
JOURNAL OF APPLIED PHYSICS VOLUME 85, NUMBER 5 1 MARCH 1999
Energy and momentum relaxation of two-dimensional electron gas
due to near-surface deformation scattering

V. I. Pipa and F. T. Vasko
Institute of Semiconductor Physics, Kiev, 252650, Ukraine
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We model the influence of a cap layer with a fixed thickness placed on top of a semi-infinite
heterostructure on the energy and momentum relaxation rates for two-dimensional electrons
localized in the lowest subband of a quantum well, and interacting with the acoustic phonon via the
deformation potential. The relaxation rates are derived from the corresponding balance equations for
a small deviation from the thermodynamic equilibrium. Our results indicate that at low temperatures
the efficiency of the scattering is changed substantially depending on the mechanical conditions at
the surface; the cases of free and rigid surfaces are considered. The dependencies of the electron
energy and momentum rates on the distance from the electron layer to the surface, on the
temperature and electron concentration are analyzed. It is shown that the efficiencies of relaxation
are changed substantially~up to two times for standard parameters of GaAs or InAs based quantum
wells! depending nonmonotonically on the distance of the 2D layer to the surface and on the
electron temperature. ©1999 American Institute of Physics.@S0021-8979~99!03004-2#
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I. INTRODUCTION

It is usually accepted that the modifications of ne
surface phonon modes do not change the scattering of
dimensional 2D electrons by acoustic phonons substanti
they contribute to the scattering rates only correction fac
of the order of unity.1,2 This is why it has been possible t
explain the measured temperature dependencies of
mobility3 and energy losses4,5 based on theories6,7 using con-
ventional 3D bulk phonon modes. However, in the case
low temperatures, the effect of acoustic phonons confi
ment on electron transport is well pronounced in fre
standing heterostructures8 as well as in the energy relaxatio
of 2D electrons placed near a free9 or rigid10 surface. In
recent theoretical work,11 a substantial contribution of ther
mally excited surface acoustic phonons to the transport
laxation rate was obtained. To understand the peculiaritie
near-surface electron–acoustic–phonon scattering, let
consider the behavior of the energy of the electron–pho
deformation interaction,D div u, near a free or clamped
boundary as depicted in Fig. 1; hereD is the deformation
potential constant, andu is a vector of displacement. In th
latter case, the displacement components are equal to ze
the boundary and their normal derivatives are not c
strained. For a free surface, normal components of the s
tensor vanish at the boundary, while the displacements
not constrained. Hence,D div u is enhanced near a clampe
surface and suppressed near a free surface. As for typ
heterostructures, the width of a layer between the quan
well and the surface is compared to the characteristic wa
lengths of phonons which contribute the scattering; thus,
near-surface modification of the acoustic field depends

a!Electronic mail: mitin@ece6.eng.wayne.edu
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the mechanical boundary conditions and will effect t
electron–phonon interaction. In the case when the acou
wavelengths are comparable with the width of the elect
layer, the efficiency of electron–phonon interaction may
enhanced near a rigid boundary and suppressed near a
boundary. Besides this modification—which can either e
large or suppress electron–phonon interaction—near-sur
scattering probabilities are always augmented by the tra
formation of the incident transverse acoustic waves into
decaying longitudinal waves as well as by the contribution
Rayleigh waves: these waves exist in a medium with f
surfaces~since they are related with a deviation of th
boundary from a plane! and they are absent in one with th
rigid surfaces.

The partial contributions of these additional scatteri
mechanisms are quite different for the temperature ran
determined by the characteristic temperatures:9

T052slpF , T152sl\/d, ~1!

wheresl is the velocity of the longitudinal phonons,pF is
Fermi momentum,d is a characteristic width of 2D layer
here the temperature is measured in energy units. In the
perature rangeT.T1 , the scattering processes are quasiel
tic, the phonon distribution may be considered as the eq
partition, the surface effect appeared to be small, and
usual ‘‘bulk phonon’’ results for a mobility and energy re
laxation rate6,7 of 2D electrons are appropriate. The notic
able surface effects on the energy losses which were
dicted theoretically in Refs. 9 and 10 for the intermedia
temperature range (T0!T!T1), may be realized only in
narrow 2D layers with low electron density. Near-surfa
modifications of the energy losses and momentum relaxa
may be significant for low temperatures with the small-an
4 © 1999 American Institute of Physics
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inelastic scattering events, i.e., forT;T0 ~Bloch–Grüneisen
regime!. As a result, the relaxation rates due to the to
scattering at all types of phonons may be as suppresse
enhanced in comparison with the bulk case depending
above-mentioned factors.

As far as we know, a detailed study of the surface eff
on the electron energy and momentum relaxation has
been carried out previously, and in this article we pres
calculations of the energy and momentum relaxation rate
electrons within the lowest subband of a quantum well due
scattering by acoustic phonon modes of a semi-infin
sample via the deformation potential. The transition pro
ability is obtained for the cases of both a free and a ri
surface. The relaxation rates are derived from the co
sponding balance equations in the case of a small devia
from thermodynamic equilibrium, i.e., when a temperatu
increase is small compared with its equilibrium value o
drift velocity is small compared to the Fermi velocity. Th
analysis of the dependencies of the relaxation rates on
temperature, on the width of a top layer and on the elect
concentration for the two kinds of boundary conditions a
given. Employing the same boundary conditions, we h
also studied the energy losses of hot 2D electrons, where
temperature substantially exceeds the lattice tempera
The results obtained for this case are presented in a sep
paper,12 and we do not include them in this article.

In Sec. II we evaluate the transition probabilities for t
cases of free and clamped surfaces. The expressions fo
energy and momentum relaxation rates are determine
Sec. III. In Sec. IV we analyze the asymptotic expressio
for these relaxation rates. The numerical results concern
the low-temperature range, where the effect under consi
ation may be large, are presented in Sec. V. Discussion
concluding remarks are given in Sec. VI.

II. PROBABILITY OF TRANSITIONS

The transition probability from the electron statecp(r )
with 2D momentump ~r ! is three-dimensional coordinate! to

FIG. 1. Schematic of the structure under consideration and the modifica
of QW’s vibrations near~a! free and~b! rigid surfaces.
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the statecp8(r ) with momentump8 due to the interaction of
an electron with acoustic phonon modes via deformation
tential is given by9

W~p,p8!5S D

\ D 2E drE dr 8cp8~r !* cp8~r 8!cp~r !cp~r 8!*

3^~¹ûr !~¹8ûr8!&. ~2!

HereD is the deformation potential constant,ûr is the opera-
tor of the phonon displacement field,^...& denotes the statis
tical average over an equilibrium phonon distribution a
lattice temperatureT. The correlator^ûr

aûr8
b &, where a,b

5x,y,z, can be expressed in terms of the Green’s funct
of elasticity theory,Gv

ab(r ,r 8), in the following form:13

^ûr
aûr8

b &522\ Im Gv1 i0
ab ~r ,r 8!H ~N\v/T11!

N\v/T
, ~3!

where N\v/T5@exp(\v/T)21#21 is the Planck distribution
function, and the energy of a phonon,\v, is related to elec-
tron energies of the initial and final states~e ande8! by the
energy conservation law. The upper phonon occupation
tor corresponds to emission processes and the lower on
absorption processes.

We will consider 2D electron gas placed in a bound
medium (z>0) parallel to the surface planexy; see Fig. 1.
Due to translation invariance in this plane, to calcula
W(p,p8) one has to know the Fourier transformation of r
tarded Green’s function in 2D plane,Gvq

ab(z,z8). Here the
2D wave vectorq is related top andp8 by the momentum
conservation law, so thatGvq

ab depends on

\v5ue2e8u, \q5up2p8u. ~4!

Assuming the structure under consideration to be an
tropic elastic continuum, we can useq5(q,0) so that the
Green’s function will be determined from the equation:

F st
2 d2

dz2 2~slq!21v2 ~sl
22st

2!iq
d

dz

~sl
22st

2!iq
d

dz
sl

2 d2

dz2 2~stq!21v2
G

3FGvq
xx ~z,z8! Gvq

xz ~z,z8!

Gvq
zx ~z,z8! Gvq

zz ~z,z8!
G5

1̂

r
d~z2z8!, ~5!

wherest is the transverse velocity of sound,r is the density
of the semiconductor, and 1ˆ is the identity matrix. If we
neglect the differences between the mechanical parame
of the heterostructure’s materials, the system Eq.~5! may be
solved with the boundary conditions at the sample’s surfac
Boundary conditions atz50 are given by

Gvq
ab~z50,z8!50, ~6!

for a clamped surface and

5 S dGvq
xx

dz
1 iqGvq

zx D
z50

50

FdGvq
zx

dz
1 iq~122l!Gvq

xx G
z50

50

on
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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5 FdGvq
zz

dz
1 iq~122l!Gvq

xz G
z50

50

S dGvq
xz

dz
1 iqGvq

zz D
z50

50

~7!

for a free surface; here we have introducedl5(st /sl)
2.

Conditions@Eq. ~6!# correspond to the displacementur van-
ishing atz50, while Eq.~7! ensures the absence of a norm
stress atz50. Assuming the structure to be thick, the boun
ary condition at the back surface are replaced by expon
tially decaying or outgoing wave conditions atz→`.

Excluding longitudinal electron coordinates from E
~2!, we obtain the transition probabilities for emission a
absorption phonon processes in the form

W~p,p8!5
2D2

\L2 E dzwz
2E dz8wz8

2 Kv,q~z,z8!

3H ~N\v/T11! e.e8

N\v/T e,e8
, ~8!

where emission and absorption correspond to the upper
lower factors, respectively. Here,wz is the wave function of
an electron in the lowest subband,L2 is the normalized area
in planexy, and the kernelKv,q(z,z8) is given by

Kv,q~z,z8!52ImS q2Gvq
xx 2 iq

]Gvq
zx

]z

1 iq
]Gvq

xz

]z8
1

]2Gvq
zz

]z]z8
D . ~9!

Straightforward calculation of theKv,q(z,z8) gives the fol-
lowing expression:

Kv,q~z,z8!5Re
v2

2rsl
4kl

@eikl uz2z8u1R~v,q!eikl ~z1z8!#,

~10!

where boundary conditions determine only the reflecta
coefficient R(v,q). ~For the case of a realkl , R is the
reflected-to-incident longitudinal wave amplitude ratio.! For
a free surface, we have

R~v,q!5
4klktq

22~kt
22q2!2

4klktq
21~kt

22q2!2 , ~11!

while for a rigid surface,R(v,q) takes the form

R~v,q!5
klkt2q2

klkt1q2 . ~12!

The normal components of wave vectors forl, t modes~if
q,v/sj ) or the attenuation decrements for these modes~if
q.v/sj ) are introduced by the relations

kj5HA~v/sj !
22q2, q,v/sj

iAq22~v/sj !
2, q.v/sj

. ~13!

Note that in accordance with Eq.~3!, kj depends onv1 i0
under calculation ofR(v,q); by such a substitution, the con
tribution of Rayleigh waves is described.
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III. RELAXATION RATES

In describing relaxation processes in a 2D electron ga
is convenient to consider the losses of the energy and
drift velocity ~Q and U! which are introduced by the rela
tions

Q5
2

nL2 (
p

epJe2ph~p!, U5
2

nL2 (
p

p

m
Je2ph~p!.

~14!

Here,n is the concentration of 2D electrons,ep5p2/2m, m is
the effective electron mass, andJe2ph(p) is the integral of
electron–phonon collisions which is written in the usu
form

Je2ph~p!5(
p8

@W~p8,p! f p8~12 f p!

2W~p,p8! f p~12 f p8!#, ~15!

and f p is the 2D electron distribution function.
To calculate the energy relaxation rate, we assume

electron distribution to be the Fermi functionf̃ e5$exp@(e
2m)/Te#11%21 with a chemical potentialm and the tempera-
ture Te differing from the lattice temperatureT. Taking into
account that the transition probability satisfies the deta
equilibrium conditionW(p8,p)5exp@(e82e)/T#W(p,p8), we
obtain

Q5
1

nL2 (
pp8

~e2e8!W~p,p8!

3FexpS e82e

T D f̃ e8~12 f̃ e!2 f̃ e~12 f̃ e8!G , ~16!

where the probabilityW(p,p8) has a discontinuity ate5e8,
according to Eq.~8!. For the case of weak heating (uTe

2Tu!T), Eq. ~16! becomes

Q52ne~Te2T!, ~17!

where the energy relaxation rate,ne , is expressed as

ne5
2

n E0

`

deE
0

`

de8S e2e8

T D 2

W~e,e8! f e~12 f e8!,

~18!

W~e,e8!5
1

L2 (
p,p8

d~e2ep!d~e82ep8!W~p,p8!.

Here, f e is the Fermi function at equilibrium. Separating o
the phonon occupation numbers inW(e,e8), we can see tha
the main contributions tone are from the region whereE
5(e1e8)/2.m and ue2e8u is less or of the order ofT. The
integration overE for the highly degenerate electrons (T
!m), may be transformed to

E
0

`

dE fE1j/2~12 f E2j/2!5
j

ej/T21
, ~19!

wherej5e2e8 is the energy transfer under scattering. As
result,ne takes the form

ne.
2

nT2 E
0

m

dj
j3we~j!

cosh~j/T!21
, ~20!
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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where the upper limit of integration may be taken to be
finity. Here,we(j) is expressed through the kernel Eq.~10!
according to the relation

we~j!5
Dm2

2p2\5 E
0

2p df

2p E dzwz
2E dz8wz8

2 Kv,q~z,z8!,

~21!

wheref is the angle betweenp andp8. Let us substitute Eq
~10! into Eq. ~21! and introduce the characteristic relaxati
rate

n̄5
~DpF!2m

p\4rsl
, ~22!

wherepF5A2mm is Fermi momentum. As a result Eq.~20!
is transformed to

ne5
n̄msl

2

2T2~slpF!5 E
0

` djj5

cosh~j/T!21 E0

2p df

2p

3E dzwz
2E dz8wz8

2 Rek l
21@eik l pFuz2z8u/\

1Reik l pF~z1z8!/\#, ~23!

where we have introduced the dimensionless wave vec
k j5\kj /pF and put e5e85m in q so that now q
5(2pF /\)usinf/2u. Thus, Eq.~23! contains

k j55 A~j/pFsj !
22S 2 sin

f

2 D 2

, Usin
f

2U,j/~2pFsj !,

iAS 2 sin
f

2 D 2

2~j/pFsj !
2, Usin

f

2U.j/~2pFsj !,

~24!

and the reflectance coefficientR(kl ,kt ,q2) is transformed to
R@k l ,k t ,(2 sinf/2)2#.

Momentum relaxation processes may be analyzed in
same approach by use of the shifted Fermi distribution fu
tion, f p . Assuming the anisotropy of this distribution to b
weak, i.e., (pvdr)!T where the drift velocity isvdr , we use

f p. f e2~pvdr!
d fe

de
. ~25!

The balance equation for the drift velocity takes the form

U52nmvdr , ~26!

where the momentum relaxation rate,nm , may be expressed
by analogy with the above considered energy relaxation c
in the form

nm5
1

nL2 (
pp8

@~p2p8!vdr#
2

Tmvdr
2 W~p,p8! f e~12 f e8!. ~27!

Using Eq.~19! we transform Eq.~27! to

nm.
4

r2DT E
0

m djjwm~j!

e~j/T!21
, ~28!

where wm(j) differs from Eq. ~21! due to the additiona
angle factor~12cosf!. The expression fornm is written as
@compare with Eq.~23!#
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nm5
n̄

2T~slpF!3 E
0

` djj3

cosh~j/T!21 E0

2p df

2p
~12cosf!

3E dzwz
2E dz8wz8

2 Rek l
21@eik l pFuz2z8u/\

1Reik l pF~z1z8!/\#, ~29!

wherek j is determined by Eq.~24!.
Thus, the calculation of the energy and momentum

laxation rates determined by Eqs.~23! and ~29! are reduced
to integrations over the energy transfer and the anglef
5(p, ˆ p8), and also to averaging over the transverse dis
bution of the electron density,wz

2. These expressions de
scribe the dependencies of the relaxation processes on
temperature and heterostructure’s parameters—the elec
concentration, the distance between the 2D layer and
surface, and the profile of the confinement potential—a
also whether the surface is free or rigid.

IV. REGIMES OF RELAXATION

Let us first discuss the character of the dependencie
the relaxation rates,ne,m , on the parameters of the heter
structure for the temperature ranges determining by the c
acteristic temperaturesT0 and T1 ; see Eq.~1!. These tem-
peratures resolve the following three ranges: h
temperatures (T.T1), where the quasielastic relaxatio
takes place; intermediate temperatures (T0,T,T1); and
low temperatures (T,T0), where the Bloch–Gru¨neisen re-
gime of inelastic relaxation is realized.

The surface effect on the energy and momentum re
ation processes arises due to the modification of the acou
field and is as follows:~1! interference between the inciden
and reflected longitudinal waves (v.slq), ~2! reflection in-
duced transformation of an incident transverse wave i
decaying longitudinal wave (stq,v,slq), ~3! appearance
of a Rayleigh wave (v,stq)—in the case of a free surface
These ranges are shown in Fig. 2, where the dimension
energy transferx5ue2e8u/T and the angle variabley
5usin(f/2)u are introduced. Range 1 corresponds to real v
uesk l ,t @given by Eq.~24!#, range 2 corresponds to realk t

and imaginaryk l , in range 3 bothk l andk t are imaginary.
The partial contributions of these additional channels of
scattering depend substantially on the temperature range
electron concentration, and the distance between the sur
and the 2D layer.

For high temperatures, electron energy transfer in
range\slq!ue2e8u!T makes the dominant contribution t

FIG. 2. Three regions of integration in Eqs.~23! and ~29!. The variablesx
and y are the dimensionless energy and momentum tranfers:x5ue
2e8u/T, y5up2p8u/2pF<1, andl5(st /sl)

2.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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ne,m . The relaxation is determined mainly by the quasielas
collisions with equipartition phonons propagating almo
perpendicular to the surface. Forkl@q, we find from Eqs.
~11! and ~12! the reflectance coefficientR.21 for a free
surface andR.11 for a clamped surface. As a result, r
placing in Eqs.~23! and ~29! k l with j/pFsl and cosh(j/T)
21 with j2/2T2, we get

F ne

nm
G52n̄S T

T0
D 2E

2`

`

dxFTx2/2m
1 G

3E dzwz
2E dz8wz8

2 Fcos
2T~z2z8!x

T1d

7cos
2T~z1z8!x

T1d G . ~30!

Here, x5j/T, and the parity of the integrands~againstx!
was used; the upper and lower signs concern to free and
surfaces, respectively. In the approach under considera
the contributions of ranges 2 and 3 are neglected, so
only range 1 may contribute.

The integration of the first term in Eq.~30! ~with z2z8
argument!, gives the bulk values of the relaxation rate
ne,m

b —for a 2D layer placed far from the surface. The seco
term, which depends onz1z8 argument, describes the su
face effect.

For the ground state electron wave function in a rect
gular quantum well~QW! with the potential outside taken t
be infinite, we obtain from Eq.~30! the known bulk relax-
ation rates of 2D electrons6,7 @nm

b (T) proportionalT and ne
b

independent onT# and therewith the surface effect appears
be absent. The latter result is valid for a 2D layer with
arbitrary confinement-potential profile. Indeed, sincewz(z
50)50, one may considerz1z8.0 under the integration
over x, so that exp@62T(z1z8)x/T1# vanishes atx→6 i`.
Such an integral may be calculated by the residue met
and it appears to be zero for an arbitrary functionwz

2 because
the integrand is an analytical function.

Consider now the intermediate temperature range,
fined byT0!T!T1 . Here the linear connection betweenk j

and j remains valid, so thatR561 as above, but now the
scattering events become partially inelastic, and one ough
use Planck’s phonon distribution. Taking into account t
kld!1, one may simplify Eqs.~23! and~29!, replacingz and
z8 with z0 in the smooth functions exp@iklpF(z6z8)/\#. We
get

F ne

nm
G52n̄S T

T0
D 2E

0

` dx

coshx21 FTx4/2m
x2 G~17 cosGx!,

~31!

where the dimensionless parameter

G5
4z0T

dT1
, ~32!

is proportional to both the temperatureT and the QW’s po-
sition z0 . Using the bulk relaxation rates,ne,m

b , which follow
from Eq. ~31! for z0→`, Eq. ~31! can be written as
Downloaded 23 Apr 2003 to 141.217.203.226. Redistribution subject to A
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F ne /ne
b

nm /nm
b G5E

0

b dx

coshx21 F15x4/~8p4!

3x2/~2p2! G~17 cosGx!.

~33!

Temperature and position dependencies determined
the integrals Eq.~33! ~they may be calculated in an analytic
form!, are shown in Fig. 3. These dependencies exhibit
effect of the proximity of the surface to the QW, caused
an interference of incident and reflected longitudinal wav
~range 1 in Fig. 2!, The plotted data given(T)/nb for fixed
z0 , or n(z0)/nb for fixed T. In the approach under conside
ation, the energy of electron–phonon interaction,D div u,
reduces toDduz /dz ~sincekl@q) and, due to large acousti
wavelengths (kld!1) the strong sensibility to the boundar
conditions is revealed. At a free surfaceduz /dz50, and in
the limiting case ofG→0 the acoustic phonons scattering a
completely suppressed as indicated by the solid curve
Fig. 3 in a vicinity of G50. The nonmonotonic behavior o
ne(G)/nb can be explained in the following way. In the ca
culation of the energy relaxation rate, determined by E
~33!, the oscillating function cos(Gx) is integrated togethe
with a function, which has a sharp peak~at xm53.83). In a
given result, the sign of the surface effect is determined
that of cos(Gxm), reflecting the surface-induced appearan
of the nodes and antinodes ofD div u. If Gxm.p/2, the
effect changes its sign; the valueG5p/2xm is close to theG
value for which ne50 in Fig. 3. In the case ofnm , the
corresponding function in Eq.~33! has a maximum atx50,
and nm(G) appears to be monotonic. Note, that the stro
inequalityT0 /T15d(2pn)1/2!1 is possible only for narrow
QWs and for low concentrations. For a 3 nm QW, we find
that T0 /T1,0.1 if n,1010cm22.

In the low-temperature range, whenT;T0 , with the
electron–phonon collisions being substantially inelastic a
with the angle-dependent wave vectors,k j , of Eq. ~24!, the
relaxation rates are given by cumbersome integrals, and
lytical analysis of how the rates depend onT andz0 can give
only rough estimations. For a QW placed close to a surf
and forT!T0 , so thatG!1, one may make use of the sma
angle scattering approach to obtain

FIG. 3. Energy~e! and momentum~m! relaxation rates, normalized to th
bulk values, calculated from Eq.~33! vs the dimensionless parameterG,
given by Eq.~32!. Solid and dashed lines correspond to the free and ri
surfaces.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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ne,m
j /ne,m

b 5Fe,n
j ~sl /st!, ~34!

wherene
b;T3 andnm

b ;T5 in accordance with the results3,9,13

for unscreened deformation interaction, and the labelj 5 f , r
corresponds to either a free or a rigid surface. The func
Fe,n

j depends on a ratiosl /st only and does not depend onT.
It means that the temperature dependence of the relaxa
rates calculated with the phonon modes of semi-infinite m
dium is the same as that calculated with the bulk modes.
sl /st51.73 we getFe

f 52.51, Fe
r 51.75 andFm

f 513.2, Fm
r

52.37, with the contribution of the Rayleigh wave excee
ing that of the other two mechanisms in about 2 times forne

and in about 6 times fornm . It should be emphasized, how
ever, that as the temperatureT or the distancez0 increase, the
relations Eq.~34! soon breakdown; thus, to estimate the s
face effect, one has to turn to numerical calculations.

V. NUMERICAL RESULTS AND DISCUSSION

We have considered a rectangular quantum well
have chosen a ground state wave function of the formwz

5(2/d)1/2cos@p(z2z0)/d#. To extract the surface effect, w
calculated the ratione,m /ne,m

b , where the normalization
functions,ne,m

b , were determined asne,m(z0→`). The cal-
culations were carried out for a 3 nm QW, st54.2
3105 cm/s and the sound velocity ratiosl /st51.78; these
values are close to those of InAs and GaAs heterostructu

The temperature dependencies of the normalized en
and momentum relaxation rates—calculated for the differ
electron concentrations—are shown in Figs. 4 and 5, wh
the temperature is measured in degrees Kelvin. The Blo
Grüneisen temperatureT0 equals 2.65 K for curve 1 and 6.
K for curve 3. It is seen that the effect of a rigid surface, d
to the absence of a Rayleigh wave, is similar to that plot
in Fig. 3 ~dashed curves!. In the case of a free surface, th
behavior of the rates is similar to that presented in Fig
~solid lines! only for the high-temperature wings where th
scattering events involving the surface wave become we
For low temperatures~left-hand side of the plots!, the en-
hancement of the energy and, especially, momentum re

FIG. 4. Energy relaxation rate, normalized to the bulk value vs tempera
for z053 nm andn: 1 – 1011 cm22, 2 – 331011 cm22, 3 – 631011 cm22.
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ation rates near a free surface, in comparison with bulk v
ues, is caused primarily by scattering with the Raylei
wave. The upper boundary of the temperature range wh
this scattering became dominant coincides approxima
with the minima positions of thef curves in Fig. 4 and de-
creases with the decreasing electron concentrationn, and that
is in a qualitative agreement with then dependence ofT0 .
Note, that even for a small distance (z053 nm) and forT
,1 K, the temperature dependence of the ratesne and nm

differ strongly from dependenciesne
b(T) andnm

b (T).
In a similar way, one can explain the peculiarities in t

QW position which are illustrated in Figs. 6 and 7. It is se
from Fig. 6 that the rigid surface gives rise to a nonmon
tonic dependence ofne /ne

b on position; this dependence is o
the same type shown in Fig. 3, where the curves should
considered now as plotted versus the distancez0 for a fixed
T. Comparing, for example, the minima positions of t
curves 1r and 2r ~or, with the same result, 3r and 4r ) in
Fig. 6, we findz0 min

1r /z0 min
2r .3. This ratio coincides with the

re

FIG. 5. Momentum relaxation rate, normalized to the bulk value vs te
perature for z053 nm and n: 1 – 1011 cm22, 2 – 331011 cm22, 3 – 6
31011 cm22.

FIG. 6. Energy relaxation rate, normalized to the bulk value vs the dista
for T,n: 1–1 K, 1011 cm22; 2–3 K, 1011 cm22; 3–1 K, 331011 cm22, 4–3
K, 331011 cm22.
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ratio of the corresponding temperatures: 3 and 1 K. T
agrees withT dependence of the minimum of the dash
‘‘ e’’ curves in Fig. 3 ~remember thatG is proportionalT!.
The free surface effect, presented in Fig. 6 for higher te
peratures~curves 2f and 4f ), is also similar to that of Fig. 3
i.e., the surface-induced interference mechanism of sca
ing dominates here. The curves 1f and 3f , calculated for
lower temperature, exhibit the case when scattering is do
nated by Rayleigh waves for a QW placed quite near
surface (z0;d). This scattering is greater for QWs wit
higher electron concentration~compare curves 3f , 1f ) due
to the greater value of the corresponding characteristic t
peratureT0 . The momentum relaxation rate as a function
z0 has a less complicated behavior~Fig. 7!. In the case of a
free surface, in contrary to the functional form presented
Fig. 3 by the solid ‘‘m’’ curves, for all values ofz0 we have
nm.nm

b , which is mainly caused due to interaction wi
Rayleigh waves. In a structure with a rigid surface, th
exist distances for whichnm,nm

b . This suppression of the
relaxation rate appears to be due to the existence of the
terference nodes of the electron–phonon interaction: for
case of small angle scattering, realized here,R,0 for a rigid,
as well as for a free surface.

From Fig. 8 one can see, that the free surface ef
exceeds the effect given by a rigid surface. Exceptions
pear only for QWs located close the surface~see also the
corresponding peculiarities in Fig. 4!. The distance, where
ne

f ,ne
r , increases with decreasingT. It should be noted tha

the dominance of the free surface effect over that of the r
surface may be rather large.

The key factor governing the dependence of the surf
effect on the electron concentration,n, is connected, in the
temperature range under consideration, with the concen
tion dependence of the characteristic temperatureT0 . For
increasingn, the temperatureT0 increases, and the free su
face effect is suppressed for temperaturesT.T0 ; compared
with each of the other curves 1f and 3f in the middle part of
Fig. 4 or the same curves in Fig. 5 but for lower tempe
tures, where electrons undergo an extremely strong inte

FIG. 7. Momentum relaxation rate, normalized to the bulk value vs
distance for T,n: 1–1 K, 1011 cm22; 2–3 K, 1011 cm22; 3–1 K, 3
31011 cm22; 4–3 K, 331011 cm22.
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tion with a Rayleigh wave, the influence of the surface
enlarged; as shown by the curves 1f and 3f in the left-hand
side of Fig. 4. The rigid surface effect has a weaker sens
ity due to the absence of the Rayleigh wave. These dep
dencies are illustrated in Figs. 9 and 10.

Let us list the main assumptions made in these calc
tions. First, only the deformation potential contribution
electron–phonon interactions has been taken into acco
The contribution of the piezoacoustic scattering increase
the temperature decreases.14,15According to the results,14 the
temperatures when the contributions of these mechani
are comparable can be estimated as 2.5 K for GaAs ba
and 0.6 K for InAs based QWs. Thus, the results presente
this article in a temperature range below these critical valu
demonstrate only a pronounced change of the relaxa
rates~by a factor of 10 forT of the order of 0.1 K!, while for
higher temperatures, our calculations provide quantitative
sults. In addition, the various approaches are related w
flat-band approximation which does not describe the eff
of the self-consistent electric field~its contribution is small
for thin QWs! and by using a simple parabolic energy ba
~nonparabolic correction factors may be sufficient in InA

e

FIG. 8. Ratio of~a! energy and~b! momentum relaxation rates, calculate
for the cases of a free and a rigid surface, vs the distance forT,n: 1–1 K,
1011 cm22; 2–3 K, 1011 cm22; 3–1 K, 331011 cm22; 4–3 K, 3
31011 cm22.
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based QWs under the concentration near 1012cm22). Ap-
proximations concerning the methods of calculation ha
also been made. The exploitation of the balance equati
the corresponding relaxation rates being introduced, is g
erally accepted and usually gives good agreement with
more advanced methods of the kinetic equation solutions
with the results of Monte Carlo simulation. In deriving Eq
~23! and ~29! the inequalitym@2msl

2 has been used; thi
inequality is well satisfied for degenerate electrons.

VI. CONCLUSIONS

In this article we have presented a systematic study
the modification of the 2D electron energy and moment
relaxation rates occurring due to a near-surface modifica
of the acoustic field. The electron–phonon deformation
teractions are taking into account, and the dependencie
the temperature, position of the 2D electron layer, and
electron concentration are analyzed for the case of dege
ate electrons. Numerical calculations demonstrate anon-
monotonic character of these dependencies, a several
change in the relaxation rates as compared with the b
values, and a rather strong sensitivity to the 2D electron la
position even for a distancez0 of the order of 10 timesd. In
recent years, 2D layers with control over the width of the t
layer, including the case of a QW placed just adjacent to
sample boundary based on In0.2Ga0.8As/GaAs heterostructure
have been fabricated and investigated by optical metho16

~this case corresponds to the free surface model!. The
clamped surface model may be applied to heterostruct
with a rigid substrate.

The results presented for these calculations indica
considerable changes~up to 50%–100% under helium tem
peratures! for the relaxation rates under consideration a
they exhibit decrease of their surface-induced modificatio
when the QW is removed from the boundary. These res
demonstrate that the expressions forne,m under relaxation
due to the interaction with the bulk acoustic modes are
suitable for describing experimental data and this failure
tends beyond just the case of structures with an ultrathin
layer. Moreover, in a number of publications the deformat

FIG. 9. Energy relaxation rates, normalized to the bulk value, calculated
the cases of a free and a rigid surface, vs the electron concentration fz0

53 nm andT: 1–1 K; 2–2 K; 3–4 K.
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potential value had to be adjusted by 50% and even m
see Ref. 3. Since the character of the dependencies oz0

does not appear to have been investigated experiment
special measurements are necessary. A special case of
est is the rangeT.1 K where the surface effect is large
corresponding results, with piezoelectric scatterings
cluded, will be presented separately.17 Note, that the position
dependencies obtained for the energy relaxation rate can
stantially change the picture of heat removal processe
semiconductor devices.18 Decreasing the momentum relax
ation rate due to the surface effect in thin~to 5 nm width!
QWs gives rise to the possibility of obtaining 2D electro
layers with extremely high mobility, limited by the scatterin
events with structure defects and with roughness of the
terfaces, under higher temperatures. Thus, the results
sented in this article that are due to near-surface modifi
tions of phonon modes and the consequent changes in
electron–phonon interaction, indicate thatphonon engineer-
ing may be used to substantially modify the relaxation p
cesses in selected quantum-based devices.
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