/,:k,/,nkeiqu(e.V)V(r)_
corresponds to a uniaxighot hydrostati¢ pressure, we ob- -
tain (8)
Herek’=k+q;, g,=(0x.q,), p=(X,y), the integral over
3K dE, X,yis spread over one elementary cell. Using the Green iden-
X=E 4P’ (5) tity and then the Schobnger equation fory,, , one can

eliminateV from Eq. (8). For transitions near the bottom of

where the quantitativé is the modulus of the hydrostatic the subband, we get

compression. Using the date given in Ref. 8, we fipd K2 o _
~17 for GaAs andy=40 for InAs. We see that this contri- M ks nk= —1 m—Uof dzf dpe'dz
bution may exceed that given by the MO& RM) mecha- 0 o
nism. For narrow QWs it can be comparable with the energy
shift via the bulk deformation potential. For a GaAs-based +eZqZ|VZ¢nO|2}, ©)
QW with a width L=10nm, one obtains x—2)E;
=0.84¢eV, i.e., about 10% db value. This contribution in- Where¢me=inx—o. Here and in the remainder of this letter,
creases ak ~2 whenL decreases. If the signs Bfandy are @ change ofi(r) within an elementary cell is neglected. Re-
different, then the electron-acoustic phonon interaction in #1acing ¥y with g0, we neglect the contribution caused by
QW is to be weaker than that from the bulk DP interaction.@ change ofn™ in the x,y plane. To calculate the functions
In Eq. (4), which predicts the energy shift induced by Yo, We exploit a tight-binding approach in a crystal with a
homogeneous deformation, the size-dependent part entesdnple cubic lattice and assume that only first-neighbor cell
additively and is described bi;(L). For the case of inter- couplings are nonzero. For a slab which consistd oglls in
action with acoustic waves, the displacemerit) can be the (001) direction, the electron wave functions are givefi by
altered on the scale of an interface spacing. It gives addi- 12
tional dependencies of the energy shift lorwhich are dif- Pno(r)= E sin
ferent for the interface mechanisms and bulk interaction of !
Eg. (1). In the present work, to derive the electron-acoustiowheree;= ¢(r —bl) is a state of an isolatdth cell, andb is
phonon interaction Hamiltonian which describes the DP inthe lattice period),=1,2,..N. Let the “atomic” function
teraction and the overall contribution of the interfaces weg(r) be the electron ground state in 3D rectangular quantum
start from the microscopic level. In this way, the assumptiondot with the potentialV=0 for —a/2<x,y,z<a/2 andV
about independent contributions of the different mechanisms-V, outside the well. We assume thata>1 («

1 2
E(e' A |V ¢mol

nl,
N+1

under considerations is not used. =\2myVo/A?). Using a multiplicative form, ¢(r)
Consider an electron with the free masg,, ina crystal = ¢, (x)¢,(y) 9,(Z), Where ¢ (x) is a state in a one-

with the lattice potentialy(r). To determine the perturba- dimensional QW, we geffor 7n/N<1)
tion caused by a smooth displacemeunfr), we use the .
model of deformed ions. According to this model, the lattice M ks nk=1Uo[(&-Q)D +e,0,(2— x)En]Fnn,

potential in a deformed crystal equalgr —u). The change 2 (L wnz mn'z (11)
of the potential V(r —u(r))—V(r), upon using a Taylor ex- F”“':EJ sinTsin L dz
pansion for small acoustic displacements, yields 0
Here the deformation potential is
Hine=—(u(r)- V)V(r). (6) 7252
= — — —«xd
D azmo(1 4(d/a)e %), (12

We will neglect the modification of elastic parameters in
heterostructures and will use bulk-like expressions for theand the deformation dependencensf is determined byy
displacementu=euy exp(qr), whereeis a polarization unit =—«d, whered=b—a is the interwell barrier width, and

vector, g is a 3D wave vector, and, is an appropriately «d>1 [in this model, It* is proportional to expf «d)].
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From Eqg.(11) it follows that the intrasubband scattering of interaction of electrons with acoustic phonons in quantum
2D electron gas in a cubic crystal is described by interactioreterostructures. Starting from microscopic consideration,
HamiltonianH;,= Dj;u;; , whereu;; is a strain tensoD;; is  we have derived a part of the interaction, which describes the
the diagonal tensor of deformation potential which has thenterfaces’ contribution. It was shown that the deformation
component®,,=D,,=D, D,,=D+(2—x)E,. The above dependence of the effective mass contributes a size-
used microscopical model of a crystal can be easily generalependent part to the electron-acoustic phonon interaction.
ized on the two- and three-dimensional confinement potenthis contribution can exceed that from the mechani¥m
tials. In the general case, the symmetry of the temgris  which originates from the phonon-induced vibrations of het-
determined by the geometry of the nanostructure. erointerface boundaries. Unlike the usual deformation inter-
Consider the finite-size effect in the interlevel transitionsaction in cubic crystals, this mechanism as well as the
in cubical quantum dots. For an infinite potential outside ofmechanism of Refs. 5 and 6 may involve electron interaction
the dot, the electronic energies dg=[(7%42)/(2m*L?)] with transverse acoustic phonons. For narrow QWSs, the in-
X(nZ+nZ+n?), where fy,n,,n,) equals(111) for the teraction with longitudinal acoustic modes due to this
ground state, andn{,n,,n,) equals(211), (121), or (112 mechanism is comparable to and may overcome that from
for the threefold-degenerate first-excited state. A straightforthe bulk deformation potential. The results obtained in the
ward calculation of the matrix elemen¥ ;,, of transitions framework of the tight-binding approximation show that in-
from the statg112) to the statg111), gives terlevel transitions in quantum dots larger than 50 nm are
M = iug[ (e q)(D+ xE,) well described by the usual bulk deformation potential.

+6,0,(3x/2)E IF1x(a)F1y(ay)F1xqy), (13 This work was supported by U.S. ARO.
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