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Substantial contribution of effective mass variation to electron-
acoustic phonon interaction via deformation potential
in semiconductor nanostructures
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Using the approach of deformed ions and the tight binding, we have demonstrated that the
interaction of electrons confined in a nanostructure with acoustic phonons in a cubic crystal is
described by a deformation potential tensor~DPT! whose symmetry is determined by the geometry
of the nanostructure. Here in, we present additional contribution to the DPT which is caused by the
deformation dependence of the electron effective mass and it increases asL22 when the
characteristic size of a nanostructure,L, decreases. For narrow GaAs-based quantum wells, this
contribution is comparable with and can overcome that from the usual deformation potential
coupling. © 1999 American Institute of Physics.@S0003-6951~99!00911-0#
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Interaction via the deformation potential~DP! is one of
the most important mechanisms of the coupling betw
electrons and acoustic vibrations in semiconductors. Fo
homogeneous semiconductor of the cubic crystal symm
with a conduction band minimum at theG point, the interac-
tion Hamiltonian is given by1

H int5D div u, ~1!

whereD is the deformation potential constant, and the div
gence of the lattice displacement,u, determines the relative
change of crystal volume due to deformation. In the fram
work of the effective-mass approximation, the theory of D
has been shown to be valid for slowly varying~on the scale
of the lattice period! deformations.

At low temperatures, DP interaction plays an importa
role in the kinetics of confined electrons. It determines
phonon limited mobility and energy losses of a tw
dimensional~2D! electron gas2 and acoustic-phonon emis
sion may be the only process responsible for electron en
relaxation in dot structures.3 The accepted procedure in th
calculation of the deformation interaction in semiconduc
heterostructures is to use the bulk interaction Hamiltonian
Eq. ~1!. It is assumed that the parameterD does not depend
on a size and a shape of the quantum heterostructure.
acoustic field modifications which result from the differen
in the elastic properties of materials forming the heteroju
tions are taken into account.4 Recently, a new mechanism o
electron-acoustic phonon interaction, which is intrinsic
semiconductors that have interfaces, and is additiona
usual deformation potential coupling of Eq.~1!, has been
considered.5,6 It arises when acoustic waves cause the in
face spacing to change and thereby to perturb the elec
states. This additional interaction,5 known as ‘‘macroscopic
deformation potential’’~MDP!, for electrons occupying the

a!Electronic mail: mitin@ece6.eng.wayne.edu
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lowest subband of a rectangular quantum well~QW! has
been written in the form

H int
MDP5

2E1

L
@uz~x,y,0!2uz~x,y,L !#, ~2!

where En5p2\2n2/2m* L2, m* is the isotropic effective
mass, and the planesz50 andz5L are at the positions o
the interfaces. An interaction of the same nature, known
the ‘‘ripple mechanism’’~RM!, which is applicable for all
nanostructure geometries, was introduced by6

H int
RM5u~r !¹U~r !, ~3!

whereU(r ) is a confinement potential. In contrast to the ca
of the bulk mechanism of Eq.~1!, which allows only the
interaction with longitudinal phonons in isotropic medi
transverse acoustic phonons contribute to the interaction
Eqs.~2! and~3! as well. The MDP interaction is weak com
pared with the bulk interaction of Eq.~1! as 2E1 /D!1. For
small dot sizes, it was found6 that the RM contribution to the
electron scattering rates can be larger than that from Eq.~1!.

The finite-size effect in quantum heterostructures is
limited to the MDP ~or RM! interaction. The deformation
variation of the electron effective mass also gives rise t
size-dependent contribution. Let us consider a change
electron energy in a rectangular QW, under an appl
uniaxial strain: the displacementu(z)52gz with g
5const. Pressure is accommodated by shifting of the zo
center energy of the bulk semiconductor according to
~1!, and by shifting of the energy levels in the QW. Takin
into account the change ofE1 both due toL(g)5L(0)(1
2g) and m* (g)5m* (0)(11gx), wherex is a phenom-
enological parameter, in the first order ofg we get the overall
energy shift

dE5g@2D1~22x!E1#. ~4!

Here the term 2gE1 coincides withH int
MDP. The sign of this

shift corresponds to that of the relative change of QW wid
5 © 1999 American Institute of Physics
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in the case of compression,g.0, the energy level moves u
@the perturbation of Eq.~3! gives 22gE1#. For electrons
with three-dimensional~3D! wave vector,k, the contribution
of the pressure dependence ofm* to shifting the electron
energy is proportional7 to k2, and the effect is negligible fo
energies near band edge (k→0). In the case of heterostruc
tures, the minimum of the electron energy is determined
the finite energy of spatial quantization, and this contribut
is not small. To estimate this effect, one can expresx
through the slopedEg /dP of the pressure band gap ener
dependence, which is measured experimentally under an
plied hydrostatic pressure. Using the known expressions
m* from k•p perturbation theory, in the case when the
teraction of nearest nondegenerate bands is substantial
obtains for relative changes the relationship7 dm* /m*
.dEg /Eg . Taking into account that the value ofx in Eq. ~4!
corresponds to a uniaxial~not hydrostatic! pressure, we ob-
tain

x.
3K

Eg

dEg

dP
, ~5!

where the quantitativeK is the modulus of the hydrostati
compression. Using the date given in Ref. 8, we findx
.17 for GaAs andx.40 for InAs. We see that this contri
bution may exceed that given by the MDP~or RM! mecha-
nism. For narrow QWs it can be comparable with the ene
shift via the bulk deformation potential. For a GaAs-bas
QW with a width L510 nm, one obtains (x22)E1

50.84 eV, i.e., about 10% ofD value. This contribution in-
creases asL22 whenL decreases. If the signs ofD andx are
different, then the electron-acoustic phonon interaction i
QW is to be weaker than that from the bulk DP interactio

In Eq. ~4!, which predicts the energy shift induced b
homogeneous deformation, the size-dependent part e
additively and is described byE1(L). For the case of inter-
action with acoustic waves, the displacementu~r ! can be
altered on the scale of an interface spacing. It gives a
tional dependencies of the energy shift onL which are dif-
ferent for the interface mechanisms and bulk interaction
Eq. ~1!. In the present work, to derive the electron-acous
phonon interaction Hamiltonian which describes the DP
teraction and the overall contribution of the interfaces
start from the microscopic level. In this way, the assumpt
about independent contributions of the different mechanis
under considerations is not used.

Consider an electron with the free mass,m0 , in a crystal
with the lattice potential,V(r ). To determine the perturba
tion caused by a smooth displacement,u~r !, we use the
model of deformed ions. According to this model, the latt
potential in a deformed crystal equalsV(r2u). The change
of the potential,V(r2u(r ))2V(r ), upon using a Taylor ex-
pansion for small acoustic displacements, yields

H int52~u~r !•¹!V~r !. ~6!

We will neglect the modification of elastic parameters
heterostructures and will use bulk-like expressions for
displacement:u5eu0 exp(iqr ), wheree is a polarization unit
vector, q is a 3D wave vector, andu0 is an appropriately
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normalized amplitude. In this approach, the presence of
terfaces in Eq.~6! is accounted for entirely by the lattic
potential.

Consider first a 2D electron layer bounded by 0<z
<L. Introducing the periodic boundary conditions in thexy
plane containingNxNy elementary cells, one can write th
eigenfunctions in the undeformed crystal as

Cnk5~NxNy!21/2eikrcnk~r !, ~7!

where k5(kx ,ky) stands for the 2D electron wave vecto
cnk(r ) is a periodic function overx and y with the lattice
period, and describes the localized states in thez direction
(n51,2,...,cnk(r )50 atz56`!. The matrix element of the
intrasubband transitions between the statesnk andnk8 is

Mnk8,nk52 iu0E
2`

`

dzE dreiqzzcnk* cnke
iqzz~e•¹!V~r !.

~8!

Here k85k1qi , qi5(qx ,qy), r5(x,y), the integral over
x,y is spread over one elementary cell. Using the Green id
tity and then the Schro¨dinger equation forcnk , one can
eliminateV from Eq. ~8!. For transitions near the bottom o
the subband, we get

Mnk8,nk52 i
\2

m0
u0E

2`

`

dzE dreiqzzF1

2
~e•qi!u¹ icn0u2

1ezqzu¹zcn0u2G , ~9!

wherecn0[cnk50 . Here and in the remainder of this lette
a change ofu~r ! within an elementary cell is neglected. R
placingcnk with cn0 , we neglect the contribution caused b
a change ofm* in the x,y plane. To calculate the function
cn0 , we exploit a tight-binding approach in a crystal with
simple cubic lattice and assume that only first-neighbor c
couplings are nonzero. For a slab which consists ofN cells in
the~001! direction, the electron wave functions are given b9

cn0~r !5S 2

N11D 1/2

(
1

sinS pnlz
N11Dw1~r !, ~10!

wherew15w(r2bl) is a state of an isolatedlth cell, andb is
the lattice period,l z51,2,...N. Let the ‘‘atomic’’ function
w~r ! be the electron ground state in 3D rectangular quan
dot with the potentialV50 for 2a/2,x,y,z,a/2 and V
5V0 outside the well. We assume thatka@1 (k
5A2m0V0 /\2). Using a multiplicative form, w(r )
5wx(x)wy(y)wz(z), where wx(x) is a state in a one-
dimensional QW, we get~for pn/N!1!

Mnk8,nk5 iu0@~e•q!D1ezqz~22x!En#Fnn ,
~11!

Fnn85
2

L E
0

L

sin
pnz

L
sin

pn8z

L
dz.

Here the deformation potential is

D52
p2\2

a2m0
~124~d/a!e2kd!, ~12!

and the deformation dependence ofm* is determined byx
52kd, whered5b2a is the interwell barrier width, and
kd@1 @in this model, 1/m* is proportional to exp(2kd)#.

IP license or copyright, see http://ojps.aip.org/aplo/aplcr.jsp
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From Eq.~11! it follows that the intrasubband scattering
2D electron gas in a cubic crystal is described by interac
HamiltonianH int5Di j ui j , whereui j is a strain tensor,Di j is
the diagonal tensor of deformation potential which has
componentsDxx5Dyy5D, Dzz5D1(22x)En . The above
used microscopical model of a crystal can be easily gene
ized on the two- and three-dimensional confinement po
tials. In the general case, the symmetry of the tensorDi j is
determined by the geometry of the nanostructure.

Consider the finite-size effect in the interlevel transitio
in cubical quantum dots. For an infinite potential outside
the dot, the electronic energies areEn5@(p2\2)/(2m* L2)#
3(nx

21ny
21nz

2), where (nx ,ny ,nz) equals ~111! for the
ground state, and (nx ,ny ,nz) equals~211!, ~121!, or ~112!
for the threefold-degenerate first-excited state. A straight
ward calculation of the matrix element,M12, of transitions
from the state~112! to the state~111!, gives

M125 iu0@~e•q!~D1xE1!

1ezqz~3x/2!E1#F11~qx!F11~qy!F12~qz!, ~13!

whereD andx have the same definitions as in Eq.~11! ~with
allowance of inequalitykd@1, we have neglected sma
terms which describe the RM contribution!. In Eq. ~13!, due
to the energy conservation law, the phonon wave vector,qz ,
is considerably larger than the inverse dot size 1/L. On the
other hand, the theory is valid ifqz is small compared to the
inverse lattice constant, 1/b. These two criteria may be sa
isfied only for large-size dots~L.50 nm for GaAs-based
structures!. In this case, the correction terms,xE1 , in Eq.
~13! are negligibly small.

In conclusion, we have demonstrated the role of the
formation dependence of the electron effective mass in
Downloaded 23 Apr 2003 to 141.217.203.226. Redistribution subject to A
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interaction of electrons with acoustic phonons in quant
heterostructures. Starting from microscopic considerat
we have derived a part of the interaction, which describes
interfaces’ contribution. It was shown that the deformati
dependence of the effective mass contributes a s
dependent part to the electron-acoustic phonon interact
This contribution can exceed that from the mechanism5,6

which originates from the phonon-induced vibrations of h
erointerface boundaries. Unlike the usual deformation in
action in cubic crystals, this mechanism as well as
mechanism of Refs. 5 and 6 may involve electron interact
with transverse acoustic phonons. For narrow QWs, the
teraction with longitudinal acoustic modes due to th
mechanism is comparable to and may overcome that f
the bulk deformation potential. The results obtained in
framework of the tight-binding approximation show that i
terlevel transitions in quantum dots larger than 50 nm
well described by the usual bulk deformation potential.
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