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The acoustic phonon radiation patterns and acoustic phonon spectra due to electron - acoustic
phonon interaction in double barrier quantum well have been investigated by solving both the
kinetic equations for electrons and phonons. The acoustic phonon radiation patterns have
strongly pronounced maximum in the directions close to the perpendicular to the quantum
well direction. The radiation pattern anisotropy is explained in terms of possible electron tran-
sitions; nonequilibrium electron distribution function, and the Hamiltonian of electron-pho-

non interactions.
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INTRODUCTION

Hot acoustic phonon emission represents one of the
major channels for thermal energy removal from het-
erostructures; in addition, detection of phonons emit-
ted by hot electrons provides a valuable tool for
investigation of electron-phonon interactions in heter-
ostructures [1,2]. The problem of the spectrum and
radiation pattern for acoustic phonons emitted from
low dimensional structures has been studied for both
quantum wells (QWs) [3,4] and quantum wires [S].
We have investigated the acoustic phonon emission
by hot electrons in double barrier heterostructures
allowing for electron heating and stimulated phonon
emission processes (in previous works [2,3] the elec-
trons were assumed to be at quasiequilibrium). We
have solved the electron kinetic equation to obtain the
electron distribution function, which has been used to
determine the radiation pattern and spectrum of emit-
ted acoustic phonons. The radiation and absorption
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patterns have highly pronounced maxima inside the
solid angle close to the normal to the quantum well
direction (z-direction). These orientational dependen-
cies are related to the quantum confinement of elec-
trons, uncertainty in the conservation of the phonon z-
component of the wave vector, a peculiar angular
dependence of the density of final electron states, and
the shape of the electron distribution function.

FORMULATION OF THE PROBLEM

We will consider a double barrier heterostructure
quantum well of width a bounded by planes z = a/2
and z = —a/2. The Cartesian coordinates x and y refer
to the plane of the quantum well, the axis x is going in
the direction of the average electron velocity (i.e.,
opposite to the electric field). The axis y augments x
and z to a right-handed basis. The dimensions of the
quantum well in the x —y plane are L, and L,. The
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acoustic phonons are detected by sensors located at a
surface of the substrate. We assume, that the distance
d from the quantum well to the surface is large in
comparison with the lateral dimensions of the quan-
tum well: d > L,, L,, therefore, the quantum well rep-
resents a point source of acoustic phonons. The
described geometrical configuration corresponds to
experimental setup in Refs. [1,2].

The experimentally measurable quantity is the dif-
ferential energy flux G (Aw,Q) (the phonon energy
radiated per unit time, per unit solid angle, per unit
energy interval), determined by the formula

1 q 3

G(hw,Q) = .8_7.t_§/~;ph-e1 nguq Ny-
We will measure it in the units (ps srady"!. In numeri-
cal Monte-Carlo calculations, it is convenient to nor-
malize it per one electron. The above integral is taken
over a surface, Sy, Which encloses the quantum
well and is discussed in more detail below, u is the
sound velocity, N, is the phonon ocupation number, €2
is the solid angle, 7w is the phonon energy. Because
the differential energy flux is a three dimensional
function, it is more convenient to deal with its inte-
grals. The radiation pattern and the radiation spectrum
are defined as

Greo(Q) = /O " G(hw, Q)d(ho),
gQ(h(l)):[mg(hw,Q)dQ, €))

respectively.

The differential energy flux has been calculated by
integrating the quantum kinetic equation for phonon
distribution function over a volume V,,,_,;, which is
bounded by the surface S, ;. This surface is chosen
in such a way that it surrounds the quantum well and
is offset by distance Ar from it, where Ar is the length
of the phonon wave packets, Ar > a. Additional
assumptions which were made to derive G (hw,Q2) are
the following. The in-plane sizes of the quantum well
L, Ly are large enough, L, Ly > Ar, so the 2D elec-
tron gas may be treated as homogeneous and the
fringe effects may be neglected. The electron lateral
confinement is strong, therefore, either only the low-

est electron subband is populated or the rate of inter-
subband transitions is much larger than the rate of
intersubband transitions. Under these conditions the
electron density matrix is diagonal and corresponds to
quasi classical distribution function f; . The rate of
nonequilibrium phonon emission is assumed to be not
very high, so the stimulated phonon emission is pro-
portional to the equilibrium Plank function N, . The
deformation potential makes the major contribution to
the electron scattering by acoustic phonons. Under
these conditions the differential energy flux has the
following form

EZ 4
G(ho,Q) = B S 10l n.g:) x

kH,n,n’
[(1 - fn,kH)fn’,kH+q“ + (fn’,kH+q” - fn,k“ )Ngm}
(en k) — &n K +q) T 1), (1)

where E, is the acoustic deformation potential con-
stant, p is the crystal density, €, , and ho, are the
electron and phonon energies respectively, I (n',n.q,)
is the overlap integral for electron wave functions in
subbands n and n’ and the phonon plane wave. It is
worth mentioning, that Eq. (1) takes into account both
the phonon emission and phonon absorption proc-
esses. In addition, due to integration over the closed
surface Sp;,_o; Which bounds the volume of acoustic
phonon interaction with quasi two-dimensional elec-
trons, Eq. (1) gives the differential energy flux in
excess of the equilibrium differential energy flux,
determined by the function N/,

Outside the volume V,;,_, the phonon kinetic equa-
tion has the form

ONg(r) " ONg(r)
or 9 or

- Jph—phv (2)

where J,y,_py, Is the integral of phonon ~ phonon inter-
action. Because J,,;,_,;, is small over the distance d
from the quantum well to a phonon detector (it can be
shown by a simple estimate), the phonon propagation
may be treated as ballistic and approximation of the
geometrical optics can be employed. Therefore, the
phonon energy detected by a sensor on a surface of
the sample is the same as that determined by Eq. (1).
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RESULTS OF NUMERICAL SIMULATION
AND DISCUSSION

The kinetic equation for electrons takes into account
all significant mechanisms of electron scattering in
OQW: electron scattering by acoustic phonons, as well
as electron scattering by confined and interface opti-
cal phonons. We have solved the kinetic equation for
electrons and obtained the electron distribution func-
tion having employed the Monte Carlo technique. The
obtained electron distribution function has been used
to calculate the differential energy flux (1). However,
because G (£w,L2) is a three-dimensional function of
the spherical angles 0, ¢, and the phonon energy i,
all results will be presented for integrated over ener-
gies or solid angles functions G, (2) and Go(hw)
respectively.

The radiation patterns of quasi two-dimensional
electron gas in electric fields 10, 100, and 1000 V/cm
are shown in Figs. 1(a), (b), and (c) respectively. To
visualize the two-dimensional function Gy (Q2) =
Gro(8, ¢), we fix an angle ¢ and plot a parametric
curve (1Gz,(8,0)I sin 8, Gz,(0,0) c0s0), 0 <6 <72 ;
8 = 0 corresponds to the z-direction, 8 = /2 corre-
sponds to a direction in the x-y plane, namely the
direction given by the unit vector (cos ¢, sin ¢, 0). The
plots above the abscissa correspond to prevailing pho-
non emission (positive Gz,(8,9)), the plots below the
abscissa correspond to prevailing phonon absorption
(negative Gp,(0,0)). The spectra of the acoustic pho-
nons given by the function Gg(#ic) is shown on Fig. 2
for several electric fields.

For a given ¢, electrons can scatter in two regions
in the k;-space. It gives rise to two peaks of function
Gr(8,9) for two different 8 (similar to forward and
backward Scattering in 1D case [5]). These peaks are
very sharp in terms of 8 variable. However, if the
electron distribution function is close to equilibrium
as in Fig. 1 (a), these peks are completely smeared
due to averaging over electron distribution function.
In stronger fields electron distribution function has
streaming-like character. For this reason the the radia-
tion patterns become more anisotropic (see Figs. 1 (b)
and (c)).
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FIGURE 1| Radiation pattern of acoustic phonons, Gz, (£2), in
units meV/(ps srad electron) for azimuthal angles ¢ = 5°, 55°,
85°, 135°, 175°. The numbers at the curves correspond to the
angles ¢. GaAs/AlAs quantum well of width 100 A, lattice tem-
perature T = 30K. Electric field 10 V/em (a), 100 V/iem (b),
1000 V/em (c¢)
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FIGURE 2 The spectra of the acoustic phonon energy flux, Go(®),
in units 1/(ps electron) for electric fields 1 V/cm (1), 10 V/em (2),
100 V/em (3), 300 Vicm (4), and 1000 Viem (5)

In spite of the significant modification of the phonon
radiation patterns when the electric field grows, the
spectrum of irradiated phonons remains remarkably
unchanging (see Fig. 2). The average energy of the
phonons is determined by the width of the quantum
well and is approximately equal to 2nhu/a. The posi-
tion of the maxima may be changed only if both the
lattice temperature and the electric field are so low,
that the average electron energy is smaller than 2nfiu/a.
Eq. (1) gives the differential phonon energy flux in

excess of the thermal equilibrium background deter-
mined by NJ,. Therefore, the total energy of the
radiated phonons is equal to zero if £ = 0. It grows in
small electric fields and then becomes almost field
independent. It happens because the average phonon
energy does not depend on the electric field, and the
electron-acoustic phonon scattering rate in one elec-
tron subband in 2D case is also almost constant due to
energy independent density of states.
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