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Patterns in bistable resonant-tunneling structures
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We report a theoretical investigation of the phenomenon of the formation of patterns transverse to the
tunneling current in resonant-tunneling double-barrier heterostructures. Such patterns arise in heterostructures
with an intrinsic bistability of the current-voltage characteristic. The patterns are characterized by a nonuniform
distribution of resonant electrons in the quantum-well layer and, consequently, a nonuniform tunneling current
density through the heterostructure. Patterns exist for coherent and for sequential mechanisms of the resonant
tunneling. Possible types of stationary patterns depend on the applied voltage, and can be controlled by
conditions on the edges of the heterostructure. In fact, the patterns are two or three dimensional in character,
since the nonuniform electron distributions induce a complex configuration of the electrostatic potential in
barrier regions. In addition to stationary patterns, moving patterns are considered. They describe the switching
of the heterostructure from one uniform state to another.@S0163-1829~97!05544-6#
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I. INTRODUCTION

Resonant tunneling through a double-barrier heterost
ture was observed two decades ago,1 but this phenomenon
still attracts considerable interest because of its fundame
character and increasing number of prospective applicat
~microwave oscillations,2 circuit applications,3,4 cascade
lasers,5,6 etc!. A resonant quasibound state is formed in
quantum well between two barriers. These barriers sepa
the well from electrodes~heavy doped emitter and collecto
regions!. The energy of the quasibound state, measured w
respect to the bottom of the quantum well,«0 , is usually
chosen to be above the Fermi levelEF of electrodes when no
voltage is applied. The applied bias shifts the energy of q
sibound state belowEF , and the electric current passe
mostly through the quasibound state. The current increa
with the bias until the energy of the quasibound state low
below the bottomE0 of the emitter band. At this region th
current falls to a low value, and negative differential res
tance occurs. Different particular mechanisms can be res
sible for the resonant tunneling~coherent,7 sequential,8

phonon-assisted mechanisms,9,10 etc.!. However, when the
quasibound state is in resonance with the emitter elec
states, there is a finite density of electrons, i.e., a built
charge, in the quantum well. This built-up charge determi
the voltage distribution across the heterostructure, and c
siderably affects the current-voltage characteristic. The o
important effect induced by the built-up charge is the intr
sic bistability of the system under consideration. For so
range of biases at a fixed bias, two stable states exist.
state is characterized by the large built-up charge, reson
tunneling conditions, and a large current; the other one c
responds to resonance breaking, a lowering of the qu
bound state below the bottom of the emitter band, and a
built-up charge and current.

The possibility of electrical instability due to an accum
lation of the charge in the well was pointed out by Ricco a
560163-1829/97/56~20!/13346~14!/$10.00
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Azbel.11 Subsequently, the intrinsic bistability was observ
by a number of experimental groups12–14for various double-
barrier structures. Calculations and modeling of the bista
ity were done by various authors.15–17

In these papers, the tunneling was considered one dim
sional, and the transport through the double-barrier hete
structure was supposed to be dependent on only one co
nate, perpendicular to the barriers. Actually, most doub
barrier resonant tunneling structures are layered ones,
the tunneling electron can move not only across the lay
~vertical transport!, but also along these layers~horizontal, or
lateral, transport!. Because the applied voltage is uniform
distributed over the highly conductive emitter and collec
regions, a one-dimensional picture of the electron transp
through barriers and quantum-well layers is sufficient for
gimes with a single state~note, however, that transverse pa
terns in this case are possible in the structures with spe
conditions on their boundaries18!. However, for the case o
bistability, different states of the nonequilibrium system c
coexist. This leads to nonuniform~in the plane of the layers!
distributions of the tunneling current, and built-up char
and potential energy. That is, under a bistable tunneling
gime one can expect spontaneous formation of transv
patterns.

There is a well-known analogy between light waves in t
Fabry-Perot interferometer and the electron waves in dou
barrier structures. The analogy qualitatively illustrates
resonant behavior of electron transmission through the st
tures. The analogy can be extended to the bistability regim
A medium with optical nonlinearity, embedded inside a res
nator, gives rise to optical bistability or multistability.19 Un-
der these conditions, different stationary and moving tra
versal patterns are realized.19,20 In the case of tunneling
nonlinearity in the wave equation appears due to electros
interaction. Similarly to a nonlinear interferometer, one c
imagine various transverse patterns for tunneling in doub
barrier structures. In contrast to the case of a nonlinear in
13 346 © 1997 The American Physical Society
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56 13 347PATTERNS IN BISTABLE RESONANT-TUNNELING . . .
ferometer, the patterns of resonant tunneling can appea
both types of tunneling, coherent and incoherent. One of
goals of this paper is to demonstrate the possibility of th
patterns.

There are a variety of self-consistent patterns known
solid-state physics: stationary and moving Gunn doma
and current filaments atN- and S-shaped current-voltag
characteristics, respectively;21 transverse domains in sem
conductors with equivalent valleys;22,23 stationary and wave
patterns under resonatorless optical bistability;24,25etc. These
and other known examples are related to nonlinear class
electron transport, while, for the case analyzed in this pa
at least in the vertical direction, the transport has a quan
character.

Since horizontal electron transfer is the main process
termining the transverse patterns, let us consider it qua
tively. This transfer can be depicted as follows. The elect
is injected from the emitter to the well in general with a fin
horizontal component of the momentump or velocity v
5p/m* ~m* is the effective mass!. The velocity depends on
the position of the quasibound-state energy with respec
the Fermi energyEF in the emitter: when the energy quas
bound level moves fromEF through the bottom of the emit
ter bandE0 , the velocity changes from zero to the Ferm
velocity vF5A2EF /m* . For estimates, one can say thatv
andvF have the same order of magnitude. We can introd
a characteristic time for horizontal transfer: a time of tunn
ing escape from the welltes. The characteristic distance o
the horizontal transfer isLch5vtes. One can expect that th
scale of the patterns in question is of the order ofLch.

For sharp resonant level from the uncertainty relation
the quasibound state we can write«0tes@\. Combining this
inequality with the fact, thatEF , «0 , and the kinetic energy
of the horizontal motionm* v2/2 are of the same order o
magnitude, for the in-plane wave vectork we find

kLch5
p

\
Lch5

m* v2

\
tes;«0tes@1.

The latter estimate shows that horizontal transfer can be
sidered as classical. Based on this conclusion, we devel
theory of the patterns, assuming that the vertical transpo
quantum and the horizontal transfer is classical. From
same uncertainty condition we can deduce that the chara
istic scaleLch greatly exceeds the well width. We assumeLch
is much larger than the thickness of the whole structure:

Lch@d. ~1!

The paper is organized as follows. In Sec. II the mo
and basic equations necessary for an investigation of the
terns are given. In Sec. III we show the existence of bis
bility for uniform tunneling within the proposed model. A
analysis of the patterns for the limiting case where a lo
approach to electron transport is applicable, is done in S
IV. A more general consideration based on the kinetic eq
tion is presented in Sec. V. Section VI summarizes the m
results of the paper. The derivation of some necessary e
tions, and methods of their simplification, are presented
Appendixes A–D.
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II. MODEL AND BASIC EQUATIONS

Since the problem of the transverse patterns require
least a two-dimensional spatial analysis, we use a sim
model, showing the main features of the bistability and
patterns. We deal with the model of a resonant-tunnel
heterostructure, schematically shown in Fig. 1. The struct
is treated as a system of three parts, weakly coupled by
neling: emitter (E), quantum well~QW!, and collector (C).
The electrodesE and C are usually heavy doped semico
ductors, and are supposed to be ideal conductors with
screening length. The energy height of the barriersB1 , and
B2 is V, and their thicknesses aredB1

anddB2
respectively.

Charge accumulation in the well causes a change of
potential profile in the whole structure. It alters the positi
of the quasibound state with respect to the bottom of
energy band of the emitter and, in general, with respect to
bottom of the quantum well. We disregard the latter effe
and consider that the built-up charge shifts the well bott
and the quasibound level equally. Such a case correspon
the very thin quantum well, where the built-up charge can
accounted for as an infinitely thin sheet. The thinner the w
is with respect todB1

anddB2
, the better our model describe

the real structure.
Introducing the area concentrationn of electrons in the

well, for the assumption discussed above we can write
Poisson equation in the form

Dw52
4pe2

k
d~z!n~r ! ~2!

wherew(r ,z) is the electrostatic potential energy for ele
trons, r5$x,y%, k is the dielectric constant, ande is the
elementary electric charge. The coordinate system is sh
in Fig. 1. The boundary conditions at the electrodes are

w~r ,z52dB1
!50, w~r ,z5dB2

!52F, ~3!

whereF is the external voltage bias in energy units.
Under the conditions of weak coupling between emitt

quantum well, and collector, for the electron distributio

FIG. 1. The scheme and energy-band diagram of the reson
tunneling structure.
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13 348 56B. A. GLAVIN, V. A. KOCHELAP, AND V. V. MITIN
function in the wellf (r ,p,t) one can derive the Boltzmann
like kinetic equation@see Appendix A, Eq.~A5!#

] f

]t
1

p

m*
] f

]r
2

]f

]r

] f

]p
5G@f~r ,t !,p#2

f

tes
1I $ f %, ~4!

wherep is two-dimensional momentum,f(r )[w(r ,z50) is
the electrostatic potential energy in the well,G@f(r ,t),p# is
the local rate of tunneling from the emitter to the well,tes is
the tunneling escape time, andI $ f % is the collision integral
for the electrons inside the well. As we stated in Sec
lateral transport of resonant electrons is classical, whic
reflected in the semiclassical character of Eq.~4!. One can
see that Eq.~4! is a conventional Boltzmann equation wi
two additional terms on the right-hand side:G and2 f /tes.
The first of these describes tunnel injection of electrons fr
the emitter to the quantum well, and the second one
scribes the tunnel escape of electrons from the quantum
to the electrodes. The classical character of the lateral tr
port is reflected once more in the local character of tunne
injection and escape terms:G and tes are functions off at
fixed r . They are expressed through the tunneling probab
ties and the Fermi distribution of electrons in the emitter~see
Appendix A!. If these functions are known, Eqs.~2! and~4!,
along with the definition of concentration

n~r ,t !5(
p

f ~r ,p,t !, ~5!

compose the system of coupled nonlinear equations. Bes
the boundary conditions at the electrodes@Eq. ~3!#, addi-
tional boundary conditions have to be imposed in thex,y
plane.

We can considerably simplify the system using inequa
~1!. Then the differential equation~2! with boundary condi-
tions of Eq.~3! can be presented in the integral form of E
~B1! as an equation forf:

f52
dB1

d
F1E dr 8K~r2r 8!n~r 8!. ~6!

The kernel functionK(r ) is calculated in Appendix B. From
Eqs.~B4! and~B5! one can see thatK(r ) has a maximum a
r50, and decays almost exponentially with characterist
length of the order ofd. Since the spatial scale of the fun
tion n(r ) is Lch, using Eq.~1! we can approximate

E dr 8K~r2r 8!n~r 8!'n~r !E dr 8K~r2r 8!.

As a result, we obtain the solution of the electrostatic pr
lem,

f~r !52
dB1

d
F1

4pe2

k

dB1
dB2

d
n~r !. ~7!

Let us discuss the boundary conditions in thex,y plane.
For a heterostructure with infinite horizontal dimensions,
require finite magnitudes of solutions atx,y→6`. For re-
stricted horizontal dimensions, different kinds of effects d
termine the boundary conditions. The simplest is a straig
forward scattering of electrons at the edges of the quan
I,
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well. Such an edge scattering can be considered analogo
to the case of thin metal layers, etc.26,27For two-dimensional
electrons limiting cases of diffusive and specular bound
scattering were studied in Refs. 26 and 27. Also, parame
of the system at the edges~thicknesses of the barriers and th
well, etc.! can be different from those ones in the bulk.
these changes are localized in a region that is small w
respect toLch, they also can be included in the bounda
conditions.

III. BISTABILITY UNDER UNIFORM TUNNELING

Let us show that the model formulated above allo
bistable vertical transport regimes with uniform tunneling
the x,y plane. In such a case ther and t dependences ar
absent, and, from the kinetic equation~4!, one can find the
areal electron concentration

n~f!5tes~f!g~f!. ~8!

Since the left-hand side of Eq.~8! is a function off, we
obtain two algebraic equations~7! and ~8! for two variables
n andf. It is convenient to rewrite this system as

L~f![n~f!5
kd

4pe2dB1
dB2

S f1
dB1

d
F D[R~f!. ~9!

For the particular heterostructure the latter equation has
controlling parameter: the external biasF. The right-hand
side is a linear function off and F. The left one is more
complicated function, having, generally, a superlinear dep
dence in the bias range, where the quasibound level cro
the bottom of the emitter band. This dependence can ge
ate more than one solution of Eq.~9!.

We calculated the functionstes(f) and g(f) for a het-
erostructure with parameters~structure I! V51 eV, m*
50.067m0 , d55.8 nm, dB1

52 nm, «050.1 eV, k511.5,
and a scattering broadening of the quasi-bound-state of 0
meV. In Fig. 2 the left- and right-hand sides are shown
EF556 meV and zero temperature. Cases~a!–~c! correspond
to different biasesF. The dependencesn(f) can be under-
stood as follows. Because the energy«0 exceeds the Ferm
level EF at highf, the injection of the carriers into the we
is small, and the built-up concentration is low. Iff is nega-
tive and decreases, the quasibound state is shifted down
the concentration increases. At high negativef the resonant
state descends below the emitter band bottom, the conce
tion sharply drops down in accordance with qualitative co
sideration. This results in a superlinear dependencen(f)
@see Figs. 2~a!–2~c!#. This dependence changes only weak
with the total biasF. This means that the main control pa
rameter dependence comes from the right-hand side of
~9!. For voltage biasesF,F l , only one solution with a high
electron concentration exists. AtF'F l'0.285 eV, the sec-
ond solution with a low concentration appears@Fig. 2~a!#. In
the rangeF l,F,Fh'0.318 eV three solutions exist, an
are well separated@Fig. 2~b!#. Two of them are stable; they
correspond to the bistable regime of tunneling. AtF'Fh
two high-density solutions coalescence@Fig. 2~c!#, and dis-
appear atF.Fh . The electron current through the heter
structure is shown in Fig. 3. In the bistability range t
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56 13 349PATTERNS IN BISTABLE RESONANT-TUNNELING . . .
current-voltage characteristic has aZ-type shape; the high
and low currents can be realized at the same voltage bia

If one assumes the resonant level to be infinitely sh
@the correspondingn(f) dependence is shown in Fig. 2~b!#,
it is possible to analyze the dependence of the bistab
range on the parameters of the heterostructure. For this
pose we introduce two dimensionless parameters

k5
tcwtsc

tew~tcw1tsc!
, ~10!

FIG. 2. Self-consistent solutions of the bistability problem und
uniform tunneling for structure I: the right and left sides of Eq.~9!
are shown separately.~a! F50.29 eV.~b! F50.305 eV. The dot-
ted line shows the dependencen0(f), in the limit of zero broaden-
ing of the resonant level.~c! F50.32 eV.
.
p

ty
ur-

s5
kd\2

4e2dB1
dB2

m*
, ~11!

where the tunneling timestew and tcw are calculated at«
5EF , tsc is the scattering time~see Appendix C, where we
introducetsc!. In this case the dimensionless range of bis
bility q[(Fh2F l)/EF can be evaluated as a function ofk
and s. Note thats can be expressed through the effecti
Bohr radius aB in the material of the system:s
5aB

2/4dB1
dB2

. In Fig. 4 the dependenceq(k) is shown at

s51.7. According to Fig. 4, bistability exists at anyk. But
the bistability is more developed for asymmetric heterostr
tures, for whichtew,tsctcw /~tcw1tsc!. This fact explains the
dependence of the bistability on the temperature, which
usually observed in experiments: at higher temperaturestsc
decreases, and this washes out the asymmetry of tunnelin
the system. Note that a large bistability range is poss
even for completely incoherent resonant tunneling, wh
tsc!tcw, but tew,tsc

IV. PATTERNS IN THE LOCAL APPROACH
FOR THE HORIZONTAL TRANSFER

In Appendix C it is shown that sufficiently smooth tran
verse distributions of the electrons can be described by
diffusionlike differential equation~C13!, combined with the

r

FIG. 3. Z-shaped current-voltage characteristic of structure I

FIG. 4. Dependence of the bistability rangeq5(Fh2F l)/EF

on the coefficient of asymmetry of the barriersk for s51.7.
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solution
of electrostatical problem of Eq.~7!. To avoid cum-
bersome formulas, we introduce functions

D~f!5
4pe2

k

dB1
dB2

d
D~f!, ~12!

R~f!5
4pe2

k

dB1
dB2

d
g~f!2

1

tes~f!
S f1

dB1

d
F D .

~13!

Then, forf we obtain the equation with the nonlinear diffu
sivity and the source-drain term:

]f

]t
5

]

]r SD~f!
]f

]r D5R~f!. ~14!

In Eq. ~14! we neglect by the difference between]n0(f)/]t
and]n/]t because the difference has a higher order of m
nitude for smooth patterns.

At the edges of the quantum well,r5re , we should im-
pose boundary conditions. In the local approach these co
tions can be written in the form of conditions on the ho
zontal flux at the edges:

j n5S~ne2n!, r5re . ~15!

Here j n is normal component of current~C10!. These bound-
ary conditions take into account the fact that, near the ed
for distances much less thanLch, the injection and escape
rates can differ from those in the bulk of the well layer.
general, the parametersS andne depend onr . In the terms of
the functions introduced in Eqs.~12! and~13!, the boundary
conditions forf are

D~f!S ]f

]r D
n

5S~fe2f!, fe5
4pe2

k

dB1
dB2

d
ne , r5re .

~16!

For transverse patterns with a characteristical lengthLst,
Eq. ~14! and boundary conditions of Eq.~16! are valid for

Lst@vFtes. ~17!

Below we analyze this requirement.
We restrict ourselves to a consideration of on

dimensional patterns depending ony only. In this case for
the stationary patterns we find

2
]

]y SD~f!
]f

]y D5R~f!. ~18!

The first and second integrals of Eq.~18! are

df

dy
56

1

D~f!
A22E

f0

f

D~f8!R~f8!, ~19!

E
f0

f D~f8!df8

A22*f0

f8df9D~f9!R~f9!
56~y2y0!, ~20!

respectively. Heref0 andy0 are two integration constants.
The simplest way to classify possible types of implic

solutions of Eqs.~19! and ~20! is to employ phase portrai
-

di-

es

-

analysis. It is easy to see that the uniform solutions of
~9!, studied in Sec. III, correspond to zeros ofR(f) and,
consequently, to the singular points of the phase planef
2df/dy). In the bistable range of the bias,@F l ,Fh#, there
are three or two~for F5F l ,Fh! singular points.

As we shall see below, the local approach is valid for
F within the bistability range only in the case of a wea
bistability. Here we deal with a structure~structure II! with
values of barrier thicknesses and scattering broadening
ferent from those used in Sec. III:dB1

52 nm, dB2
53 nm,

and the scattering broadening 0.35 meV. The current-volt
characteristic of this structure is shown in Fig. 5.

In Fig. 6 the phase portraits of Eq.~18! are shown for
structure II for external biasF within the bistable range. In
fact, the phase portraits represent possible solutions of
~18! on thef2(df/dy) plane. For all cases the two singula
points ~the left f l and the rightf r! are saddles, while the
middle onefm is the center;s ands8 label the separatrixes
Cases~a!–~c! differ in the behavior of the separatrixes. F
case~a! one of the separatrixes (s) originates from the right
saddle, and finishes in the same saddle forming the clo
trajectory. Case~b! is very special one, where two separ
trixes, s and s8 connect the saddles. Case~c! is similar to
case~a!, but the closed separatrix originates from the l
saddle. For all these cases the separatrixes isolate the re
of the plane with closed trajectories. These closed traje
ries and separatrixes correspond to solutions which are fi
in space even foruyu→`. They describe patterns in hetero
structures with infinitely large transverse dimensions. T
closed trajectories~other then separatrixes! give periodical
patterns. The separatrixes correspond to the aperiodical
terns: soliton type~a!, antisoliton type~c!, and kinklike~b!.
Spatial dependences of the electron density, correspondin
the aperiodical patterns, are shown in Fig. 7. The kinkl
pattern occurs at unique biasFc , which can be obtained
from the first integral~19!:

E
f l

fr
dfD~f,Fc!R~f,Fc!50. ~21!

Note that Eq.~21! is the analog of the ‘‘rule of equal areas,
which is valid for many nonequilibrium patterns of differe
origin.21–25

FIG. 5. Z-shaped current-voltage characteristic of structure II
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The patterns shown in Fig. 7 can be interpreted in ter
of the electron current. Actually, solitonlike and antisoliton
like patterns correspond to additional negative and posit
built-up charges localized in finite domains of the quantu
well layer. The greater local electron concentration is due
the larger tunneling injection of electrons into the well, an
therefore, to larger local electric current. Thus the solitonli
patterns of Fig. 7~a! @the antisolitonlike patterns of Fig. 7~c!#
means a local increase~decrease! in the electric current
through the heterostructure, i.e., high~low! current strip
layer. The kinklike pattern of Fig. 7~b! can be thought of as

FIG. 6. Solutions of Eq.~18! on the phase planef2(df/dy)
for structure II at different voltages:~a! F50.244 eV,Fc , ~b! F
50.2475 eV5Fc , and~c! F50.246 eV.Fc .
s

e
-
o
,
e

a transient region between two uniform states with low a
high built-up charges and currents. From the abo
mentioned facts, can see that such a coexistence of the
states is possible only at certain biasFc .

Let us estimate the validity of the local approach. Fro
Eq. ~18! one can estimate the length scale of the pattern

Lst'S D̄t̄es

d D 1/2

, ~22!

whereD̄ and t̄es are average values, and

FIG. 7. Electron-density profiles~in units 1015 m22! for the pat-
terns in structure II corresponding to phase portraits~a!, ~b!, and~c!
in Fig. 6.
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d5U4pe2

k

dB1
dB2

d

L̄2R̄

df
U.

HereL̄ andR̄ are average values of the left and right sides
Eq. ~9!, anddf is a characteristical variation off within the
pattern. As can be seen,AD̄ t̄es'Lch and the condition of
validity of the local approach isd!1. This condition can be
realized in two cases:~a! for all voltages within the bistabil-
ity range if the latter is small; and~b! for voltages corre-
sponding to the edges of bistability for the arbitrary ran
@F l ,Fh#: nearbyF l , it is valid for soliton types of solu-
tions, nearbyFh , for antisoliton types.

For the numerical examples of Fig. 7, the scale of
patterns is about 500–1000 nm. The dependence ofLch on f
for structure II is shown in Fig. 8. As can be seen, in th
case the condition for validity of the local approach is sa
fied.

A. Solutions for finite transversal dimensions

For a heterostructure with finite transverse dimension,

2~Ly/2!,y,~Ly/2!

one should impose the boundary conditions that follow fr
Eq. ~16!:

2D~f!
df

dy
56S~6 !~fe

62f!, y56
Ly

2
~23!

Boundary conditions can control possible patterns. In or
to demonstrate this, let us combine Eqs.~23! with the phase
portraits illustrated in Fig. 9~a!. For simplicity, we assume
that parametersS6 and fe

(6) are independent off. The
boundary condition curves (61) are given forS1

(1)5S1
(2)

5104 m/s and (Sne)1
(1)5(Sne)1

(2)51.531020 m21 s21.
The physical meaning of these constants is the following
these boundary conditions are a result of some genera
and recombination in the region near the sides of the st
ture with size, for example,l s510 nm, thenS5104 m/s cor-
responds to the surface recombination timets5 l s /S51 ps,
and the surface generation rateSne51.531020 m21 s21 cor-
responds to production in this region of surface densityns
5Snets / l s51016 m23 for the timets . The value of the ex-

FIG. 8. The dependence of the characteristical lengthLch on the
potential energyf in the quantum well for structure II.
f

e

e

-

r

If
on
c-
ternal voltage is the same as for the phase portrait in F
6~a!. The trajectories, satisfying the boundary condition
have to start at the~2! curve and end on the proper~1!
curve. The direction of motion along the trajectory is det
mined by the condition that at positivedf/dy the valuef
increases during this motion, and vice versa. For given tra
versal dimensions one must select the trajectories for wh

FIG. 9. ~a! Boundary condition curves and possible phase t
jectories~not in scale! for structure II with finite transverse dimen
sions. ~b! Possible distributions of the electron density~in units
1015 m22!. Calculations are performed for structure II with horizo
tal dimensionLy51030 nm. The edge conditions are symmet
and correspond to boundary condition curves (61) in ~a!. ~c! The
same for asymmetrical edge conditions, which correspond
boundary conditions curves (11) and (22) in ~a!.
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E
~2 !

~1 !S df

dy D 21

df5Ly . ~24!

The latter determines the integration constant in Eq.~19!. For
large enoughLy and the symmetric boundary conditions
(21) and (11) a number of different trajectories exist. F
Ly51030 nm five of them are shown on the phase portrai
Fig. 9~a! ~they are markeds1, s2, s3, s4, ands5!. Corre-
sponding coordinate dependences are depicted in Fig. 9~b!.

Applying such an analysis, one can see that, if at least
of the edge generation rates (Sne)

(6) is large, so that the
proper boundary condition curve does not intersect the s
ratrix s, the patterns exist only atF.Fc . At F,Fc only
single state with highf is to be realized. Curvea1 in Fig.
9~a! is shown for such a case for the parametersS(22)53.5
3104 m/s, (Sne)

(22)54.531020 m21 s21 @the proper
boundary condition curve (22) is presented in Fig. 9~a!#.
This result means also that such a boundary condition c
ceals the low current branch of current-voltage character
of the whole device in the range@F l ,Fc#. Only one type of
phase trajectory,a1, which corresponds to the profile wit
high electron and current densities, shown in Fig. 9~c!, can
exist. Analogously, one can show that if there is additio
electron drain~recombination! on the boundaries, the hig
current branch is concealed in the range@Fc ,Fh#. Strongly
asymmetric boundary conditions, combining the abo
mentioned ones aty56Ly/2, conceal the multivaluednes
For the current-voltage characteristic this means the rea
tion of a high current branch atF,Fc , and a low current
branch atF.Fc . At a critical biasF5Fc the current-
voltage characteristic has a vertical portion. Obviously, e
point of this vertical portion corresponds to the kinklike pa
tern, whose position determines the value of the current.

Varying S(6) and (Sne)
6, one can provide a number o

different patterns, including periodical ones. As a result,
can conclude that the boundary conditions drastically af
patterns and allow the manipulation of the current-volta
characteristic.

B. Nonstationary solutions

Above, we considered stationary patterns. In general,
~14! allows different nonstationary solutions. The simplest
these are solutions in the form of autowaves,f5f(h[y
2vt), where v is the velocity of such a wave. For thes
autowave processes the additional term2v(df/dy) appears
in Eq. ~18!. The usual analysis of the phase plane for
latter equation shows that, for a fixed biasF within the bi-
stability range, there is a single velocityv(F), for which a
solution in the form of a moving kink can exist. The solutio
can be thought of as a front, switching the system from o
uniform state to another. AtF5Fc the velocityv is zero,
and we obtain a stationary kinklike solution, discuss
above. In Fig. 10~a! the calculatedv(F) is shown for struc-
ture II. The positive velocity corresponds to the autowa
switching the system from a high to a low current state.

V. PATTERNS UNDER BALLISTIC REGIMES
OF HORIZONTAL TRANSFER

Let us consider the range of parameters for which
local approach is not applicable. In particular, one sho
n
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work beyond the local approach if the resonant-tunnel
structure demonstrates a wide range of bistability. For th
cases one must analyze the kinetic equation~4! and algebraic
equation~7!. In thet approximation the collision integral ca
be approximated asI $ f %'2 f 1 /tsc, wheref 1 is asymmetri-
cal part of distribution function@ f 1(y,p)52 f 1(y,2p)#,
and tsc is the scattering time. We are going to consider t
case of ballistic electron horizontal transfer, which tak
place if tsc@tes. As shown in Sec. III, the wide bistability
range can be realized iftew is smaller thentsc andtcw . This
proves that, in structures with wide bistability, horizont
electron transfer can be ballistic. In this case the kine
equation is

] f

]t
1

p

m*
] f

]y
2

]f

]y

] f

]p
5G2

f

tes
. ~25!

Here p labels they component of momentump. One can
solve Eq.~25! in terms of the characteristic curves

p56Ap0
212m* @f~y0!2f~y!#[P~p0 ,y0 ,y!, ~26!

wherep0 is the momentum of the electron, injected into t
well at the pointy5y0 . The general solution of the kineti
equation has the form

FIG. 10. ~a! Velocity of switching wave~in unitsvF! as a func-
tion of the voltage bias for structure II.~b! Dependences of switch
ing wave velocity~in unitsvF! on dimensionless voltage paramet
(F2F l)/(Fh2F l) for structure I. Solid line—results of calcula
tions within the steplike model; dashed line—results of variatio
calculations.
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f ~y,p!5E m*
dy8

P~p,y,y8!
M ~p,y,y8!G@P~p,y,y8!,y8#,

~27!

where the kernelM (p,y,y8) depends on the particular shap
of the potentialf(y) and the boundary conditions. Results
calculations ofM are presented in Appendix D.

Using Eqs.~27!, ~5!, and~7!, one can obtain the following
integral equation forf:

f52
dB1

d
F1

4pe2dB1
dB2

kd
m* (

p
E dy8

P MG. ~28!

This nonlinear integral equation takes place of partial diff
ential equation~4! and relationship~7!.

Nonlinear integral equation~28! is too complex to be
solved analytically. Moreover, there is no general appro
for a numerical solution. We analyzed the problem of p
terns, introducing two simplifications into Eq.~25!. First, we
assume the steplike character ofG andtes as functions off:

G5H 0, «01f,0

1

t~h! FS p2

2m* D , «01f.0,
~29!

tes5 H t~ l !,
t~h!,

«01f,0
«01f.0, ~30!

whereF is the Fermi function~see Appendix A!. This means
that we assume that electron tunnel injection from the em
to the well ~EW! takes place only if the resonant level lie
above the bottom of emitter band and the rate of injection
this case does not depend on the position of the reso
level. Second, in Eq.~25!, we neglect by a term, proportiona
to the force~i.e., we consider the horizontal transfer as fr
motion of electrons!. These assumptions are valid if a vari
tion of f within the pattern is smaller thenEF : under this
condition~i! the population of states in the emitter, which a
in resonance with a quasibound state, is almost cons
within the pattern; and~ii ! the kinetic energy of electrons i
large with respect to their potential energy.

Within the described model the only parameters of
potential profile which affect the solution of the kinetic equ
tion are the positions of the boundaries of the injection
gion, where«01f.0 ~i.e., where tunnel injection from the
emitter exists!. This allows us to solve the problem of pa
terns. Qualitatively, we obtained the same results as for
case of weak bistability in the local approach. The critic
voltage at which the kinklike pattern exists corresponds
the center of the bistability region:Fc5(F l1Fh)/2. At
F l,F,Fc a solitonlike pattern is possible, while atFc
,F,Fh an antisolitonlike pattern can be realized. AtT
50 the width of solitonLs ~the width of the injection region!
is determined by the equation

2
F2F l

Fh2F l
512FS Ls

vFt~h!D , ~31!

and the width of antisolitonLa ~width of the region with no
injection! is determined by the equation
-

h
-

r

n
nt

nt

e
-
-

e
l
o

2
F2F l

Fh2F l
511FS La

vFt~ l !D , ~32!

where

F~x!5
4

p E
0

1
A12z2 expS 2

x

zDdz.

Autowave patterns exist as well. Their speedv is determined
by the equation

F2F l

Fh2F l
512

1

p Fp

2
2

v
vF

S 12
v2

vF
2 D 1/2

2arcsin
v
vF

G .
~33!

In Fig. 10~c! the dependence ofv/vF on the voltage param
eter (F2F l)/(Fh2F l) is shown by the solid line.

In order to obtain results without the above-mention
assumptions, we applied the following variational proced
for the solution of self-consistent integral equation~28!. Let
us introduce the functional

J$f%5E dyuf2L$f%u ~34!

where

L$f%52
dB1

d
F1

4pe2dB1
dB2

kd
m* (

p
E dy8

P MG.

~35!

FunctionalJ equals zero for the exact solution of Eq.~28!.
For a particular solution we can choose some probe funct
fpr(y,ci), whereci are variational parameters. These para
eters are determined by the condition of minimization
J(ci).

Using this method, we analyzed all three types of ba
solutions: soliton, antisoliton, and kinklike. Here we prese
the switching kinklike autowaves in the case of ballistic ele
tron transfer. As in this case we deal with a nonstation
kinetic equation one must introduce an additional shiftm* v
in the momentum dependence ofG in Eq. ~27!. Applying
different probe functions, we found that the best fit cor
sponds to an arctanlike spatial dependence off:

fpr5
1
2 ~f l1f r !1

1

p
~f r2f l !arctan~gy!, ~36!

wheref l andfh are the potential energies in the well, co
responding to the low and high charge density unifo
states. This kind of probe function has two parameters:g and
the switching velocityv. The dependence ofv/vF on the
dimensionless voltage (F2F l)/EF for structure I is shown
in Fig. 9~b!. As discussed in Sec. IV B, the positive veloci
means switching from a high-current state. One can see
the latter result is in an agreement with approximation of E
~33!.

In the case of the wide range of bistability and ballis
horizontal electron transfer the spatial scale of the pattern
of the order ofLch. The strong dependence of the tunneli
injection rate on the position of the resonant level and
ballistic motion of electrons in the quantum well lead to
considerable spatial broadening of the collector current d



1
o
o

i
na

e
se

n
m
h
ic

bl
ow
t

th
th

sic

o

ca
ac
.
re
n
e
el
up
s
bl

the

us
ake
ge
s in

the

rmi

the
ike

rs,
the

der-
fer-
rns

ndi-
me

ding
is

s on
ge

the
ould
t is
k-
sess

een
e a
nt
es

city

ry
the

re-
o a
bil-

s
ati-
.
li-
. If

ng

ns.
ich
ec.
n-

on
th

co

56 13 355PATTERNS IN BISTABLE RESONANT-TUNNELING . . .
sity with respect to the emitter current density. In Fig. 1
spatial dependences of emitter, collector, and tw
dimensional lateral current densities are shown for the s
tonlike pattern in structureI at (F2F l)/(Fh2F l)50.3. In
the upper part of Fig. 11 the current field in the structure
shown~the spacing between the current lines is proportio
to the value of current density!. The current field in the
quantum-well layer is presented conditionally. In the low
part of Fig. 11 all three currents are plotted. One can
considerable current leakage over the quantum well.

VI. DISCUSSION

Different layered heterostructures with the resona
tunneling mechanism of the carrier transport frequently de
onstrate a bistable behavior of the tunneling current. T
physical reason for the intrinsic bistability is the dynam
buildup of the electric charge, which leads to two possi
positions of the quasibound state in the quantum well: l
and high currents at the same voltage bias. In general,
electric charge can build up in the quantum well between
barriers, in the emitter spacer notch before the barriers, in
barrier layers~for heterostructures of type II!, etc. As a result
a variety of current-voltage characteristics with the intrin
bistability is observed: aZ type,12–14anS type,28 more com-
plex butterflylike,29 etc.

The bistable effects attract attention, are well understo
and are described by differentone-dimensionaltheories. In
the framework of such one-dimensional approaches only
rier motion perpendicular to heterojunctions is taken into
count, and parallel~lateral! carrier transfer is disregarded
Meanwhile, lateral carrier transfer exists in layered structu
and is of importance under bistable effects. The lateral tra
fer brings about the simultaneous coexistence of differ
possible states of the system, i.e., the formation of s
sustained spatially nonuniform distributions of the built-
charge, resonant current, etc. The formation of pattern
well known in macroscopic solid-state physics, but bista

FIG. 11. The spatial dependence of the current for the solit
like pattern. In the upper part the current field is depicted. In
lower part the emitter~curve 1!, collector ~curve 2, multiplied by
factor 5!, and two-dimensional lateral~curve 3! currents are pre-
sented. Calculations are done for structure I. The voltage bias
responds to the condition (F2F l)/(Fh2F l)50.3.
,
-
li-

s
l

r
e

t-
-
e

e

he
e
e

d,

r-
-

s
s-
nt
f-

is
e

resonant tunneling systems provide an example with
quantum character of the carrier motion at least in one~per-
pendicular! direction.

In this paper we developed an approach which allows
to consider the tunneling in a double-barrier structure, to t
into account self-consistently the nonuniform built-up char
and lateral carrier transfer. We obtained that the pattern
question are characterized by a lateral scale exceeding
thickness of the structure~in the perpendicular direction!
considerably. The scale of the patternsLch is determined by
the time of electron escape from the well and the Fe
velocity of electrons in the emitter (Lch5vFtes). This is a
result of the ballistic~or quasiballistic! character of electron
horizontal transfer. The shape of the patterns depends on
applied bias, and can be of soliton, antisoliton, and kinkl
forms.

For heterostructures with finite dimensions of the laye
the patterns can be more complicated. Conditions on
edges of the heterostructure should be involved in consi
ation. The approach developed allowed us to consider dif
ent edge conditions. We showed that the number of patte
and their properties are strongly influenced by these co
tions. In particular, these edge conditions can cancel so
branches of the current-voltage characteristic correspon
to low or high current through the entire structure. In th
context, we point out that, despite a vast number of paper
resonant tunneling, only a few paid attention to the ed
effects on the tunneling current.18,30 Our analysis showed
that lateral transfer has a large characteristic scale, and
decrease in lateral dimensions of resonant structures sh
certainly lead to size effects in the resonant tunneling. I
worth mentioning that the effect of horizontal electron lea
age can be important even if the structure does not pos
bistable behavior.18,30

Besides stationary patterns, mobile patterns have b
found. In particular, we described patterns which produc
switching of the heterostructure from one uniform curre
state to the another. The velocity of such switching wav
depends on voltage and is of the order of the Fermi velo
vF .

Let us briefly discuss the problem of stability of stationa
patterns. This is an important question since it determines
possibility of pattern observation in the experiments. It
quires special investigation. Here we restrict ourselves t
short discussion of this problem in the case of weak bista
ity patterns described by Eq.~14!. Equations of this type
often appear in different problems of self-organization~see,
for example, Ref. 21!. Stability problem of such pattern
against small perturbations can be formulated mathem
cally in terms of the Sturm-Liouville eigenvalue problem
For infinite dimensions the result is that soliton and antiso
ton patterns are unstable, while a kinklike pattern is stable
the system under consideration has someimperfections or
defects, all three basic solutions can be stabilized by pinni
on defects.

Uniform solutions are stable against small perturbatio
However, the soliton and antisoliton patterns are those wh
inspire the propagation of switching waves, described in S
IV B. That is, uniform high and low current states are u
stable with respect tostrong perturbations. That is, the low
~high! current uniform state atF l,F,Fc (Fc,F,Fh)
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13 356 56B. A. GLAVIN, V. A. KOCHELAP, AND V. V. MITIN
can be switched to the high~low! current uniform state by
means of strong enough perturbation of built-in charge,
calized in a finite spatial region.

For finite lateral dimensions of the structure, the situat
is more complicated, and stability strongly depends on
boundary conditions at the edges of the heterostructure
the lateral dimensions. In particular, for fixed values of t
electron density at the edges of the quantum-well layer,
terns can be stable.21 It is worth adding that the stability o
the patterns can also depend on the properties of the ext
circuit in which the resonant-tunneling diode is included.

In conclusion, we studied the effect of the pattern form
tion in double-barrier resonant-tunneling heterostructu
with an intrinsic bistability of the current-voltage characte
istic. The effect considerably involves the lateral carr
transport, and exists for both coherent and sequential me
nisms of the resonant tunneling. The patterns are chara
ized by an alternative position of the resonant level in
quantum well, a nonuniform distribution of resonant ele
trons in the quantum-well layer, and a nonuniform tunnel
current density through the heterostructure.
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APPENDIX A: EQUATION FOR
HORIZONTAL ELECTRON TRANSFER

In electrodes, electrons can be characterized by thez pro-
jection of the momentumpz ~or corresponding energy o
vertical motion«! and lateral momentump5$px ,py%. The
distribution functions are supposed to be the Fermi functi
F(E2EF):

f ~e!~p,pz!5FS p21pz
2

2m*
2EFD ,

f ~c!~p,pz!5FS p21pz
2

2m*
1F2EFD . ~A1!

For classical motion along the well, one can introduce
distribution function f (r ,p,t), which depends on two
dimensional vectors,r5$x,y% and p. We assume that the
transversal coordinate dependence of patterns is so sm
that the tunneling can be accounted as strictly vertical p
cess~along z at fixed r . Then, in terms of tunneling trans
tions between the emitter, quantum well, and collector~EW,
CW!, the total derivative off (r ,p,t) can be written as31

d f

dt
5 (

p8,pz

Wp8,pz ;p,«0

~ew!
@ f ~e!~p8,pz!2 f ~r ,p!#

1 (
p8,pz

Wp8,pz ;p,«0

~cw!
@ f ~c!~p8,pz!2 f ~r ,p!#1I $ f %,

~A2!
-

n
e
nd

t-

nal

-
s

r
a-

er-
e
-
g

-
r.
.
d

s

e

oth
-

where the first and second terms on the right-hand side
the rates of tunneling between the emitter and the well
between the well and collector, respectively. The probab
ties of tunnelingW(ew) and W(cw) generally depend on the
electron scattering. The last term in Eq.~A2! describes
changes in the distribution function due to scattering of el
trons during their quasiclassical motion along the well. If w
neglect broadening of the quasibound level and assume
conservation of the electron lateral momentum upon tunn
ing, it is possible to write

Wp8,pz ;p,«0

ew
5wew~«0!dp8,pdpz ,6p0

, p05A2m* ~«01f!,

~A3!

Wp8,pz ;p,«0

cw
5wcw~«02F!dp8,pdpz ,6p1

,

p15A2m* ~«01f1F!, ~A4!

wherewew andwcw are the probabilities of one dimension
tunneling through the emitter and collector barriers for t
electron energies«01f and «01f1F, respectively. For
Eq. ~A3! the signs~6! correspond to the transitionsE�W.
For Eq. ~A4! the signs~6! correspond to the transition
W�C. The coefficientswew andwcw do not depend on the
momentap, but they are, in general, functions of the pote
tial profile of biased heterostructure;f is the electrostatic
potential energy in the well.

In order to calculatewew andwcw, we define the energy o
the resonant level as follows. Since in our model we assu
a narrow quantum well, the position of the resonant le
with respect to the well bottom is, mainly, determined by t
width and depth of the well. Finite thicknesses of the barri
cause small corrections to this value. Let«0

(`) be the position
of the level if we neglect finite transmission coefficients
the barrier. Then, the true resonant energy as a functio
the biasF can be written as

«0~f!5«0
~`!1D$12@d~«0

~`! ,f,F!#2% ~A48!

whereD5V1f2«0
(`) , and

d~«,f,F!511F122
F1«

V Ge22b1F122
«

VGe22a,

a~«!5
2

3 S 2m*

\2 D 1/2 dB1

f
@A~V1f2«!32A~V2«!3#,

~A49!

b~«!5
2

3 S 2m*

\2 D 1/2 dB2

f1F
@A~V1f2«!3

2A~V2F2«!3#.

For w(ew) andw(cw), we obtain

w~ew!5
8

\

D

V
A«0~f!@V2«0~f!#e22a@«0~f!#,

w~cw!5
8

\

D

V
A@F1«0~f!#@V2F2«0~f!#e22b@«0~f!#.
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Assuming a strong voltage bias, we can neglect tunne
from the collector to the well and rewrite Eq.~A2!:

d f

dt
5

1

tew
Q~«01f!FS p2

2m*
1«01f2EFD2

f

tes
1I $ f %

[G~p,f!2
f

tes
1I $ f %. ~A5!

HereQ is the Heaviside function, and we introduce the loc
rate of tunneling injection of the electrons into the well lay

G~p,f!5
1

tew
Q~«01f!FS p2

2m*
1«01f2EFD ,

~A6!

andtew[1/w(ew), tcw[1/w(cw), andtes[1/(w(ew)1w(cw)).
Formulas~A3!–~A6! are valid for the limit of zero width

of the quasibound level. Broadening of this level can be
portant for the voltage bias, aligning the level and the bott
of the emitter band. Two processes lead to the broaden
finite transmission of the barriers and scattering in the qu
tum well. We assume density of states, associated with
level in the form

r~«,«0!5
1

p

G

~«2«02f!21G2 , ~A68!

where« is energy of vertical motion, andG is the broadening
of the level. Two above-mentioned processes contribute
the broadening:G5\(1/tes11/tsc)/2, wheretsc is the scat-
tering time for the electrons in the well. Equation (A68) is
valid for weak broadening:G!«0 ~see Ref. 32!. Taking the
broadening into account, one can modify the kinetic equa
~A5! as follows. In Eq.~A6!, for the injection rate one shoul
substitute

Q~«01f!→n~«01f!5E
0

`

d« r~«,«01f!. ~A69!

Of course, in this case one should put«01f5EF in the
argument of the Fermi function in Eq.~A6!.

This modification ofG(p,f) is important for biases nea
the edge of the bistability region for any broadening, and
should be included into consideration at all biases if
bistable region is narrow. Writing the total derivatived f /dt
in Eq. ~A5! in an explicit form, we obtain the basic kineti
equation~4!.

APPENDIX B: ONE-DIMENSIONAL APPROXIMATION
FOR ELECTROSTATIC ENERGY

The Poisson equationDw52(4pe2/k)n(x,y,z) under
boundary conditions~3! has the solution

w~x,y,z!52F
z

d
2

4pe2

k E dx8dy8dz8G~x2x8,y

2y8,z,z8!n~x8,y8,z8!, ~B1!

whereG is the Green function with the boundary conditio
Guz505Guz5d50. To satisfy these conditions, we presentG
as a series:
g

l
:

-

g:
n-
e

to

n

it
e

G~x2x8,y2y8,z,z8!5(
k

sin
pk~z1dB1

!

d

3Fk~x2x8,y2y8,z8!. ~B2!

For Fk , one can find

Fk~x,y,z8!52
1

pd
sin

pk~z81dB1
!

d
K0S pk

d
Ax21y2D ,

~B3!

where K0 is the McDonald function. For the electrostat
energy in the well,w(x,y,dB1

)[f(x,y), we obtain Eq.~6!

with the kernel function

K~r2r 8!5
4e2

kd (
k

sin2S pkdB1

d
DK0S pk

d
ur2r 8u D .

~B4!

For the patterns, depending on the one transversal coo
nate, sayy, only the integral ony8 remains in Eq.~6!. In this
case the kernel function is

K~y2y8!5
4e2

k (
k

sin2S pkdB1

d
D e2pkuy2y8u/d. ~B5!

From Eqs.~B4! and~B5!, it follows that the kernel function
exponentially decays for the argument, exceeding the th
ness of the structured. For the smooth dependencesn(x,y)
this proves the one-dimensional consideration of the elec
static problem employed in Eq.~7!.

APPENDIX C: LOCAL APPROACH
FOR HORIZONTAL TRANSFER

Integrating kinetic equation~4! over p, one can easily
obtain the balance equation for horizontal transport:

]n

]t
1div¤5g@f~r ,t !#2

n

tes
, ~C1!

where we introduce the two-dimensional electron flux

¤5(
p

p

m*
f ~r ,p! ~C2!

and total injection rate

g5
n~«01f!

tew~f! (
p

FS p2

2m*
1«01f2EFD . ~C3!

From the theory of electron transport it is well known that
equation in form of Eq.~C1! can be significantly simplified
for the case where alocal approximationis applicable i.e.,
current~C2! can be expressed through the concentrationn,
the potentialf, and their derivatives. For this the length an
time scales of the problem should be sufficiently greater t
the relaxation length and time of the electron moment
~see, for example, Ref. 33!. Such a hierarchy of the charac
teristic scales provides an almost symmetric distribut
function in the momentum space. The analysis given in S
III showed that, for bistable regimes, momentum relaxat
is not the fastest process, and can be completely absent.
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means, that electron distribution relaxation occurs mainly
a result of tunneling exchange between the quantum well
the electrodes. This exchange can lead to an almost sym
ric distribution function even if the momentum relaxation
negligible. The standard approach cannot be used in the
in question. We introduce the local approximation in anot
way. Supposing that the potentialf(r ,t) is given, we find
the concentrationn(r ,t) throughf and its derivatives onr
andt. Then, this result and relationship~7! will compose the
self-consistent system of equations which will describe
patterns in the local approximation.

In order to derive the equation for n
5n@f,(]f/]r ),(]2f/]r 2),(]f/]t),...# in the local ap-
proximation, it is convenient to present the distribution fun
tion as f (r ,p,t)5 f (1)(r ,p,t)1 f (2)(r ,p,t), where
f (1)(r ,p,t)5 f (1)(r ,2p,t) is symmetric, whilef (2)(r ,p,t)
52 f (2)(r ,2p,t) is an asymmetric function ofp. Since the
injection rateG is symmetric, we obtain the coupled equ
tions

] f ~1 !

]t
1

p

m*
] f ~2 !

]r
2

]f

]p

] f ~2 !

]p
5G2

f ~1 !

tes
, ~C4!

] f ~2 !

]t
1

p

m*
] f ~1 !

]r
2

]f

]p

] f ~1 !

]p
52

f ~2 !

tes
2

f ~2 !

tsc
, ~C5!

where we suppose elastic scattering inside the well, and w
the collision integral in thet approach with momentum in
dependent scattering timetsc. Then we assume a smoothne
of the patterns and a gradient expansion of all functions.
trace the derivation we formally introduce two dimensionle
parametersu1 and u2 by the following replacements
(]/]t)→u1(]/]t), (]/]r )→u2(]/]r ) ~in the final formulas
we setu15u251!. Then all functions can be presented
expansions in series with respect tou1 andu2 :

f ~1 !5 f 00
~1 !1u1f 10

~1 !1u2
2f 02

~1 !1••• ,

f ~2 !5u2f 01
~2 !1u1u2f 11

~2 !1u2
3f 03

~2 !1••• ,
~C6!

n5n01u1n101u2
2n021••• ,

¤5u2¤011u1u2¤111u2
3
¤031••• ,

Thus the terms proportional tou1
s1u2

s2 contain thes1th power
of the time derivative and thes2th power of the gradient
from Eqs.~C4! and ~C5! we easily find the lowest approxi
mations.

f 00
~1 !@~r !,p,t#5tesG~r ,p!, ~C7!

f 01
~2 !~r ,p,t !5teffH p

m*
] f ~1 !

]r
2

]f

]p J , ~C8!

n05tes~f!g~f!, ~C9!

¤0152Fteffn0

m*
1

d

df S 2teffn0^«&
m* D G ]f

]r
[2D~f!

]f

]r
,

~C10!

where 1/teff51/tes11/tsc, and^«& is average electron kineti
energy:
s
nd
et-

se
r

e

-

ite

o
s

^«&5

E dp
p2

2m*
f 00

n0
~C11!

Now we can write the corrections of high orders forn:

n1052tes

]n0

]t
, n0252tesdiv¤01. ~C12!

We restrict ourselves to the three-term approximation ofn
given by Eq.~C6!. Then we findn in the form

nS f,
]2f

]r2 ,
]f

]t D5n0~f!2tes~f!
]n0

]t
2tes~f!

1divS D~f!
]f

]r D , ~C13!

where we setu15u251. Combining formula~C13! and re-
lationship~7!, one can obtain the equation forf(r ,t).

In the above derivation we neglect the terms with deriv
tives of the higher order. This is valid only for the pattern
with smooth time and coordinate dependences@see criteria
~17!#.

APPENDIX D: KERNELS
FOR INTEGRAL EQUATION „27…

The model fragment of potentialf(y) in Fig. 12 illus-
trates three possible cases for injected electrons. If an el
tron is injected with lateral motion energy, exceeding
maximum off(y)@p2/(2m* )1f(y0).maxf(y)#, no turn-
ing points exist, and

M ~p0 ,y0 ,y!5Q~y2y0!e2h~p0 ,y0 ,y!, p0.0, ~D1!

where

h~p0 ,y0 ,y!5E
y0

y dy8

tes~y8!P~p0 ,y0 ,y8!
.

If p0,0, one must replacey
y0 on the right-hand side of
Eq. ~D1!. If there is a single turning pointy2* ,y0 , one can
obtain, forp0,0,

FIG. 12. Model potential profile illustrating three possible type
of trajectories of ballistic electrons injected in the quantum well.
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M ~p0 ,y0 ,y!5Q~y2y2* !H e2h~p0 ,y,y0!1e2h~p0 ,y2* ,y0!2h~p0 ,y2* ,y!,

e2h~p0 ,y2* ,y0!2h~p0 ,y2* ,y!,

y2* ,y,y0

y0,y.
~D2!

If y2* .y0 , then, forp0.0,

M ~p0 ,y0 ,y!5Q~y2* 2y!H e2h~p0 ,y0 ,y!1e2h~p0 ,y0 ,y2* !2h~p0 ,y,y2* !,

e2h~p0 ,y0 ,y2* !2h~p0 ,y,y2* !,

y0,y,y2*
y,y0 .

~D3!

For the casesy2* ,y0 ,p0.0 andy2* .y0 , p0,0, one should use formulas for the case without turning points, because
these conditions an electron actually never comes to the turning point. For the case with two turning points~electrons are
captured in the potential well! one can find

M ~p0 ,y0 ,y!5
Q~y2y3l* !Q~y3r* 2y!

12e22h~p0 ,y3l* ,y3r* ! H e2h~p0 ,y0 ,y!1e2h~p0 ,y0 ,y3r* !2h~p0 ,y,y3r* !,

e2h~p0 ,y0 ,y3r* !2h~p0 ,y,y3r* !1e2h~p0 ,y0 ,y3r* !2h~p0 ,y3l* ,y3r* !2h~p0 ,y3l* ,y!,

y0,y,y3r*

y3l* ,y,y0

~D4!

for p0.0. If p0,0, then

M ~p0 ,y0 ,y!5
Q~y2y3l* !Q~y3r* 2y!

12e22h~p0 ,y3l* ,y3r* ! H e2h~p0 ,y,y0!1e2h~p0 ,y3l* ,y0!2h~p0 ,y3l* ,y!,

e2h~p0 ,y3l* ,y0!2h~p0 ,y3l* ,y!1e2h~p0 ,y3l* ,y0!2h~p0 ,y3l* ,y3r* !2h~p0 ,y,y3r* !,

y,y0,y3r*

y3l* ,y0,y.

~D5!
.
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21E. Schöll, Nonequilibrium Phase Transitions in Semiconducto
~Springer-Verlag, Berlin, 1987!.

22Z. S. Gribnikov, V. A. Kochelap, and V. V. Mitin, Zh. Eksp
Teor. Fiz.59, 1828~1970! @Sov. Phys. JETP32, 991 ~1971!#.

23M. Asche, Solid-State Electron.32, 1633~1989!.
24H. M. Gibbset al., Phys. Rev. A32, 692~1985!; M. Lindberg, S.

W. Koch, and H. Haug,ibid. 33, 407 ~1986!.
25V. A. Kochelap, L. Yu. Melnikov, and V. N. Sokolov, Fiz. Tekh

Poloprovodn.16, 1167 ~1982! @Sov. Phys. Semicond.16, 746
~1982!#; V. A. Kochelap and V. N. Sokolov,ibid. 21, 1324
~1987! @ibid. 21, 805 ~1987!#; Phys. Status Solidi B142, 311
~1988!; 159, 190 ~1990!.

26V. I. Okulov and V. V. Ustinov, Fiz. Nizk. Temp.5, 213 ~1979!
@Sov. J. Low Temp. Phys.5, 101 ~1979!#.

27V. A. Gasparov and R. Huguenin, Adv. Phys.42, 393 ~1993!.
28D. H. Chow and J. N. Schulman, Appl. Phys. Lett.64, 76 ~1994!.
29M. L. Leadbeater, L. Eaves, M. Henini, O. H. Hughes, G. H

and M. A. Pate, Solid-State Electron.32, 1467~1989!.
30T. Schmidt, M. Teword, R. J. Haug, K. v. Klitzing, B. Scho¨nherr,

P. Grambow, A. Fo¨ster, and H. Lu¨t, Appl. Phys. Lett.68, 838
~1996!.

31G. Iannaccone and B. Pellegrini, Phys. Rev. B52, 17 406~1995!.
32G. Iannaccone and B. Pellegrini, Phys. Rev. B53, 2020~1995!.
33D. K. Ferry,Semiconductors~Macmillan, New York, 1991!.


