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Patterns in bistable resonant-tunneling structures

B. A. Glavin and V. A. Kochelap
Institute of Semiconductor Physics, Ukrainian Academy of Sciences, Pr. Nauki 45, Kiev 252028, Ukraine

V. V. Mitin
Electrical and Computer Engineering Department, Wayne State University, Detroit, Michigan 48202
(Received 20 November 1996

We report a theoretical investigation of the phenomenon of the formation of patterns transverse to the
tunneling current in resonant-tunneling double-barrier heterostructures. Such patterns arise in heterostructures
with an intrinsic bistability of the current-voltage characteristic. The patterns are characterized by a nonuniform
distribution of resonant electrons in the quantum-well layer and, consequently, a nonuniform tunneling current
density through the heterostructure. Patterns exist for coherent and for sequential mechanisms of the resonant
tunneling. Possible types of stationary patterns depend on the applied voltage, and can be controlled by
conditions on the edges of the heterostructure. In fact, the patterns are two or three dimensional in character,
since the nonuniform electron distributions induce a complex configuration of the electrostatic potential in
barrier regions. In addition to stationary patterns, moving patterns are considered. They describe the switching
of the heterostructure from one uniform state to anotf&0163-18207)05544-9

[. INTRODUCTION Azbel ! Subsequently, the intrinsic bistability was observed
by a number of experimental grodps'*for various double-
Resonant tunneling through a double-barrier heterostrudsarrier structures. Calculations and modeling of the bistabil-
ture was observed two decades admyt this phenomenon ity were done by various authot3:1’
still attracts considerable interest because of its fundamental In these papers, the tunneling was considered one dimen-
character and increasing number of prospective applicationsional, and the transport through the double-barrier hetero-
(microwave oscillation$, circuit applications;* cascade structure was supposed to be dependent on only one coordi-
lasers;® etd. A resonant quasibound state is formed in anate, perpendicular to the barriers. Actually, most double-
quantum well between two barriers. These barriers separatsarrier resonant tunneling structures are layered ones, and
the well from electrodegsheavy doped emitter and collector the tunneling electron can move not only across the layers
regiong. The energy of the quasibound state, measured witlivertical transpoit but also along these layeiisorizontal, or
respect to the bottom of the quantum wael},, is usually lateral, transpojt Because the applied voltage is uniformly
chosen to be above the Fermi le¥g! of electrodes when no  distributed over the highly conductive emitter and collector
voltage is applied. The applied bias shifts the energy of quaregions, a one-dimensional picture of the electron transport
sibound state belowEg, and the electric current passes through barriers and quantum-well layers is sufficient for re-
mostly through the quasibound state. The current increasegmes with a single stat@ote, however, that transverse pat-
with the bias until the energy of the quasibound state lowerserns in this case are possible in the structures with special
below the bottorE, of the emitter band. At this region the conditions on their boundari€$. However, for the case of
current falls to a low value, and negative differential resis-bistability, different states of the nonequilibrium system can
tance occurs. Different particular mechanisms can be resporoexist. This leads to nonuniforfm the plane of the layeys
sible for the resonant tunnelingcoherent, sequentiaf  distributions of the tunneling current, and built-up charge
phonon-assisted mechanist$, etc). However, when the and potential energy. That is, under a bistable tunneling re-
guasibound state is in resonance with the emitter electrogime one can expect spontaneous formation of transverse
states, there is a finite density of electrons, i.e., a built-ugpatterns.
charge, in the quantum well. This built-up charge determines There is a well-known analogy between light waves in the
the voltage distribution across the heterostructure, and cori=abry-Perot interferometer and the electron waves in double-
siderably affects the current-voltage characteristic. The othdvarrier structures. The analogy qualitatively illustrates the
important effect induced by the built-up charge is the intrin-resonant behavior of electron transmission through the struc-
sic bistability of the system under consideration. For someéures. The analogy can be extended to the bistability regimes.
range of biases at a fixed bias, two stable states exist. O medium with optical nonlinearity, embedded inside a reso-
state is characterized by the large built-up charge, resonantator, gives rise to optical bistability or multistability Un-
tunneling conditions, and a large current; the other one corder these conditions, different stationary and moving trans-
responds to resonance breaking, a lowering of the quasiersal patterns are realizé4?° In the case of tunneling,
bound state below the bottom of the emitter band, and a lovmonlinearity in the wave equation appears due to electrostatic
built-up charge and current. interaction. Similarly to a nonlinear interferometer, one can
The possibility of electrical instability due to an accumu- imagine various transverse patterns for tunneling in double-
lation of the charge in the well was pointed out by Ricco andbarrier structures. In contrast to the case of a nonlinear inter-
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ferometer, the patterns of resonant tunneling can appear fc
both types of tunneling, coherent and incoherent. One of the
goals of this paper is to demonstrate the possibility of these E ¢
patterns.

There are a variety of self-consistent patterns known in
solid-state physics: stationary and moving Gunn domains |
and current filaments al- and S-shaped current-voltage Qw | (=
characteristics, respectively;transverse domains in semi- d v
conductors with equivalent valley$? stationary and wave B, 0
patterns under resonatorless optical bistabffit§? etc. These z ——I
and other known examples are related to nonlinear classic:
electron transport, while, for the case analyzed in this papet c
at least in the vertical direction, the transport has a quantun
character.

Since horizontal electron transfer is the main process de
termining the transverse patterns, let us consider it qualita
tively. This transfer can be depicted as follows. The electron
is injected from the emitter to the well in general with a finite
horizontal component of the momentum or velocity v
=p/m* (m* is the effective magsThe velocity depends on
the position of the quasibound-state energy with respect to
the Fermi energfEr in the emitter: when the energy quasi-  since the problem of the transverse patterns requires at
bound level moves frork through the bottom of the emit- |east a two-dimensional spatial analysis, we use a simple
ter bandE,, the velocity changes from zero to the Fermi model, showing the main features of the bistability and the
velocity ve=y2Eg/m*. For estimates, one can say that patterns. We deal with the model of a resonant-tunneling
andvg have the same order of magnitude. We can introducéeterostructure, schematically shown in Fig. 1. The structure
a characteristic time for horizontal transfer: a time of tunnel-is treated as a system of three parts, weakly coupled by tun-
ing escape from the welt,;. The characteristic distance of neling: emitter E), quantum wel(QW), and collector C).
the horizontal transfer ik,=v 7oc. One can expect that the The electrode€ and C are usually heavy doped semicon-
scale of the patterns in question is of the ordet gf. ductors, and are supposed to be ideal conductors with zero

For sharp resonant level from the uncertainty relation forscreening length. The energy height of the barr@ys and
the quasibound state we can writgres>%. Combining this B, is V, and their thicknesses adg anddg, respectively.

inequality with the fact, thag , &9, and the kinetic energy - charge accumulation in the well causes a change of the
of the horizontal motiorm™v /2 are of the same order of potential profile in the whole structure. It alters the position

Ep

Ly

FIG. 1. The scheme and energy-band diagram of the resonant-
tunneling structure.

Il. MODEL AND BASIC EQUATIONS

magnitude, for the in-plane wave vectowe find of the quasibound state with respect to the bottom of the
energy band of the emitter and, in general, with respect to the

p m* 2 bottom of the quantum well. We disregard the latter effect,

kI-ch:g Len=—%— Tes~e0Tes> 1. and consider that the built-up charge shifts the well bottom

and the quasibound level equally. Such a case corresponds to

The latter estimate shows that horizontal transfer can be coril® very thin quantum well, where the built-up charge can be
sidered as classical. Based on this conclusion, we deveIopf’eFC(_)umed for as an infinitely thin sheet. The thinner thg well
theory of the patterns, assuming that the vertical transport i With respect talg, anddg,, the better our model describes
quantum and the horizontal transfer is classical. From théhe real structure.

same uncertainty condition we can deduce that the character- Introducing the area concentrationof electrons in the
istic scaleL ., greatly exceeds the well width. We assulmg ~ well, for the assumption discussed above we can write the
is much larger than the thickness of the whole structure: Poisson equation in the form

2

41re
Ag=—="= &()n(r) @

Ly>d. (1)

The paper is organized as follows. In Sec. Il the model . ) )
and basic equations necessary for an investigation of the patnere ¢(r,z) is the electrostatic potential energy for elec-
terns are given. In Sec. Il we show the existence of bistalfons: r={X,y}, « is the dielectric constant, anel is the
bility for uniform tunneling within the proposed model. An €lementary electric charge. The coordinate system is shown
analysis of the patterns for the limiting case where a local? Fi9- 1. The boundary conditions at the electrodes are
approach to electron transport is applicable, is done in Sec.
IV. A more general consideration based on the kinetic equa- e(r,z=—dg)=0, ¢(r,z=dg)=-o, )
tion is presented in Sec. V. Section VI summarizes the main
results of the paper. The derivation of some necessary equatere® is the external voltage bias in energy units.
tions, and methods of their simplification, are presented in Under the conditions of weak coupling between emitter,
Appendixes A-D. quantum well, and collector, for the electron distribution
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function in the wellf(r,p,t) one can derive the Boltzmann- Well. Such an edge scattering can be considered analogously
like kinetic equatior{see Appendix A, Eq(A5)] to the case of thin metal layers, ¢’ For two-dimensional
electrons limiting cases of diffusive and specular boundary
of  p af 9¢ of f scattering were studied in Refs. 26 and 27. Also, parameters
Tt ar - Glo(r,t),p]l— Z;L 1}, (4 of the system at the edgéhicknesses of the barriers and the
] ] ) ) well, etc) can be different from those ones in the bulk. If
wherep is two-dimensional momentung(r)=¢(r,z=0) is  these changes are localized in a region that is small with

the electrostatic potential energy in the wal,¢(r.t),p] is  respect toL.,, they also can be included in the boundary
the local rate of tunneling from the emitter to the weilgis  ¢onditions.

the tunneling escape time, ahfif} is the collision integral
for the electrons inside the well. As we stated in Sec. |,
lateral transport of resonant electrons is classical, which is
reflected in the semiclassical character of Et). One can Let us show that the model formulated above allows
see that Eq(4) is a conventional Boltzmann equation with bistable vertical transport regimes with uniform tunneling in
two additional terms on the right-hand side:and — f/ 7. the x,y plane. In such a case theandt dependences are
The first of these describes tunnel injection of electrons fromabsent, and, from the kinetic equatiéf), one can find the
the emitter to the quantum well, and the second one deareal electron concentration
scribes the tunnel escape of electrons from the quantum well
to the electrodes. The classical character of the lateral trans- N(@)=7ed $)I(P). (8
port is reflected once more in the local character of tunneling _ _ )
injection and escape term& and 7. are functions ofp at ~ Since the left-hand side of E¢8) is a function of ¢, we
fixed r. They are expressed through the tunneling probabiliobtain two algebraic equatiorg) and(8) for two variables
ties and the Fermi distribution of electrons in the emitgme N and ¢. It is convenient to rewrite this system as
Appendix A). If these functions are known, Eq®) and(4),
along with the definition of concentration ds,

¢+ ¢)ER(¢)- ©

lll. BISTABILITY UNDER UNIFORM TUNNELING

L(¢)En(¢>):m

n(r,t)= f(r,p,t), 5 . .
(. Ep: (r.p.b) ® For the particular heterostructure the latter equation has one
controlling parameter: the external bids The right-hand
Sttle is a linear function ofp and ®. The left one is more

. " . . complicated function, having, generally, a superlinear depen-
tional boundary conditions have to be imposed in )¢ jence in the bias range, where the quasibound level crosses

plane. . L L .. the bottom of the emitter band. This dependence can gener-
We can considerably simplify the system using inequality.

ate more than one solution of E).
(). Then the differential equatiof2) with boundary condi- ®

; ; . We calculated the function and for a het-
tions of Eq.(3) can be presented in the integral form of Eq. erostructure with parameteré:irs(u@ure ]ggl(ﬁ:)l eV, m*

compose the system of coupled nonlinear equations. Besid
the boundary conditions at the electrodéxy. (3)], addi-

(B1) as an equation fog: =0.06Tg, d=5.8nm, dg, =2nM, 5,=0.1eV, k=115,
dg and a scattering broadening of the quasi-bound-state of 0.054
b=— Tl q>+f dr'K(r—r")n(r’). (6) meV. In Fig. 2 the left- and right-hand sides are shown for

Er=56 meV and zero temperature. Ca&ds-(c) correspond
The kernel functiork (r) is calculated in Appendix B. From to different biasesb. The dependences(¢#) can be under-
Egs.(B4) and(B5) one can see that(r) has a maximum at Stood as follows. Because the energyexceeds the Fermi
r=0, and decays almost exponentially with characteristica|eVe! Er at high ¢, the injection of the carriers into the well

length of the order ofl. Since the spatial scale of the func- 'S small, and the built-up Conpentration is I_ow.¢fis nega-
tion n(r) is Ly, using Eq.(1) we can approximate tive and decreases, the quasibound state is shifted down and

the concentration increases. At high negativthe resonant
state descends below the emitter band bottom, the concentra-
f df'K(r—f')n(f')mn(f)f dr'K(r—r’). tion sharply drops down in accordance with qualitative con-
sideration. This results in a superlinear dependemGé)
As a result, we obtain the solution of the electrostatic prob{see Figs. 2)—2(c)]. This dependence changes only weakly

lem, with the total biasb. This means that the main control pa-
rameter dependence comes from the right-hand side of Eq.
dBl 4me? dBlde (9). For voltage biase$® <®,, only one solution with a high
p()==—4 @+ ———5—nn). (7)) electron concentration exists. At~®,~0.285 eV, the sec-

ond solution with a low concentration appeffig. 2(a)]. In
Let us discuss the boundary conditions in thg plane. the range® <®<®,~0.318 eV three solutions exist, and
For a heterostructure with infinite horizontal dimensions, weare well separatefFig. 2(b)]. Two of them are stable; they
require finite magnitudes of solutions xty— +o. For re-  correspond to the bistable regime of tunneling. ®t=®,,
stricted horizontal dimensions, different kinds of effects de-two high-density solutions coalescendég. 2(c)], and dis-
termine the boundary conditions. The simplest is a straightappear atb>®,,. The electron current through the hetero-
forward scattering of electrons at the edges of the quanturstructure is shown in Fig. 3. In the bistability range the
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FIG. 3. Z-shaped current-voltage characteristic of structure 1.

kd#i?

O= "5 T 5
4e dBldBZm*

(11

where the tunneling times,,, and 7, are calculated at
=Eg, 74 Iis the scattering tim¢see Appendix C, where we
introducersy). In this case the dimensionless range of bista-
bility g=(®,,—®,)/Er can be evaluated as a function lof
and o. Note thato can be expressed through the effective
Bohr radius ag in the material of the systemi
=a25/4dBlde. In Fig. 4 the dependenog(k) is shown at

o=1.7. According to Fig. 4, bistability exists at aky But

the bistability is more developed for asymmetric heterostruc-
tures, for whichrg,, < 7s7ew/(Towt 7s0). This fact explains the
dependence of the bistability on the temperature, which is
usually observed in experiments: at higher temperatuges
decreases, and this washes out the asymmetry of tunneling in
the system. Note that a large bistability range is possible
even for completely incoherent resonant tunneling, when
TocZTom DU 7 < 7o

IV. PATTERNS IN THE LOCAL APPROACH
FOR THE HORIZONTAL TRANSFER

In Appendix C it is shown that sufficiently smooth trans-
verse distributions of the electrons can be described by the
diffusionlike differential equatiofC13), combined with the

FIG. 2. Self-consistent solutions of the bistability problem under

uniform tunneling for structure |: the right and left sides of [®).
are shown separatelya) ®=0.29 eV.(b) $=0.305 eV. The dot-
ted line shows the dependenag( ¢), in the limit of zero broaden-
ing of the resonant levelc) ®=0.32 eV.

current-voltage characteristic haszZatype shape; the high
and low currents can be realized at the same voltage bias.

If one assumes the resonant level to be infinitely sharp

[the corresponding(¢) dependence is shown in Fig(k],

it is possible to analyze the dependence of the bistability
range on the parameters of the heterostructure. For this pur-

pose we introduce two dimensionless parameters

TewTsc

Tewl Towt Tsd)’

(10

T T T T T T T

0.8

0.4

BISTABILITY RANGE, q

0 1 1 1 13 1 1 1
5 10 15
ASYMMETRY COEFFICIENT, k

20

FIG. 4. Dependence of the bistability range= (®,— ®|)/Eg
on the coefficient of asymmetry of the barriérdor o=1.7.
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solution T T T T T T T T T
of electrostatical problem of E¢7). To avoid cum-
bersome formulas, we introduce functions 40 - i
)
4e? dBlde %
D(p)= 5 D(&), 12 35 gl ]
K o
c
<
47e? dp,ds, 1 ds, © =
= = +— . ]
(13 5
(@]
Then, for¢ we obtain the equation with the nonlinear diffu-
sivity and the source-drain term: 10 i
i¢_ 9 ad o7 o1 om0z o
>t = ar (D(¢) - | = R(#). (14 VOLTAGE (V)
In Eq. (14) we neglect by the difference betweeny(¢)/dt FIG. 5. Z-shaped current-voltage characteristic of structure I1.
anddn/ gt because the difference has a higher order of mag-
nitude for smooth patterns. analysis. It is easy to see that the uniform solutions of Eq.

At the edges of the quantum wetl=r, we should im-  (9), studied in Sec. llI, correspond to zeros B{¢) and,
pose boundary conditions. In the local approach these condéonsequently, to the singular points of the phase plape (
tions can be written in the form of conditions on the hori- —d¢/dy). In the bistable range of the bigsp,,®,], there

zontal flux at the edges: are three or twdfor & =®,,®,)) singular points.
_ As we shall see below, the local approach is valid for all
Jn=S(Ne—n), r=re. (15 @ within the bistability range only in the case of a weak

Herej, is normal component of curref€10). These bound- bistability. Her_e We_deal with a structu(etructure 1) Wit_h '
ary conditions take into account the fact that, near the edgel@lues of barrier thicknesses and scattering bro_adenmg dif-
for distances much less thdn,,, the injection and escape '€"ent from thqse used in Sec. littg, =2 nm, dg,=3 nm,
rates can differ from those in the bulk of the well layer. In @nd the scattering broadening 0.35 meV. The current-voltage
general, the parameteBsandn, depend onr. In the terms of ~ characteristic of this structure is shown in Fig. 5.

the functions introduced in Eqél2) and (13), the boundary In Fig. 6 the phase portraits of E¢18) are shown for
conditions for¢ are structure 1l for external bia® within the bistable range. In
fact, the phase portraits represent possible solutions of Eq.

ad 47e? dg dg, (18) on the¢p— (d¢/dy) plane. For all cases the two singular
D((ﬁ)(ﬁ) =S(¢e= ), de=—— 45 Ne: I'=Te.  points(the left ¢ and the right#,) are saddles, while the
n (16) middle oneg,, is the centers ands’ label the separatrixes.
Cases(a)—(c) differ in the behavior of the separatrixes. For

For transverse patterns with a characteristical length ~ case(@ one of the separatrixes) originates from the right

Eq. (14) and boundary conditions of E¢L6) are valid for saddle, and finishes in the same saddle forming the closed
trajectory. Casedb) is very special one, where two separa-

LS UpTes (17 trixes, s ands’ connect the saddles. Caé® is similar to
case(a), but the closed separatrix originates from the left
saddle. For all these cases the separatrixes isolate the region
of the plane with closed trajectories. These closed trajecto-
ries and separatrixes correspond to solutions which are finite
in space even fofy|—. They describe patterns in hetero-

Below we analyze this requirement.

We restrict ourselves to a consideration of one-
dimensional patterns depending gronly. In this case for
the stationary patterns we find

9 ap structures with infinitely large transverse dimensions. The
Y (D(¢) oy =R(¢). (18)  closed trajectoriegother then separatrixggjive periodical
patterns. The separatrixes correspond to the aperiodical pat-
The first and second integrals of Ed.8) are terns: soliton typda), antisoliton type(c), and kinklike (b).
Spatial dependences of the electron density, corresponding to
do 1 the aperiodical patterns, are shown in Fig. 7. The kinklike

¢
dy D) \/_ZJ D(¢p")R($"), (19  pattern occurs at unique biab., which can be obtained
%o from the first integral(19):

fzﬁ D(¢")de’
%o =214 d"D($"R($")

respectively. Herep, andy, are two integration constants.
The simplest way to classify possible types of implicit
solutions of Egs(19) and (20) is to employ phase portrait

o
s (y-yy), (20 L 44D $,D)R( b, Do) =0. (21
|

Note that Eq(21) is the analog of the “rule of equal areas,”
which is valid for many nonequilibrium patterns of different
origin2t-%
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terns in structure 1l corresponding to phase portr@its(b), and(c)
FIG. 6. Solutions of Eq(18) on the phase plané— (d#/dy) in Fig. 6.
for structure |l at different voltagesa) ®=0.244 e\K ., (b) ®

=0.2475 eV=,, and(c) =0.246 e\>- .. a transient region between two uniform states with low and

high built-up charges and currents. From the above-

ftThhe [IJattterns ShOW? 12 't:IgiI7 caFtbellll(nterp(rjete(:. 'nl.tterm%entioned facts, can see that such a coexistence of the two
of the electron current. Actually, solitonlike and antisoliton- ;.:oc is possible only at certain bids .

like patterns correspond to additional negative and positive Let us estimate the validity of the local approach. From

built-up charges localized in finite domains of th_e q_uantum-Eq. (18) one can estimate the length scale of the patterns as
well layer. The greater local electron concentration is due to

the larger tunneling injection of electrons into the well, and,

therefore, to larger local electric current. Thus the solitonlike D\ 12
patterns of Fig. @) [the antisolitonlike patterns of Fig(d)] L5t~( 565) ,
means a local increas@ecrease in the electric current

through the heterostructure, i.e., higlow) current strip _

layer. The kinklike pattern of Fig.(B) can be thought of as whereD and 7., are average values, and

i~
\]

(22
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HereL andR are average values of the left and right sides of
Eqg.(9), and ¢ is a characteristical variation @f within the

pattern. As can be seer,Dr.~L, and the condition of
validity of the local approach i§<1. This condition can be
realized in two casega) for all voltages within the bistabil-
ity range if the latter is small; an¢tb) for voltages corre- . . . st
sponding to the edges of bistability for the arbitrary range 20 200 400 600 800 1000
[®,,D,]: nearbyd,, it is valid for soliton types of solu- () COORDINATE (nm)
tions, nearby®,,, for antisoliton types. 8
For the numerical examples of Fig. 7, the scale of the
patterns is about 500—1000 nm. The dependentg,odn ¢
for structure Il is shown in Fig. 8. As can be seen, in this
case the condition for validity of the local approach is satis-
fied.

s3 s4 s2

ELECTRON DENSITY

al

A. Solutions for finite transversal dimensions

ELECTRON DENSITY

For a heterostructure with finite transverse dimension,

—(Ly/2)<y<(L,/2)

one should impose the boundary conditions that follow from 2 0 200 200 600 300 1000
Eq. (16): (c) COORDINATE (nm)

—D(¢) d_d’: +S(i)(¢i— b) _ +ﬂ (23) FIG. 9. (a) Boundary condition curves and possible phase tra-
- € Y= 2 jectories(not in scalé for structure Il with finite transverse dimen-

. . sions. (b) Possible distributions of the electron densiig units
Boundary conditions can control possible patterns. In ordefs ,-2) cajculations are performed for structure Il with horizon-

to demonstrate this, let us combine E(®3) with the phase 5 dimensionL,=1030 nm. The edge conditions are symmetric
portraits illustrated in Fig. @). For simplicity, we assume and correspond to boundary condition curvesl( in (). (c) The
that parametersS™ and ¢{") are independent oft. The  same for asymmetrical edge conditions, which correspond to
boundary condition curves(1) are given forS{")=s{")  boundary conditions curves{1) and (~2) in (a).

=10*m/s and 6n){"=(Sn){)=1.5x10"mts L

The physical meaning of these constants is the following. If

these boundary conditions are a result of some generatiaernal voltage is the same as for the phase portrait in Fig.
and recombination in the region near the sides of the strucs(a). The trajectories, satisfying the boundary conditions,
ture with size, for examplé,=10 nm, therS=10"* m/s cor-  have to start at thé—) curve and end on the propét-)
responds to the surface recombination time-1;/S=1ps, curve. The direction of motion along the trajectory is deter-
and the surface generation r&@8e,=1.5x107° m s 1cor- mined by the condition that at positivdp/dy the value
responds to production in this region of surface density increases during this motion, and vice versa. For given trans-
=Sn.s/ls=10% m3for the timers. The value of the ex- versal dimensions one must select the trajectories for which
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f<+)(d¢)‘ld¢_l_ 28 0.6 . . . .

(- | dy & oal ]
The latter determines the integration constant in(&€). For L 4
large enoughL, and the symmetric boundary conditions 02 L _

(—1) and (+1) a number of different trajectories exist. For L

L,=1030 nm five of them are shown on the phase portrait in E ol N
Fig. Ya) (they are markedl, s2, s3, s4, andsb). Corre- & L 4
sponding coordinate dependences are depicted in Hig. 9 02 - J
Applying such an analysis, one can see that, if at least one i _
of the edge generation rateSt)™) is large, so that the 04k ]
proper boundary condition curve does not intersect the sepa- L 4
ratrix s, the patterns exist only ab>® .. At ®<d. only 06 : . . .
single state with highy is to be realized. Curval in Fig. (@) 0.243 VOLTAGE-%‘G; 0.247

9(a) is shown for such a case for the paramet®rs?)=3.5
x10* m/s, (Sn)"P=45x10"mts ! [the proper f ' : ;
boundary condition curve-{2) is presented in Fig.(8)].
This result means also that such a boundary condition con-
ceals the low current branch of current-voltage characteristic ~ %5t S
of the whole device in the rande,,®.]. Only one type of i 6
phase trajectoryal, which corresponds to the profile with
high electron and current densities, shown in Fi@)9can -
exist. Analogously, one can show that if there is additional L o
electron drain(recombination on the boundaries, the high
current branch is concealed in the rarige. ,®,]. Strongly 05 ]
asymmetric boundary conditions, combining the above- i g
mentioned ones at=*+L /2, conceal the multivaluedness.
For the current-voltage characteristic this means the realiza- -, 05
tion of a high current branch a<®., and a low current (b) VOLTAGE (V)
branch atd>d.. At a critical bias®=® the current- _ o S
voltage characteristic has a vertical portion. Obviously, each FIG. 10. (&) Velocity of switching wave(in unitsve) as a func-
point of this vertical portion corresponds to the kinklike pat- tion of the voltage bias for structure iib) Dependences of switch-
tern, whose position determines the value of the current. ing wave velocity(in unitsvg) on dlmeq5|o_nless voltage parameter

Varying S™) and (Sn,)*, one can provide a number of (_CI>—(1>|_)/(_<I>h—(1>|) fqr structun.a I. Solid I_me—results of cal_cu_la-
different patterns, including periodical ones. As a result, Wetlons Wl_thln the steplike model; dashed line—results of variational
can conclude that the boundary conditions drastically affecfalcmatlons'
patterns and allow the manipulation of the current-voltag
characteristic.

SPEED
(=]

Svork beyond the local approach if the resonant-tunneling
structure demonstrates a wide range of bistability. For these
cases one must analyze the kinetic equai@rand algebraic
equation(7). In the r approximation the collision integral can

Above, we considered stationary patterns. In general, Ecpe approximated af}~ —f, /7., wheref; is asymmetri-

(14) allows different nonstationary solutions. The simplest ofcal part of distribution function f,(y,p)=—"f.(y,—p)]1,

these are solutions in the form of autowavéss ¢(n=y  and 7. is the scattering time. We are going to consider the

—vt), wherev is the velocity of such a wave. For these case of ballistic electron horizontal transfer, which takes
autowave processes the additional term(d¢/dy) appears place if 7,8 7. As shown in Sec. Ill, the wide bistability
in Eq. (18). The usual analysis of the phase plane for therange can be realized #,, is smaller thenrg. and 7,,. This
latter equation shows that, for a fixed bikswithin the bi-  proves that, in structures with wide bistability, horizontal
stability range, there is a single velocitf®), for which a  electron transfer can be ballistic. In this case the kinetic
solution in the form of a moving kink can exist. The solution equation is
can be thought of as a front, switching the system from one
uniform state to another. Ab =, the velocityv is zero, ot p of ¢ of f
and we obtain a stationary kinklike solution, discussed o mFay ay %_G_ o (25)
above. In Fig. 1() the calculated (®) is shown for struc-

ture 1. The positive velocity corresponds to the autowaveHere p labels they component of momenturp. One can
switching the system from a high to a low current state.  Solve Eq.(25) in terms of the characteristic curves

B. Nonstationary solutions

Tes

V. PATTERNS UNDER BALLISTIC REGIMES p= =P+ 2m* [ H(yo) — d(Y)I=P(Po.Yo.Y), (26)

OF HORIZONTAL TRANSFER . . .
wherep, is the momentum of the electron, injected into the

Let us consider the range of parameters for which thevell at the pointy=y,. The general solution of the kinetic
local approach is not applicable. In particular, one shouldequation has the form
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f —f Wy NGLP(P.Y.Y').Y’ PR B 32
(v,p)= | m* 5 yyn MPY.YIGIP(RY.y).y'], -y ) b (32
@7 where
where the kerneM (p,y,y’) depends on the particular shape 4 1
of the potentiakp(y) and the boundary conditions. Results of _ J ] F{ _ f)
calculations ofM are presented in Appendix D. Fx) 7 Jo 1=2%ex z dz

Using Eqgs(27), (5), and(7), one can obtain the following ) ) . .
integral equation foxp: Autowave patterns exist as well. Their spee determined

by the equation
dB 47Te dB dB _
b=t s [ Doy, (g oo 2
1
d D,— D, 7

o™ v U2 2 .U
=——|1-—| —arcsin—|.
Vg Vg

This nonlinear integral equation takes place of partial differ- (33)

ential equatior(4) and relationshifg7). In Fig. 10c) the dependence af/v on the voltage param-
Nonlinear integral equatiori28) is too complex to be eter @ —®,)/(P,—P,) is shown by the solid line.

solved analytically. Moreover, there is no general approach In order to obtain results without the above-mentioned

for a numerical solution. We analyzed the problem of pat-assumptions, we applied the following variational procedure

terns, introducing two simplifications into E(®5). First, we  for the solution of self-consistent integral equati@8). Let

assume the steplike character®fand 7o as functions ofp:  us introduce the functional

0 et <0 Aoi= [ dylo-cig) (34
G={ 1 p (29
—hF(z *), g0t >0, where
d 4me?dg d d
D, egt <0 I s s J dy’
:[T(h), e Gy Hel=-ger—g w3 | Some

(35)

}/\r/]h::'reF is the Feth; fL:ncPor(stee Arl)pgnd;?( AfThlstnr:eans.tt FunctionalJ equals zero for the exact solution of E@8).

atwe assume that electron tunnel injection from the emitteg., . particular solution we can choose some probe functions
to the well (EW) takes place only if the resonant level lies

above the bottom of emitter band and the rate of injection |r}a ‘ér(r)sl (;r)e V;Zteérer(;]'”? éz vs;a;ﬂgng(l)gslrt?g;egrsmI]Trilszeagg;argf
this case does not depend on the position of the resonagéc_)

level. Seconq in Eq25), we neglect b_y a term, proportional llJéing this method, we analyzed all three types of basic
to the force(i.e., we consider the hquzontal trar_lsfer as freesolutions: soliton, antisoliton, and kinklike. Here we present
r_“°“°” of e_qutron)s These a_ssumptlons are valid if a vana- e switching kinklike autowaves in the case of ballistic elec-
tion of ¢ within the pattern is smaller the: : under this

condition(i) the population of states in the emitter, which are tron transfer. As in this case we deal with a nonstationary
tton( populati states | ! whi kinetic equation one must introduce an additional smift
in resonance with a quasibound state, is almost consta

the momentum dependence Gf in Eq. (27). Applying

Y:rtgclenvf/ri]tﬁ ?:;oeergt %n?rllle)irth;ogﬂﬁ;f::;rggy of electrons is dlfferent probe functions, we found that the best fit corre-
Within the described model the only parameters of the sponds to an arctanlike spatial dependence.of

potential profile which affect the solution of the kinetic equa- 1
tion are the positions of the boundaries of the injection re- bor=3(P1+ )+ — (¢, — dp)arctari yy), (36)
gion, whereey+ ¢>0 (i.e., where tunnel injection from the 7
emitter exists This allows us to solve the problem of pat- where ¢, and ¢,, are the potential energies in the well, cor-
terns. Qualitatively, we obtained the same results as for theesponding to the low and high charge density uniform
case of weak bistability in the local approach. The criticalstates. This kind of probe function has two parametgend
voltage at which the kinklike pattern exists corresponds tahe switching velocityv. The dependence af/vg on the
the center of the bistability regiond.=(®,+®)/2. At dimensionless voltaged{— ®,)/Ef for structure | is shown
O, <P< P, a solitonlike pattern is possible, while dt, in Fig. 9b). As discussed in Sec. IV B, the positive velocity
<® <P, an antisolitonlike pattern can be realized. At means switching from a high-current state. One can see that
=0 the width of solitorL ¢ (the width of the injection region  the latter result is in an agreement with approximation of Eqg.

is determined by the equation (33).
In the case of the wide range of bistability and ballistic
(ORI ON L horizontal electron transfer the spatial scale of the patterns is
2 O, — D, = _f<m) 3D of the order ofL.,. The strong dependence of the tunneling

injection rate on the position of the resonant level and the
and the width of antisolitoth., (width of the region with no  ballistic motion of electrons in the quantum well lead to a
injection) is determined by the equation considerable spatial broadening of the collector current den-
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resonant tunneling systems provide an example with the
quantum character of the carrier motion at least in quea-
pendiculay direction.

In this paper we developed an approach which allows us
By to consider the tunneling in a double-barrier structure, to take
into account self-consistently the nonuniform built-up charge
and lateral carrier transfer. We obtained that the patterns in
201 1 question are characterized by a lateral scale exceeding the
2 thickness of the structuréin the perpendicular direction
ol considerably. The scale of the patteing is determined by
the time of electron escape from the well and the Fermi
velocity of electrons in the emitterL¢,=vg7ed. This is a
result of the ballistiqor quasiballisti¢ character of electron

T s - o horizontal transfer. The shape of the patterns depends on the

COORDINATE (nm) applied bias, and can be of soliton, antisoliton, and kinklike

CURRENT DENSITY (ARB. UNITS)
@

20

-300 200 100

fo
FIG. 11. The spatial dependence of the current for the soliton-
like pattern. In the upper part the current field is depicted. In th
lower part the emittefcurve 1), collector (curve 2, multiplied by

rms.

For heterostructures with finite dimensions of the layers,
Ghe patterns can be more complicated. Conditions on the
. : edges of the heterostructure should be involved in consider-

factor §, and two-dimensional lateraturve 3 currents are pre- tion. The approach developed allowed us to consider differ
sented. Calculations are done for structure I. The voltage bias coF"-1 ’ pp' . P er
Lo N ent edge conditions. We showed that the number of patterns

responds to the conditionb(— ®,)/(d,—P,)=0.3. ) . . .
and their properties are strongly influenced by these condi-
) ) ) . . tions. In particular, these edge conditions can cancel some
sity with respect to the emitter current density. In Fig. 11,pranches of the current-voltage characteristic corresponding

spatial ~dependences of emitter, collector, and tWOyq o or high current through the entire structure. In this
dimensional lateral current densities are shown for the SO“E:ontext we point out that, despite a vast number of papers on
tonlike pattern in structure at (& —®,)/(®,,—P,)=0.3. In : ’

resonant tunneling, only a few paid attention to the edge

the upper part qf Fig. 11 the current field_ in the structu_re iSeffects on the tunneling currett®® Our analysis showed
shown(the spacing between the current lines IS pro_portlona{hat lateral transfer has a large characteristic scale, and the
to the value of current density The current field in the  yecrease in lateral dimensions of resonant structures should
quantum-well layer is presented conditionally. In the lowerceriainly lead to size effects in the resonant tunneling. It is
part of Fig. 11 all three currents are plotted. One can Segorth mentioning that the effect of horizontal electron leak-
considerable current leakage over the quantum well. age can be important even if the structure does not possess
bistable behaviot®*°

Besides stationary patterns, mobile patterns have been
found. In particular, we described patterns which produce a

Different layered heterostructures with the resonantswitching of the heterostructure from one uniform current
tunneling mechanism of the carrier transport frequently demstate to the another. The velocity of such switching waves
onstrate a bistable behavior of the tunneling current. Thelepends on voltage and is of the order of the Fermi velocity
physical reason for the intrinsic bistability is the dynamicuvg.
buildup of the electric charge, which leads to two possible Let us briefly discuss the problem of stability of stationary
positions of the quasibound state in the quantum well: lowpatterns. This is an important question since it determines the
and high currents at the same voltage bias. In general, thgossibility of pattern observation in the experiments. It re-
electric charge can build up in the quantum well between thejuires special investigation. Here we restrict ourselves to a
barriers, in the emitter spacer notch before the barriers, in thehort discussion of this problem in the case of weak bistabil-
barrier layergfor heterostructures of type)lletc. As a result ity patterns described by Ed14). Equations of this type
a variety of current-voltage characteristics with the intrinsicoften appear in different problems of self-organizatisge,
bistability is observed:  typel?>~1*anStype?® more com- for example, Ref. 21 Stability problem of such patterns
plex butterflylike?® etc. against small perturbations can be formulated mathemati-

The bistable effects attract attention, are well understoodzally in terms of the Sturm-Liouville eigenvalue problem.
and are described by differenhe-dimensionatheories. In  For infinite dimensions the result is that soliton and antisoli-
the framework of such one-dimensional approaches only caton patterns are unstable, while a kinklike pattern is stable. If
rier motion perpendicular to heterojunctions is taken into acthe system under consideration has sameerfections or
count, and parallellatera) carrier transfer is disregarded. defectsall three basic solutions can be stabilized by pinning
Meanwhile, lateral carrier transfer exists in layered structuresn defects.
and is of importance under bistable effects. The lateral trans- Uniform solutions are stable against small perturbations.
fer brings about the simultaneous coexistence of differenHowever, the soliton and antisoliton patterns are those which
possible states of the system, i.e., the formation of selfinspire the propagation of switching waves, described in Sec.
sustained spatially nonuniform distributions of the built-uplV B. That is, uniform high and low current states are un-
charge, resonant current, etc. The formation of patterns istable with respect tetrong perturbations. That is, the low
well known in macroscopic solid-state physics, but bistablghigh) current uniform state a®| <P <P, (P <D< D))

VI. DISCUSSION
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can be switched to the higliow) current uniform state by where the first and second terms on the right-hand side are
means of strong enough perturbation of built-in charge, lothe rates of tunneling between the emitter and the well and
calized in a finite spatial region. between the well and collector, respectively. The probabili-
For finite lateral dimensions of the structure, the situationties of tunnelingW®") and W(*¥) generally depend on the
is more complicated, and stability strongly depends on thelectron scattering. The last term in EA2) describes
boundary conditions at the edges of the heterostructure anthanges in the distribution function due to scattering of elec-
the lateral dimensions. In particular, for fixed values of thetrons during their quasiclassical motion along the well. If we
electron density at the edges of the quantum-well layer, pateglect broadening of the quasibound level and assume the
terns can be stabfé.It is worth adding that the stability of conservation of the electron lateral momentum upon tunnel-
the patterns can also depend on the properties of the external, it is possible to write
circuit in which the resonant-tunneling diode is included.
In conclusion, we studied the effect of the pattern forma- \/\/“j‘,’vp b =W*(eq) 8y pOp. +p.r  Po=V2M* (g9t ),
tion in double-barrier resonant-tunneling heterostructures ree 2 (A3)
with an intrinsic bistability of the current-voltage character-
istic. The effect considerably involves the lateral carrier w —OW L
transport, and exists for both coherent and sequential mecha- W‘C)/’pz?p'so W 0= ®) 0y pdp, <py:
nisms of the resonant tunneling. The patterns are character-
ized by an alternative position of the resonant level in the P1=\2m* (go+ ¢+ D), (A4)
guantum well, a nonuniform distribution of resonant elec-
trons in the quantum-well layer, and a nonuniform tunnelin
current density through the heterostructure.

wherew®" andw® are the probabilities of one dimensional
gtunneling through the emitter and collector barriers for the
electron energiesy+ ¢ and eq+ ¢+ P, respectively. For
Eq. (A3) the signs(*) correspond to the transitioris=W.
ACKNOWLEDGMENTS For Eq. (A4) the signs(+) correspond to the transitions
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the resonant level as follows. Since in our model we assume
a narrow quantum well, the position of the resonant level
with respect to the well bottom is, mainly, determined by the
width and depth of the well. Finite thicknesses of the barriers

In electrodes, electrons can be characterized by -  cause small corrections to this value. kgt be the position
jection of the momentunp, (or corresponding energy of of the level if we neglect finite transmission coefficients of
vertical motione) and lateral momenturp={py,p,}. The the barrier. Then, the true resonant energy as a function of
distribution functions are supposed to be the Fermi functionghe bias® can be written as

APPENDIX A: EQUATION FOR
HORIZONTAL ELECTRON TRANSFER

F(E—Eg):
so(¢)=e6” +A{1-[8(s5” 6, 2)]7  (A4)
p?+p; _ (=)
f®(p,p,)=F ST Erl, whereA=V+¢—gy”’, and
d+e €
p2+p2 e, @)=1+|1-2—; e 2P+ 1-2y e 2e,
f©(p,p)=F W+®_EF)- (A1)
Fpr _clas_sical mot?on along the wgll, one can introduce the a(e)= E (g) 1/2% [VIVE d—8)3—(V—2)7],
distribution function f(r,p,t), which depends on two- 3\ A ¢
dimensional vectors;={x,y} and p. We assume that the (A4")
transversal coordinate dependence of patterns is so smooth v
that the tunneling can be accounted as strictly vertical pro- 2 [2m* B,
cess(alongz at fixedr. Then, in terms of tunneling transi- Ble)= 3 (7) S+ D [N(V+¢—2)
tions between the emitter, quantum well, and colle¢EN,
CW), the total derivative of (r,p,t) can be written a% —J(V=—d—g)3].

df oW For w(®") andw(*"), we obtain
G 2 Woh e (PP = (rp)]
P2

’
,

8 A
W(ew)zgv Veol )V —eo(p)]e 210,
E: (cw) ©)(n! _
+p/ p WP/,pz:p,so[f 2(p".p,) —f(r.p) ]+ 1{f},

VI[P +eg(d)I[V—P—eo(p)Je 2PLeol@],

<| B

8
wew ==
(A2) h
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Assuming a strong voltage bias, we can neglect tunneling wk(z+dg,)
from the collector to the well and rewrite EGA2): G(x—x',y-y',2,2')=2, sin g -
k

df 1 2 f ) o,

—=—0(go+ d)F p—*+80+ ¢—Eg| — —+1{f} XFr(x=x"y=y".z'). (B2

dt 7w 2m Tes

For F,, one can find
f
Tes Fk(x,y,z’)=——dsinT:L KO(? x/x2+y2),
Here® is the Heaviside function, and we introduce the local & (B3)
rate of tunneling injection of the electrons into the well layer:
, where K, is the McDonald function. For the electrostatic
1 p energy in the wellp(x,y,dg. )= ¢(X,y), we obtain Eq(6)
=— + —teotd— 1
G(p.¢) Tew O(z0 d’)F( omr TeoT ¢ EF)’ with the kernel function
(A6)
2 wkd

and 7o, = 1™, 7= 1MW), and roe= 1/(W )+ w(E) . Kit—r)=2& s sinz(_Bl) KO(W—k |r—r’|).

Formulas(A3)—(A6) are valid for the limit of zero width xd d d
of the quasibound level. Broadening of this level can be im- (B4)

portant for the voltage bias, aligning the level and the bottonFor the patterns, depending on the one transversal coordi-

of the emitter band. Two processes lead to the broadeningiate, say, only the integral ory’ remains in Eq(6). In this

finite transmission of the barriers and scattering in the quancase the kernel function is
tum well. We assume density of states, associated with the
level in the form wkd

4e? !
Kly=y)=—- 2 sz(TB

From Egs.(B4) and (B5), it follows that the kernel function
exponentially decays for the argument, exceeding the thick-
ness of the structurd. For the smooth dependenae&x,y)

this proves the one-dimensional consideration of the electro-
static problem employed in Eq7).

e~ mkly=y'l/d (B5)

1 r
P(S'SO)— ; (8_80_¢)2+F2-

(AB")

whereeg is energy of vertical motion, and is the broadening
of the level. Two above-mentioned processes contribute t
the broadeningl’ =% (1/7.st+ 1/7) /2, whererg. is the scat-
tering time for the electrons in the well. EquatioAq’) is
valid for weak broadeningl’<¢ (see Ref. 32 Taking the
broadening into account, one can modify the kinetic equation
(A5) as follows. In Eq(A6), for the injection rate one should
substitute Integrating kinetic equatiori4) over p, one can easily
obtain the balance equation for horizontal transport:

APPENDIX C: LOCAL APPROACH
FOR HORIZONTAL TRANSFER

O(s0+d)— v(eg+ ¢>=f:ds p(e.cot ). (A

on n
—Hdivi=gle(rn]-—, (D
Of course, in this case one should ptf+ ¢=E¢ in the e
argument of the Fermi function in EGAB). where we introduce the two-dimensional electron flux
This modification ofG(p, ¢) is important for biases near
the edge of the bistability region for any broadening, and it J=2 P f(r,p) (C2)
should be included into consideration at all biases if the p m* '

bistable region is narrow. Writing the total derivatigé/dt
in Eq. (A5) in an explicit form, we obtain the basic kinetic
equation(4). 2
_Ueotd) > F p—*+so+¢—EF . (CY
. Ted @) 5 2m
APPENDIX B: ONE-DIMENSIONAL APPROXIMATION
FOR ELECTROSTATIC ENERGY From the theory of electron transport it is well known that an
equation in form of Eq(C1) can be significantly simplified
for the case where bcal approximationis applicable i.e.,
current(C2) can be expressed through the concentration

and total injection rate

The Poisson equation o= — (4me? k)n(x,y,z) under
boundary condition$3) has the solution

7 Ae? the potentialp, and their derivatives. For this the length and
o(X,y,2)=—D =— f dx'dy’dz' G(x—x',y time scales of the problem should be sufficiently greater than
d K the relaxation length and time of the electron momentum
—y'.2,2)n(xy",2"), (B1) (see, for example, Ref. 33Such a hierarchy of the charac-

teristic scales provides an almost symmetric distribution
whereg is the Green function with the boundary conditions function in the momentum space. The analysis given in Sec.
Gl,—0=6|,—q=0. To satisfy these conditions, we presént |l showed that, for bistable regimes, momentum relaxation
as a series: is not the fastest process, and can be completely absent. This



13 358 B. A. GLAVIN, V. A. KOCHELAP, AND V. V. MITIN 56

means, that electron distribution relaxation occurs mainly a:
a result of tunneling exchange between the quantum well an
the electrodes. This exchange can lead to an almost symme
ric distribution function even if the momentum relaxation is
negligible. The standard approach cannot be used in the ca
in question. We introduce the local approximation in anothel
way. Supposing that the potentigl(r,t) is given, we find
the concentratiom(r,t) through ¢ and its derivatives om
andt. Then, this result and relationsh{p) will compose the
self-consistent system of equations which will describe the
patterns in the local approximation.

In order to derive the equation forn
=n[¢,(dplar),(?plar?),(d¢lat),...] in the local ap- 5 5 5
proximation, it is convenient to present the distribution func- ; — d

ton as f(r,p,t)=f(r,p,t) +f)(r,p,t),  where Y3 Yai Yar
fO(r,p,t)=f)(r,—p,t) is symmetric, whilef()(r,p,t)
=— f(‘)(r, —p,t) is an asymmetric function gi. Since the FIG. 12. Model potential profile illustrating three possible types

injection rateG is symmetric, we obtain the coupled equa- of trajectories of ballistic electrons injected in the quantum well.
tions

2
p
af*) ot g af) f(+) Jdp—foo
LA e _J e
gt m* dr dp dp Tes (e)= n (C1)
af ) p 9f) g¢ of(D) f) §00) s Now we can write the corrections of high orders for
T a wp wm re rm OY .
0 .
where we suppose elastic scattering inside the well, and write N10= = Tes s Moz~ ~ TeddiVyos.- (C12

the collision integral in ther approach with momentum in- . o
dependent Scattering t|m%c Then we assume a Smoothnesswe restrict ourselves to the three-term apprOXImatlom of
of the patterns and a gradient expansion of all functions. T@iven by Eq.(C6). Then we findn in the form
trace the derivation we formally introduce two dimensionless 5
parametersf, and 6, by the following replacements: ﬂ @ - — %_

owing I N ¢, 2z 5| =No($) = Ted &)~ Ted )
(919t)— 64,(al at), (alar)— 6,(d/adr) (in the final formulas are - at at
we setf;=6#,=1). Then all functions can be presented as
expansions in series with respectépand 65: +div

dp
D(¢) W), (C13
+)_ £(+ + 2¢(+

P =100+ 0afh + 05700 + - where we se®;= 0,=1. Combining formulaC13) and re-
lationship(7), one can obtain the equation fei(r,t).

(C6) In the above derivation we neglect the terms with deriva-
tives of the higher order. This is valid only for the patterns
with smooth time and coordinate dependenfee criteria

f)= 0,100+ 0,0, + 03105+,

n= n0+ 01”10+ 0§n02+ Tty

17)].
1= 02301+ 0102311+ 3303+ (7]
Thus the terms proportional mjlazz contain thes;th power APPENDIX D: KERNELS
of the time derivative and the,th power of the gradient; FOR INTEGRAL EQUATION (27)
from Egs.(C4) and (C5) we easily find the lowest approxi- The model fragment of potentiab(y) in Fig. 12 illus-
mations. trates three possible cases for injected electrons. If an elec-
(+) _ tron is injected with lateral motion energy, exceeding a
foo T(1).P.t]=7eG(1,P), €7 maximum of(y)[ P (2m*) + ¢(yo) >max ¢(y)], no turn-
p ot o ing points exist, and
féﬁ(r,p,t):reﬁ{—*—— —], (C8) rbu o)
m* or - dp M(Po,Yo,Y)=0(y—yo)e "Po¥o¥), py>0, (D1)
No=7ed $)9(), (C9  where
dy’
TeMo  d [ 27eiNo(e))| | dp d¢ h :jy _
Jor= " | T g (m— o= P@ o (Poyo V)= | Zdy P(bo¥e )
(C10

If po<O, one must replacg=y, on the right-hand side of
where 1f.4=1/7c+ 1/7,, and(e) is average electron kinetic Eq. (D1). If there is a single turning point; <y,, one can
energy: obtain, forpy<<0,
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M(po.y y)_@(y_y*){e—h(po,y,yo)+e—h<po,y§ Yo)=h(Po.y3 Y). yE<y<yo
0:Y0>» - 2

e N(Po.y3 Yo)~h(Po.Y3 .¥), Yo<Y. (b2)
If y5>y,, then, forpy>0,
~h(pg ¥0.¥) 1 @~ N(Pg.¥0.¥3)—h(Po.y.y3) *
_ x € +e 2 27, Yo<Yy<Y;
M(DOyYan)—®(YZ y){e_h(pO'yO'yg)_h(pO'yvy;)' y<y0 (D3)

For the casegs <yq,po>0 andy3 >y, po<0, one should use formulas for the case without turning points, because under
these conditions an electron actually never comes to the turning point. For the case with two turninggbeittsns are
captured in the potential welbne can find

O(y—y5)O(y% —y) [ e NPoyo.y) 4 g hPo.yoyz) —h(Po.y.y3,), Yo<y<y%
M(p01y01y): _ * % —h *\_h * —h *\_h * ok h * *

1— e~ 2h(Po.y3 Y3, e~ h(Po.¥0,Y3,) —h(Po.y,¥3) 4+ @~ N(Po.Yo.Y3) ~h(Po.y3 ¥3,) (po,y3.,y), Ya<y<Yo

(D4)
for pp>0. If pg<0, then

O(y—y3)O(y3—y) [ e "Po¥Yol 4 @=n(Po.¥a Yo)hiPo 31, Y<Yo<Y3

M(Po.Yo.y)= 1— e 2M(Po.v5 ¥3) | @ N(Po.Y3) Yo) ~N(Po.Y51 ¥) 4 @~ N(Po.Y5 Yo) ~N(Po.y3 Y3 ~h(Po.yy5) Y3 <Yo<Yy.
(D)
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