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Effects of acoustic-mode localization under dimensional crossover of an electron gas
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We have considered the semiconductor heterostructure that localizes acoustic modes within the quantum-
well layer. It has been shown that additional confinement of the electrons in the plane of the layer gives rise to
a supplementary localization~in a second direction! of acoustic modes. That means, in the many-electron
system interacting with the lattice, the crossover from two- to one-dimensional electron-gas behavior leads to
the appearance of a collective excitation which consists of lattice vibrations and electron charge-density waves,
accompanied by an electrostatic field. The spectrum of this excitation is quite similar to those of acoustic
phonons. The excitation is localized in two directions and is one dimensional in character. Splitting of this
branch of the excitation from phonon branches of the structure and its additional localization increases with the
wave vector of the excitationq. The two-dimensional electron gas forming a conductive channel with submi-
crometer dimensions completely localizes the excitation within this channel. If the electron gas is confined
further to a one-dimensional channel, the excitation reveals maxima in the splitting and localization in the
regionq'2kf , kf being the Fermi wave vector. In this region the dispersion curve of the excitation shows
rotonlike behavior and the density of states has a peak (T50). @S0163-1829~97!03116-0#
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I. INTRODUCTION

Various semiconductor heterostructures are now main
jects of study in solid-state physics. The most attention
paid to an electron’s quantum confinement, i.e., to peculi
ties of two-, one-, and zero-dimensional@~2D!, ~1D!, and
~0D!# electrons. The investigation of phonon confinemen
much less advanced. Recently researchers began to re
that in the heterostructures there exists a phonon con
ment, i.e., a localization of the lattice vibrations within he
erolayers, nearby interfaces, etc. The existence of both,
carriers and the phonon modes, within the same narrow
tial domain of the material leads to important consequen
for the effects related to electron-phonon interaction. For
ample, phonon confinement~mainly, optical-phonon con-
finement! affects the electron transport by modifying the i
tensity of the electron scattering, etc. Heterolayers
themselves be waveguides for acoustic vibrations, giving
to a localization of the sound energy into electrically act
regions. The latter is important for acoustic and acoustoe
tronic phenomena, etc.

The main physical reason for the phonon confinement
difference in the material characteristics of heterolayers:
tice constants, lattice forces, dielectric functions, etc. Ext
sive literature exists on the optical phonon confinem
within quantum wells~QW’s! and wires~see, for example
Refs. 1–8!. The electron contribution to the optical-phono
confinement has been also discussed.9

Acoustic-phonon localization10 originating from the lat-
tice nonuniformity of layered heterostructures has be
considered in several papers.11–13 From these studies i
follows that a number of widespread heterostructu
shows the acoustic-mode localization near QW
Al xGa12xAs/GaAs/AlxGa12xAs, GaP/GaAs/GaP~QW’s for
550163-1829/97/55~16!/10707~14!/$10.00
b-
is
i-

s
lize
e-

he
a-
es
-

n
e

c-

a
t-
-
t

n

s
:

electrons and holes!, AlxGa12xSb/InSb/AlxGa12xSb ~QW
for electrons!, etc. The localization of acoustic-phono
modes within AlxGa12xAs/GaAs quantum wires has bee
calculated in Refs. 14,15. The behavior of acoustic phon
in superlattices has been studied in Refs. 16–18. Eviden
the localization due to a difference in the material charac
istics should be considerably stronger for strained semic
ductor heterostructures where this difference can be lar
The extreme case of a modification of acoustic phonon
demonstrated for free-standing quantum wells.19

Another physical reason for the acoustic-mode locali
tion has been pointed out and studied in Ref. 20. It has b
shown that even in the case of almost uniform characteris
of the lattice an electron-gas sheet localizes acoustic mo
within the sheet due to electron-phonon interaction. Actua
such localized modes are two-dimensional excitations o
coupled electron-phonon system. Their frequencies are c
to those of the phonons and are very different from ot
types of excitations in two-dimensional electron-gas-li
plasmons, magnetoplasmons, etc.

In this paper we consider layered semiconductor hete
structure which localize acoustic modes within the Q
layer. We suppose that the crossover from a two-dimensio
electron gas to a one-dimensional channel is controlled by
external electrostatic field~for example, using the split-gat
technique21!. Formation of quasi-one-dimensional, or on
dimensional electron channels by this method leads to s
off one-dimensional modes, which are one-dimensional c
lective excitations of the electron-phonon system. In ot
words, these modes originate in part from the lattice nonu
formity, and are formed and guided in part by the electr
channel due to electron-phonon interaction.

The localization of acoustic modes in one more direct
could be qualitatively understood recalling two well-know
10 707 © 1997 The American Physical Society
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10 708 55V. A. KOCHELAP AND V. V. MITIN
phenomena. The first follows from the theory of elas
waves.22–24a layer buried within another material and cha
acterized by a decreased elastic modulus always splits
bulk acoustic vibrations into bulklike modes and localiz
modes. The latter are localized within or nearby the emb
ded layer and propagate along this layer. On the other h
for bulk crystals one of the results of electron-phonon int
action via deformation potential is a renormalization of el
tic modulus and sound velocities. This renormalization
ways has a fixed sign corresponding to a decrease of el
modulus. Combining these two phenomena one can see
if there is a spatial area with electrons~an electron channel
for the case in question!, the ‘‘effective elastic modulus’’
should be decreased within this area. That means the e
trons induce an additional nonuniform softening of the l
tice. One could expect that this softening causes a sup
mentary acoustic-mode localization, in a second directio

In fact, such a localized mode is a collective excitation
the system of interacting low-dimensional electrons a
acoustic phonons. The mode also drives waves of the e
tron density and electrostatic potential~but it differs from
well-known plasma waves in low-dimensional systems, s
e.g., Refs. 25–27!. This collective excitation is characterize
by a one-dimensional wave vectorq, because there is onl
one direction with translation symmetry along the electr
channel. Since the electron motion is much faster than tha
acoustic phonons~ve@c, whereve is characteristic electron
velocity, c is sound velocity!, the electrons follow adiabati
cally the lattice vibrations. As a result, the phonon spectr
experiences much stronger renormalization in compari
with the electron spectrum. As it will be shown, the disp
sion curve of the localized mode is split and moved do
with respect to that of acoustic modes of an initial layer
structure with two-dimensional electrons. The number
created modes depends on electron-phonon coupling, e
tron density, and width of the electron channel.

For a strictly one-dimensional case, when electron mot
is quantized in two directions, there exists only one mo
The mode dispersion relation is no longer a linear function
wave vectorq and shows some anomalous behavior arou
q52kF , wherekF is the Fermi vector of the electrons. Ex
traordinary features of different physical quantities in th
wave vector region are caused by well-known abnormal
larizations of a one-dimensional Fermi system. For the s
plest one-dimensional model this leads to the renormal
tion of the phonon frequency down to zero~Peierls phase
transition28!. In the case under consideration, when the latt
vibrations are treated as three dimensional and the forma
of the charge-density wave is taken into account, the scre
ing effects prevent the Peierls transition~at least for actual
material parameters!. Below we show that the rotonlike por
tion of the dispersion curve and corresponding infin
peak~s! in the density of states of the excitations are form
at a low temperature. The characteristic scale of the local
tion of the mode is also a strong function ofq and reaches its
maximum in the same region ofq.

Note, that a renormalization of the electron spectrum
be negligible, because of the adiabatical character of
electron motion. However, the described collective exc
tion enhances the energy dissipation of electrons.29 In this
paper we concentrate on the behavior of the excitation for
he
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above described physical situation.
The lattice vibrations and the electrostatic field of the e

citation have complex spatial configurations. We have dev
oped an approach in the spirit of the adiabatical approxim
tion. This approach allows one to find all variables a
analyze the excitation spectra.

The paper is organized as follows. In Sec. II the mode
the semiconductor heterostructure is described and the
essary equations are formulated. In Sec. III the appro
used to analyze the excitation localized in two dimension
developed and the mode localization near a quasi-o
dimensional electron gas is considered. In Sec. IV the cas
strictly one-dimensional electrons is considered. A disc
sion of the results and numerical estimates are given in S
V. Some important, but cumbersome expressions are der
in Appendixes A and B.

II. MODEL AND EQUATIONS

We study the effect of additional localization of th
acoustic modes in the heterostructures to model the elec
channel shaped on the base of a narrow QW by exte
potential, which restricts the electron motion in one ad
tional direction~see Fig. 1!. A voltage applied to a split gate
allows one to control the width of the electron channel. W
suppose that the heterolayered medium with a planar em
ded layer modulates the lattice properties in thez direction
and forms QW’s for the electrons.

The phonon subsystem.First, let us formulate the mode
for acoustic vibrations of the lattice. We describe the lon
range acoustic vibrations by the equation for sound wave24

r
]2ui
]t2

5
]s ik

]xk
, ~1!

whereui are components of the displacement vector of m
dium u, r is its density,s ik is the stress tensor,t andxk are
time and space coordinates, respectively. For simplicity
assume that the heterostructure is composed of isotropic
terials. Then, the contribution of the elastic lattice forces
the stress tensor is24

FIG. 1. Sketch of a heterostructure under consideration: emb
ded quantum-well layer~QWL!, split gate~G!, and coordinate sys-
tem.
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s ik
L 5@l~z!1 2

3m~z!#ulld ik12m~z!~uik2
1
3ulld ik!, ~2!

wherel(z) andm(z) are Lame´ coefficients which are dif-
ferent for the buried layer and the surroundings;uik being the
strain tensor. In order to avoid overcomplication of the d
tails of the electron and acoustic properties of the hete
structure, we restrict ourselves to the long-wavelength c
then

qdz , kchdz!1. ~3!

Hereq is the wave vector,dz is the thickness of the embed
ded layer, andkch

21 is the characteristic decay length of th
excitation outside the layer. In this case we can write do
the modulusl(z), m(z) in the form

l~z!5l1l8dzd~z!, m~z!5m1m8dzd~z!, ~4!

where d(z) is d function. The terms proportional tod(z)
correspond to the contribution of the embedded layer.

In the absence of electrons, the long-wavelength limit~3!
and approximations~4! make our task equivalent to the pro
lem of acoustic modes for the so-called ‘‘flat defect’’.11

Analysis of that problem has shown the existence of loc
ized acoustic modes ifl8, m8,0. The latter just correspond
to the above discussed softening of the lattice at the regio
the embedded layer. Another result of the analysis11 is a
mixing of longitudinal and transverse-acoustic vibrations~if
m8Þ0!. Below we will consider the simplest isotropic stru
ture of the electron band, when the electrons interact o
with longitudinal acoustic phonons. To make our consid
ation easier we also assume the inequalityum8u!ul8u, so that
a mixing of the longitudinal and transverse elastic waves
the embedded layer is ignored.

For an isotropic electron band the electron-phonon in
action can be described only by one constant of the de
mation potentialb,30 and the electron contribution to th
stress tensor can be written as

s ik
E5bn~x,y,z!d ik5bns~x,y!d~z!d ik . ~5!

Heren(x,y,z) is a concentration of the electrons. In the la
equality we have taken into account the electron confinem
into the narrow QW so that, in vein of criteria~3!, we can
introduce the ‘‘surface’’ electron concentrationns(x,y).
However, the electron motion can possess either a 2D or
character dependent on the degree of their additional c
finement in they direction.

For what follows it is convenient to obtain the equati
for relative volume change (divu)[ull . For this quantity
from Eq. ~1! we find

r
]2ull
]t2

5
]2s ik

]xi]xk
, s ik5s ik

L 1s ik
E . ~6!

Outside the layer one can rewrite this equation in a v
simple form using the free wave equation

r
]2ull
]t2

2~l12m!Dull50, zÞ0. ~7!
-
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The solution of Eq.~7! at z.0 andz,0 should be matched
at the plane of the layer. The corresponding boundary c
dition can be derived from Eq.~6! by integration over the
narrow layer aroundz50:

~l12m!
]ull
]z U

20

10

52l8dzD2ull2bD2ns , ~8!

whereD2[(]2/]x2)1(]2/]y2). From Eqs.~7!, ~8! it can be
seen that only relative volume changeull enters the equa
tions. This means that under the above assumptions
longitudinal acoustic vibrations are coupled with the co
fined electrons.

Theelectron subsystem. We assume that the electrons fo
low the lattice vibrations adiabatically and are redistribut
in the potential created by the acoustic wave~a necessary
condition for the adiabatical approximation always holds
semiconductors!. For the electrons the total potential ener
induced by the acoustic wave can be written in the form30

h~r !5bull2ew, ~9!

wherebull describes a change of the bottom of the elect
band due to a lattice deformation,w is a electrostatic poten
tial arising from the nonequilibrium redistribution of th
electrons in space,w is governed by Poisson’s equation

Dw5
4pe

«0
dns~x,y!d~z!, ~10!

with «0 being the dielectric constant of the crystal.
Besides the electron confinement inside the narrow Q

there is a restriction on the electron motion in they direction.
Let us assume that the conducting channel is along thex axis
and that all variables have the following dependences on
x coordinate and time:

ull ,w,dn;ei ~2vqt1qx!, ~11!

while the determination ofz andy dependences is one of ou
main goals. Here we can only mention that the characte
tics scales of these dependences areq andkch, obeying cri-
teria ~3!.

Any change in the electron densitydn induced by poten-
tial ~9! can be calculated using ordinary perturbation the
for the density matrix~see, for example, Ref. 20!:

dn~x,y,z!52eiqx(
n,n8

(
l ,l 8

(
k

Cn,l~y,z!Cn8,l 8
* ~y,z!

3
f 0~en8 l 8k1q!2 f 0~enlk!

en8 l 8k1q2enlk1 id
^nluh~y,z!un8l 8&.

~12!

Hereenlk andCnl(y,z) are eigenvalues and wave function
of transverse electron motion, respectively;k is the wave
vector of the electrons,f 0(enlk) being the Fermi distribution
function. Let us assume that the wave functions are facto
Cnl(y,z)5Cn(y)C l(z), and the characteristic scale o
C l(z) is dz . According to criteria~3! the potentialh(r ) is a
smooth function of thez coordinate, so we can write

^nluh~y,z!un8l 8&>d l l 8^nuh~y,z50!un8&. ~13!
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10 710 55V. A. KOCHELAP AND V. V. MITIN
This means that flatten potentialh(y,z) does not cause tran
sitions between the electron subbands arising from a qua
zation in thez direction. Then, using Eq.~13! we find the
surface electron concentration

dns~x,y!52eiqx (
l ,n,n8

(
k

Cn~y!Cn8
* ~y!

3
f 0~en8 lk1q!2 f 0~enlk!

en8 lk1q2enlk
^nuh~y,z50!un8&.

~14!

The set of relationships~7!–~11! and ~14! self-
consistently describes coupled acoustic vibrations of the
tice, an electrostatic field, and a redistribution of the el
trons. This set is sufficient to consider the collecti
excitations localized in two directions.

Spatial scales of the problem.For analysis of this system
of equations, it is useful to consider spatial characteri
scales of the problem. There are two scales of the elec
confinement,dz anddy . For the case of the quantization o
electrons inside the embedded layer and restricting their
tion in the second direction by an external potential the
equality

dz!dy ~15!

applies. Then, one has to comparedz , dy with inverse Fermi
vector kF

21. The width of the QWdz is determined by the
heterostructure fabrication. The confinement in they direc-
tion dy is mainly controlled by the gate voltage, whilekF

21 is
considerably dependent on the doping. These three sp
scales can be controlled and changed almost independe
As a result, different situations can occur

kF
21,dz,dy , ~16a!

dz<kF
21,dy , ~16b!

dz,dy<kF
21. ~16!

First inequalities~16a! simply correspond to a conductiv
channel with three-dimensional electrons. This channe
narrow in z and y directions in a classical sense. Seco
inequalities~16b! refer to a quasi-one-dimensional case
simply a two-dimensional channel narrow in the classi
sense~only onez subband and manyy subbands are occu
pied by the electrons!. The last case~16! corresponds to
strictly one-dimensional electron channel, where only
lowest electron subband is filled. This case is quite differ
from the first two and requires special consideration.

Such a classification of possible physical cases allows
to simplify the set of basic equations according to inequ
ties ~16a!, ~16b!, ~16! and analyze the problem in detail. W
now study the localization effect and behavior of the exc
tions from quasiclassical cases~16a!, ~16b!.

III. CASES OF NARROW CLASSICAL CHANNELS

In the limiting case of classical narrow channels expr
sions~12!, ~14! for the redistribution of the electron densi
can be substantially simplified and expressed through
ti-
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tionary distributions of the electrons in the potential whi
determines their confinement.

Under criteria~16a!, when a large number of subband
with small intersubband energies contributes to Eq.~12!, the
concentration of 3D electrons can be presented as

dn~x,y,z!52h~y,z!eiqx
]n~y,z!

]n
, ~17!

wheren(y,z) is the equilibrium spatial distribution of the
carriers inside the classical channel, andn is the chemical
potential. Note that formula~17! coincides with obvious
form for an electron redistribution in a stationary nonunifor
potentialh(x,y,z). This result is a consequence of an ad
batical approximation. The electron channel is determined
a given potentialU(y,z) formed by both a profile of the
band edge of the heterostructure and an external electros
field. Thus, forn(y,z) one can write

n~y,z!5E
0

` r3~e!

11expFn2@e1U~y,z!#

kT G de, ~18!

where e is the kinetic energy of classical electrons,r3(e)
[Apm3/2/p2\3 is the 3D density of states per unit volum
m* is the effective mass, andT represents the temperatur
Taking into account the assumed smoothness of the pote
h(y,z), after integration overz one can find a variation o
the surface electron density in the channel:

dns~x,y![eiqxdnq~y!52h~y,0!eiqxP3~y!, ~19

where

P~y!5
]ns~y!

]n
, ~20!

and ns(y)5* dz n(y,z). The expressions~19!, ~20! are
valid for three-dimensional electrons atq,kF .

For a narrow two-dimensional channel~quasi-one-
dimensional case!, under criteria~16b! one can calculate
dns(x,y) and find the same relation~19! at any ratio between
q and kF ~see Appendix A!. If P2(qun) is the polarization
operator of the two-dimensional electron gas with the che
cal potentialn, then the functionP(y) can be expressed vi
P2 defined by Eq.~A5!:

P~y!5P2@qun2U~y!#, ~21!

whereU(y) is an external potential restricting the electro
motion in they direction. Atq,kF expression~21! is sim-
plified to the form~20!, where the surface electron conce
trationns has to be accounted according to Eq.~18! with the
2D density of statesr2(e)[m/p\2 instead ofr3(e).

Now we can write down the final system of equatio
which should be solved:

F ]2

]y2
1

]2

]z2
2k2Gu~y,z!50, zÞ0; ~22!
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2~l12m!
]

]z
u~y,z!uz→20

z→10

5S ]2

]y2
2q2D @l8dzu~y,0!1bdnq~y!#, z50;

~23!

F ]2

]y2
1

]2

]z2
2q2GF50, zÞ0; ~24!

]F

]z U
z→20

z→10

52
4pe2

«0
dns~y,0!, z50; ~25!

u~y,z!,F~y,z!→0, y,z→6`; ~26!

dnq52P~bu1F!. ~27!

Here we introduce the following notations:u(y,z)
[ull (y,z), F[2ew, and

k5Aq22vq
2/cl

2; ~28!

cl5A(l12m)/r is the velocity of longitudinal sound
waves. Note, that boundary conditions~26! correspond to
solutions localized within the electron channel.

Solving Eqs.~22!, ~24!, ~27! with matching conditions
~23!, ~25! and the boundary conditions~26! gives the spatial
distributions ofu, F, anddns , and the dispersion relatio
v(q) for the localized modes. Thus,k5k~v! is an eigen-
value of this system of equations.

In order to solve the system we note that spatial sca
that characterize the localization iny direction are much
larger than those of thez direction. For the electrostatic po
tentialF, it follows from criterion~15! combining this crite-
rion with the inequalityq<kF , we get

qdy@1 ~29!

@see also inequalities~16a!, ~16b!#. For the acoustic variable
u it occurs due to the small renormalization of the elas
modulus by electrons: the localization in thez direction is
mainly a result of a finite change of the modulus in t
embedded layer, while the localization iny direction is
driven by the electron-phonon interaction only. If the ch
acteristicy scale of the functionu is xch

21(q), we assume tha

kch~q!@xch~q!. ~30!

Thus, we assume that all functions vary in they direction
much slower than in thez direction. In this case we can us
the approach similar to an adiabatical approximation.
present the unknown functions in the form

u~y,z!5A~y!Zu~y,z!1u1~y,z!, ~31!

F~y,z!5B~y!ZF~y,z!1F1~y,z!, ~32!

where the first terms are the leading ones in this appro
Zu andZF are adiabatically slow functions ofy. The second
termsu1 andF1 give corrections to the first approximation

To define the first approximation we first ignore all d
rivatives with respect toy in Eqs.~22!–~24!. Then, at fixed
y we find
s

c

-

e

h,

u~0!5A~y!e2k~y!uzu, F~0!5B~y!e2quzu, ~33!

where the relationship between amplitudes of acoustic
electrostatic waves is

B~y!5A~y!
2pe2bP~y!/«0

q12pe2bP~y!/«0
. ~34!

From Eq.~22! for u it follows that the solutions in the form
~33! can exist as long ask(y) is

k~y!5k0~q!@11a~y!#, ~35!

where

k0~q!52
q2l8dz

2~l12m!
, ~36!

a~y!52
b2

l8dz

P~y!

112pe2P~y!/«0q
. ~37!

According to Eq.~33!, the quantityk(y) characterizes the
localization in thez direction. HereA(y) still is an arbitrary
function.

Before determiningA(y), let us note that in the absenc
of the electronsk is always constant and positive,
l8,0. The latter is a necessary requirement for the locali
tion of the acoustic modes. For this condition we find t
dispersion relation for thetwo-dimensional acoustic mod
localized within the embedded layer:

v2D
2 5cl

2q22cl
2k0

25cl
2q22cl

2S q2dzul8u
2~l12m! D

2

. ~38!

Within approximation~4!, i.e., for ‘‘a flat defect’’ of the
lattice, there exists a single localized mode.

Equations~33!–~37! can obviously be applied to the cas
of homogeneous electron characteristics in thex,y plane,
whenu1 , F1 are equal to zero anda, P are constant. It is
easy to see that signs of the electron contributions tok andv
@second term in Eq.~35!# correspond to a softening of th
lattice and an additional localization of the acoustic mode
thez direction@see Eqs.~35!–~37!#. However, in accordance
with the above discussed, these contributions are alw
smaller than the lattice contribution of the embedded lay

In Appendix B the equations for subsequent steps of
approximation are presented. In the framework of such
approach one can find the equation forA(y):

d2A

dy2
1@k2~y!2k2#A50. ~39!

According to Eq.~26!, the boundary conditions forA(y) are

A~y→6`!→0. ~40!

If we denote

v~y![ 1
2 @k0

22k2~y!#, e[ 1
2 ~k0

22k2!, ~41!

we can rewrite Eq.~39! as

S 2
1

2

d2

dy2
1v~y! DA5eA, ~42!
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10 712 55V. A. KOCHELAP AND V. V. MITIN
i.e., in the form of a ‘‘Schro¨dinger equation’’ with ‘‘a poten-
tial’’ v(y) and ‘‘an energy’’ e. Thus we obtain the well-
known eigenvalue problem, where the eigenvaluee deter-
mines the dispersion relation and eigenfunctionA(y)
characterizesy dependences of the excitation.

In this formulation of the problem, the potentialv(y) is
mostly determined by the electron characteristics: in the
sence of the electronsv50, if the electron concentration i
independent of coordinatey, v5const,0. An electron con-
tribution makes ‘‘the potential’’v always deeper. A nonmo
notonous distribution of electrons creates potential relief
maximum ~minimum! of the electron concentration corre
sponds to a minimum~maximum! of v(y). Thus, when the
electrons are localized in some area, the potentialv(y) is
negative just in this area. For a one-dimensional Schro¨dinger
equation, such a potential causes at least one discrete en
level and bound state.31 Thus, one can immediately conclud
that there always exists a localization of the excitat
mode~s! in the y direction. Actually, a discrete levelen cal-
culated at fixedq corresponds to the eigenvalue of Eq.~39!:

k25k0
212uenu.

The latter gives the frequency ofone-dimensional collective
excitationat fixedq:

v1D,n
2 ~q!/cl

25q22k0
2~q!22uen~q!u. ~43!

We see that the frequency of the collective mode localize
two directions is always less than the frequency of the aco
tic mode localized only in one direction due to the embedd
layer.

Explicit forms of en(q) andAn(y) cannot be obtained in
the general case. But if ‘‘the potential’’v(y) is shallow, one
can write down for the only level that exists in this case

A~y!5const3e2xuyu, ue0u5
1

2 S E
2`

1`

dy v~y! D 2[ 1
2x2.

~44!

Here we use the following approximation, which is we
known in the quantum mechanics.24 The localization scale in
a shallow potential exceeds the characteristic width of
potential. Thus, the solution has an exponential form eve
where except the potential region. The localization para
eter,x, should be found by substituting the solution into E
~44! and integrating it over the entire space. The results
valid if ue0u!uv(y)u.

The described picture of the localization depends on
wave vectorq since ‘‘the potential’’ v(y) is a parametric
function ofq. From Eqs.~35!, ~36!, and~41! we see that the
depth of this potential well increases for largerq. Thus, if we
consider the lowest-energy levele0 of ‘‘the potential’’ we
obtain, according to Eq.~43!, a dispersion curve for the ex
citation localized in two directions. Because of increas
ue0(q)u with q, we can also conclude that the splitting b
tween two-dimensional acoustic branch~38! and the collec-
tive excitation mode increases for greaterq, as well as pa-
rameters of the localization in bothy and z directions. For
largeq, when at a certain depth of ‘‘the potential’’v(y) an
additional discrete level appears, a second localized mod
split, which appears at a certain critical valueqc . Its disper-
b-

rgy

in
s-
d

is
-
-
.
re

e

g

is

sion curve is located between the two-dimensional branch
~38! and the lowest one-dimensional dispersion curve. These
general conclusions are valid for both 3D and 2D electrons
which induce the collective excitation.

Now we consider the case of 2D electrons, when their
motion is restricted in they direction in accordance with
inequalities~16b! ~i.e., the case of the quasi-one-dimensional
electron channel!. For a completely degenerate electron gas
the electron concentrationn(r ) is determined by the Fermi
level n and an external potentialU(y) @see Fig. 2~a!#:

n~y!5
m*

p\2 @n2U~y!#Q@n2U~y!#, ~45!

whereQ(x) is the Heaviside step function. From formula
~45! it follows that the thickness of the quasi-one-
dimensional channel isdy5y12y2 , wherey1,2 are roots of
the equationU(y)5n. For this semiclassical case one can
introduce the Fermi vector as the function of the coordinate:
kF(y)5(1/\)A2m* @n2U(y)#. Then, one can calculate the
polarization operator~21! under assumptionqdy@1 ~see Ap-
pendix A!:

P~y!5
m*

p\2 H 12QS 12
2kF~y!

q DA12@2kF~y!/q#2J ,
~46!

for y1,y,y2 andP(y)50 at y,y1 andy.y2 . Equations
~46!, ~35!, and~36! determine ‘‘the potentialv(y)’’ for Eq.
~42!.

‘‘The potential’’ has the simplest form atq,2kF,M ,
wherekF,M is a maximum ofkF(y),

v~y!' H 2v0[2k0
2a,

0,
y1,y,y2 ;
y,y1 ,y2,y; ~47!

where

FIG. 2. ‘‘Effective’’ potentialsṽ5v(y)dy
2 localizing the excita-

tions versus the dimensionless coordinateỹ5ydy ~curves 1,2,3,4!.
The coordinate dependence of the lattice deformationu( ỹ) is
shown for the lowest mode in ‘‘the potential’’ 3~curve 5, arbitrary
units!. ‘‘The potentials’’ correspond to differentq: q/2qF,M50.2
~1!, 0.5 ~2!, 1 ~3!, 1.2 ~4!. Particular parameters used in calculations
are given in Sec. V.
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a5
b2m*

p\2ul8udzS 11
2e2m*

«0q\2 D . ~48!

For this square ‘‘potential well’’ the energy levels a
roots of an algebraic equation

2 arcsinA12en /v05pn2dyA2~v02en!, ~49!

wheren51,2,... . Forexample, the second mode is split
qc , which can be found from the equationv0(qc)
5p2/2dy

2. If en is a solution of Eq.~49!, outside the electron
channel we obtainA(y);exp(2yA2uenu). It is interesting to
note that in this casev(y) is independent on the electro
concentration, as well as all parameters of the localized
citation~s!.

This simple limiting case allows one to estimate the de
length ofA(y) outside the channel:x,k0Aa. Sincea!1,
we can see that the above assumption~30! always holds.

Let us analyze the role of the screening effect. A con
bution of this effect can be seen from expression~37! for a
~second term in the denominator!. The screening suppresse
the confinement phenomena at smallq. Expression~48!
gives the characteristic valueq5qsc for a two-dimensional
electron gas:qsc5(2e2m* /«0\

2). If q,qsc, from Eq. ~48!
we get the following result:

a5
b2

ul8udz

«0q

2p2e2
, ~50!

which contains only the lattice characteristics and
electron-phonon coupling constant, and does not depen
other electron parameters. For the amplitudes of the wa
we getB(y)'A(y). If q.qsc the screening effects are sma
and the amplitude of the electrostatic wave is negligi
B(y)!A(y). The latter means that one can drop the fi
inequality from Eq.~3! and extend the results to a region
high q, since the parameters of acoustic localizati
k(q),x(q) still fulfill the second inequality from Eq.~3!, and
requirement~29!.

At finite q only a central part of ‘‘the potential,’’ where
kF(y).q/2 holds, is flat. An evolution of the ‘‘potentia
well’’ as a function ofq is shown in Fig. 2. From this po
tential evolution it follows that the power of the ‘‘potential,
* uv(y)udy, invariably increases, which means the mo
splitting increases inq as well. From Fig. 2 one can see th
for presented examples the power is considerably great
q>kF,M . For such a case one can apply the method de
oped in quantum mechanics31 to estimate the number of lo
calized modes:N'„*Auv(y)udy…/&p. As a result we get
thatN is about from 6 to 10.

At q@2kF(y) the ‘‘potential well’’ again takes a simple
form, becauseP is just proportional ton:

P~y!'
2m*

p\2

kF
2~y!

q2
5
4m*

q2\2 ns~y!. ~51!

In this limiting case the electron contribution tok(y) is satu-
rated whenq increases. But, accordingly with Eqs.~35!,
~47!, the depth of the ‘‘potential’’ still increases. As a resu
the splitting and localization of the mode in they direction
x-

y

-

e
of
es

e
t

at
l-

increase continuously. This point is not trivial, because
response of the electron gas to an perturbationdecreasesin
this region ofq. The reason for further localization in th
plane of the QW layer is the increase of the localization
two-dimensional phonon in thez direction @see Eqs.~35!,
~36!#. The latter leads to an enhancement of the electr
phonon interaction and, consequently, to an increase of
localization in the second,y direction. Note that at very large
q the analysis of this limiting case is restricted by the fi
inequality ~3! assumed above.

Another important parameter characterizing the syst
and considerably affecting the results is the width of t
electron channeldy . In terms of the equivalent Schro¨dinger
Eq. ~42!, dy determines the width of the ‘‘potential well’
v(y) that immediately gives us the trends of the changes
the results with varyingdy . For very largedy the dispersion
curves of the excitation almost coincides with the tw
dimensional phonon~38!, wherek0 has to be replaced by
k0(11a). In this case, the degree of the phonon localizat
behaves asdy

21, i.e., it increases whendy decreases. For the
narrow channel, when only one solution exists in the ‘‘p
tential’’ v(y), we get the ‘‘energy’’e0}dy

2 and the degree o
the localizationx}dy , according to Eq.~44!. Thus, the lo-
calization is a nonmonotonous effect: it increases with
electron confinement in the second direction, reaches a m
mum, and then decreases. The latter occurs at a strong
tron confinement.

So far we considered the first approximation of the ad
batical approach. One can derive the equations and boun
conditions for the functionsu1(y,z) andF1(y,z) giving cor-
rections tou andF @see Eqs.~A23!–~A26!#. As usual, for an
adiabatical approach the system of equations and boun
conditions for the next level of approximations contain inh
mogeneous terms, which generate nonzero corrections
are proportional to derivatives of the functions with resp
to the ‘‘slower’’ y coordinate, which are calculated in th
first approximation. Using the above discussed spatial sc
of functions entering those equations~i.e., dz and dy for
Py , kch anddy for F0 , kch andxch for u0! one can estimate
the order of magnitude of correctionsu1 andF1 . The simple
analysis shows that relative contributions of the correct
terms in expressions~33! and ~34! are of the order of
xch/kch

2 dy and 1/qdy , respectively. In accordance with in
equalities~29!, ~30! assumed above, these corrections
small. Thus, at the end of this section we can conclude
the quasiclassical electron channel brings about additio
localization of the collective mode~s!.

IV. CASE OF ONE-DIMENSIONAL ELECTRON GAS

If the width of the two-dimensional electron channeldy
decreases, so that inverse Fermi vectorkF

21 becomes compa
rable with dy , we cross over to the case of a on
dimensional electron gas. In order to avoid extra details
wave functions and energies of subbands, their occupan
etc., we consider the case when only one subband is o
pied by the electrons@see inequalities~16!#.

To further simplify the problem we have to discuss t
spatial scales of all three variablesu, F, anddn. The scale
of the electron density,dy is governed by the external poten
tial U(y) and has to be defined as a characteristic sprea
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the square of the wave functionuC1(y)u2 for the lowest sub-
band. The scale of the acoustic deformationu(y) is always
much greater thandy ~see estimates below! and greater than
the characteristic extension in thez direction. Thus, for
u(y,z) we can exploit the same adiabatical approximat
~31! that was used in Sec. III. The scale of the electrost
potentialF(y) is of the order ofdy under inequality~29! and
is aboutq21, in the opposite case. The latter case is rat
important if we want to study actual situationq;kF . But for
this case the adiabatical presentation ofF(y,z) in the form
~32! is not longer valid, sinceq21 is the characteristic length
of the z dependence.

Neglecting the contributions from the upper subbands,
der the above discussed assumptions one can simplify
pression~14! for the electron density to the following form

dns[eiqxdnq~y!

5eiqxuC1~y!u2P1~q!^1uh~y!u1&

5eiqxuC1~y!u2P1~q!@bu~0!1^1uFu1&#, ~52!

whereP1(q) is a one-dimensional polarization operator a
the last term is the diagonal matrix element ofF(y,z50)
calculated using the wave functionC1(y).

Then, we can write down the exact solution of Poisso
Eq. ~24! with boundary conditions~25!, ~26!:

Fq~y,z!52
4pe2

«0
E dy8Gq~y2y8,z!dnq~y8!, ~53!

where

Gq~y2y8,z!52
1

4p E dQ
e2 i ~y2y8!Q

Aq21Q2
e2uzuAq21Q2

is Green’s function of Eq.~24!. Note, that Gq(y,0)
52(1/2p)K0(quyu), whereK0(x) is the modified Besse
function of zeroth order.

From Eqs.~52!, ~53! we can calculate the matrix eleme

^1uF~y!u1&52bu~0!
4pe2P1~q!g~q!/«0

114pe2P1~q!g~q!/«0
, ~54!

where

g~q!5E E dy dy8Gq~y2y8,0!uC1~y!u2uC1~y8!u2. ~55!

Substituting Eq.~54! into Eq.~52! we find the expression fo
dnq(y) proportional to the productuC1(y)u2u(0). Note that
because the characteristic scales foruC1(y)u2 andu(y) are
very different, we can use the approximation32

uC1(y)u2u(0)'uC1(y)u2u(y) and presentdnq(y) in the
form

dnq~y!5bu~y!uC1~y!u2
P1~q!

114pe2P1~q!g~q!/«0
. ~56!

One can also find the distribution of the electrostatic pot
tial F inside the embedded layer, i.e., in the planez50:
n
ic

r

-
x-

s

-

F~y,z50!52bu~y!
4pe2P1~q!/«0

114pe2P1~q!g~q!/«0

3E dy8Gq~y2y8,0!uC1~y8!u2.

~57!

Let us turn to the problem of the deformation variab
u(y,z). In matching condition~23! one can replacednq(y)
by expression~56!. This relationship, Eq.~22!, and the first
boundary condition from~26! compose a system that con
tains only the unknown functionu(y,z). To find this func-
tion one can apply, as discussed above, the adiabatica
proximation and seek the solution in form~31!. In the first
approximation we restrict ourselves to the multiplicati
term from Eq. ~31!. It is easy to show that the functio
A(y) should satisfy Eq.~39!, wherek(y) is calculated in
accordance to Eq.~35! with a(y) given by

a~y!52
b2

l8dz

P1~q!uC1~y!u2

114pe2P1~q!g~q!/«0
. ~58!

Finally, one can analyze Eq.~39! for A(y) or the equiva-
lent ‘‘Schrödinger’’ Eq. ~42! with the potential in the form
~41!. Similar to the previous section, fora(y) given by Eq.
~58! the ‘‘potential’’ v(y) is attractive, which means tha
there always is a bound state for the ‘‘Schro¨dinger’’ equation
and a localized collective mode for Eq.~39!.

The shape of ‘‘the potential’’ is given byuC1(y)u2, its
depth substantially depends onq. One can easily calculate
the power of the potentialv(y):

x5E
2`

1`

dyuv~y!u5k0
2 b2

ul8udz

P1~q!

114pe2P1~q!g~q!/«0
.

~59!

Since we expect a relatively weak localization of the acou
mode iny direction, the valuex completely defines the ‘‘en-
ergy’’ «0 and the functionA(y), according to the expressio
~44! ~the estimates for this approximation are given below!.
Then, it is easy to calculate the dispersion curve~43! for the
mode. Thus, we have obtained the solutions for all qua
ties,u, F, dnq , and derived other parameters characteriz
the excitation.

We can juxtapose the localization effects for the tw
dimensional classical channel and one-dimensional cas
comparing expressions~48!, ~58! for a. The main qualitative
distinctions are caused by a different electron polarizat
and screening character in these two systems. As for
screening effects, instead of the 1/q dependence in the two
dimensional gas, in the latter case a new functiong(q) enters
the equations. This function is dependent onuC1u2. It is easy
to understand its general behavior:g(q) is a monotonous
function of q, so thatg(q)→` at q→0 and g(q);1/q
whenq→`. If the wave function of the electronsC1(y) is
characterized by only one spatial scaledy , so C15const
3C(y/dy), it can be shown thatg5g(qdy) and two former
limits correspond to the following criteriaqly!1 andqly
@1. At qly;1 the functiong(qly) is also of the order 1.
One can introduce the characteristic value ofqsc by the fol-
lowing equation:
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158e2m* g~qsc!/«0\
2qsc. ~60!

At q,qsc the screening effects are important in the oppos
case the electrostatic effects are suppressed. This criteri
different from that of the quasiclassical case and depend
dy . The large polarization of one-dimensional electrons
even more essential. For completely degenerate electr
the polarization operatorP1D(q) is given by

P1D~q!5
2m*

p\2q
lnUkF1q/2

kF2q/2U, ~61!

and it has singularities atq562kF . If q!kF ,qsc thenP
1D

54m* /p2\2n~1D! ~n~1D! being the linear electron density i
the one-dimensional channel!, we obtain forx

x5k0
2~q!

b2«0
4pe2ul8udzg~q!

. ~62!

This expression is similar to formulas~35! and ~50! for the
two-dimensional electron channel and contains mainly
lattice parameters and geometrical characteristicsdz , dy .
Because of the divergence ofP1(q) at q→2kF , this expres-
sion is also valid aroundq'2kF at any ratioq/qsc. At q
@kF ,qsc, whenP

~1D!54m* n1D/\2q2 andg(q)→0, we find
the opposite limit forx:

x5k0
2~q!

b2

ul8udz

4m* n1D

\2q2
. ~63!

Both limiting cases,~62! and~63! show that the degree of th
localization and splitting of the collective mode increase
largerq, in spite of decreasingP1(q) underq.2kF .

The abnormal electron polarization aroundq562kF is
responsible for a number of well-known effects in on
dimensional systems. In our case this peculiarity is also
portant. If the electron charge-density wave and electrost
field accompanying the lattice vibrations were negligib
~formally this case corresponds to the limit«0→`!, one
would obtaina, x→` and the square of the excitation fre
quency„v1D(2kF)…

2,0. The latter would indicate the exis
tence of a phase transition in the system. This behavior
responds to the Peierls transition,28 which has been predicte
and is peculiar for entirely one-dimensional system: a o
dimensional chain of atoms with delocalized electrons.
our model in this limit one obtains qualitatively the sam
results, but for thethree-dimensional elastic medium an
one-dimensional electrons. As it follows from Eq.~62!, the
formation of the charge-density wave and screening effe
prevent the Peierls transition, at least for actual paramete
materials. Nevertheless, the phase transition is possibl
principle.

As a rudiment of the phase transition at low temperat
our system shows the nonmonotonous behavior ofv1D(q) in
the region aroundq52kF : v1D(q) has in succession a max
mum and a minimum. In order to see that, consider the c
T50 and present these quantities in the following form:

x~q!5x~2kF!
1

11s/ lnU 2kF
q22kF

U , ~64!
e
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v1D2v2D

c2D2kF
5
q22kF
2kF

2
w

S 11s/ lnU 2kF
q22kF

U D 2 ,

uq22kFu!2kF , ~65!

wherex(2kF) coincides with~62!, and

s[
2kFg~qsc!

qscg~2kF!
, w[

cl
2
„x~2kF!…2

2v2D
2 '

„x~2kF!…2

2~2kF!2
,

c2D being phase velocity of the two-dimensional phonon
~38! at q52kF . The formula~65! gives an approximate de-
scription ofv1D(q) in this region ofq. Note that in accor-
dance with the above analysis,w!1, buts can be greater or
less than 1 and depends on the ratiokF /qsc. Equations~64!,
~65! show that atq52kF the confinement reaches its maxi-
mum ~see Fig. 3!, while the dispersion curve has a minimum
vm . The dispersion curves are presented in Fig. 4. The p
sitionqM of maximum ofv1D(q) and its magnitude can also
be evaluated analytically in two limiting cases:

FIG. 3. The dimensionless supplementary localization,kdy , of
the excitation in the QW layer as a function of the dimensionles
wave vectorq̃5q/2kF . Two values of the electron confinement are
supposed: 12dy5150 Å: 22dy5120 Å.

FIG. 4. Dispersion curves of 2D phonons~1! and 1D excitations
~2,3! as functions of the dimensionless wave vectorq̃. Curves 2,3
correspond to curves 1,2 of Fig. 3.
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qM22kF
2kF

'22
w

s2
ln

s2

2w
,

vM2vm

v2D~2kF!
'w, S s@ ln

s2

2wD ;
~66!

qM22kF
2kF

52
2sw

u ln2swu2
,

vM2vm

v2D~2kF!
5

2sw

u ln2swu

~s!u ln2swu!. ~67!

Thus, one-dimensional collective excitation exhibits a no
monotonous, rotonlike dispersion curve. The physical rea
for this feature is the enhancement of effective electr
phonon coupling at the region nearq52kF due to the large
electron polarization. This enhanced coupling leads to
greater localization effect in this region.

Another interesting behavior provoked by the large el
tron polarization is the peak~s! in the density of states o
one-dimensional excitations. The density of states is an
portant characteristic of the phonons and is defined as
number of phonon states per unit interval of phonon f
quency, per unit volume of the crystal. In our on
dimensional excitation case, we define the density of st
%1D(v) per unit length of the electron channel. Then, for t
dispersion dependencev1D(q) the density of states is

%1D~v!5
1

p ( U dq

dv1D
U, ~68!

where the sum is calculated over all of the branches that e
at fixed v. Outside the range of multivaluedness ofq(v)
~see Fig. 4! there is only one branch ofv1D(q). In the range
vm,v,vM there are three branches that have to be ta
into consideration. Close tovm contributions from two ad-
ditional branches are negligible@according to Eq.~65!, for
these branchesudq/dv1Du→0 at v→1vm#, but their con-
tributions rise, whenv increases. Whilev approachesvM ,
the contribution of the branch withq.2kF are finite, but two
others lead to a divergence in the density of states%1D
;(vM2v)21/2. The density of states has a sharp, verti
boundary atv→1vM , then there is a finite drop that dis
appears outside the singular frequency range. The chara
istic extension of the singular range is aboutvM2vm .

V. DISCUSSION

We have presented the results of a theoretical consi
ation of an electron system interacting with the phonons
semiconductor heterostructures, where a buried layer form
quantum well for the electrons and, simultaneously, locali
the acoustic waves within the layer. The latter means a s
ting of a two-dimensional phonon branchv2D(q) from the
bulk phononsv3D(q). It has been shown that additional co
finement of the electrons in the second direction leads to
appearance of one-dimensional collective electron-pho
excitationv1D(q). This excitation consists of coupled lattic
vibrations and an electron charge-density wave, accom
nied by the electrostatic field. Because of the strong diff
ence between phonon and electron velocities, the elect
adiabatically follow the lattice vibrations and, as a result,
coupled excitation has the dispersion curve close to the p
non one. In that sense this collective excitation can be c
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sidered as the phonon mode, localized in two directions,
one-dimensional phonon branch.

The phonon localization in the direction perpendicular
the buried layer is mainly due to nonuniform lattice para
eters of the heterostructure. The supplementary localiza
in the second direction is caused by electron-phonon inte
tion. The characteristic scale of the supplementary local
tion is always much larger than that originating from t
lattice nonuniformity. This has allowed us to employ a
adiabatical approximation and to formulate the task of
additional localization as an eigenstate problem of the o
dimensional differential equation. A solution of this proble
gives spatial dependences of the deformation, electron d
sity, electrostatic potential, and dispersion relation for
excitation.

The relations between spatial scales of the variables
the wave vector of the excitationq, directed alongx axis,
play an important role. The electrons are characterized
two geometrical scalesdy , dz and the inverse Fermi vecto
kF

21. The valuedz coincides with the thickness of the burie
layer and is considered sufficiently small to quantize
electrons in the layer so, that the electron gas is two dim
sional. The scaledy characterizes the restriction of the ele
tron motion in the second direction by an external potent
It can be changed over a wide range and a crossover fro
two-dimensional narrow channel to a one-dimensional e
tron system can occur. The electron concentration and, c
sequently, the Fermi wave vectorkF can, in principle, be
controlled independently from the other parameters. Diff
ent scales result in a variety of possible physical situatio

One of them is the two-dimensional electron channel o
finite width with a quasiclassical motion of 2D electrons@the
case of Eq.~16b!#. For this case splitting of the one
dimensional branch from two-dimensional phonons a
supplementary localization increases continuously with
wave vectorq. The screening parameterqsc and the Fermi
wave vectorkF determineq regions with a different behavio
of parametersk(q) andx(q) giving localization scales for
z andy directions, respectively. Atq,qsc we have obtained
k;q2, x;q5. In the regionq.qsc, kF the results arek,
x;q2. In the region ofq'2kF there are no special feature
of v1D(q), but the subsequent splitting of one-dimension
modes is possible.

Let us perform numerical estimates for the quasiclass
case at high wave vectorsq. In order to satisfy the above
assumed inequalities we choose a QW with a small wid
dz550 Å. Then, we assume that electron concentration d
not exceed nM51012 cm22, i.e., kF(y),kF,M52.5
3106 cm21 ~only the lowestz subband is populated!. For
q!2kF,M one can use ‘‘the potential’’v(y) localizing the
excitation in form~47! with a flat bottom. Then, we setb
515 eV, (l12m)51012 dyn/cm2, ul8u/@2(l12m)#50.1,
m*50.067m0 , «0515, cl54.73105 cm/s. As a result, for
the depth of ‘‘the potential’’ one obtainsv052.2
310215q4/(111.73106/q), wherev0 is in cm

22 andq is in
cm21. For these values, atq5106 cm21, when the screening
effect is still important, one findsk553104 cm21,
v3D2v2D50.56 GHz,v058.253107 cm22. If the width of
the channeldy53.200 Å, there is the single mode wit
v2D2v1D50.6 MHz, andx543103 cm21. All of the above
assumptions are satisfied for these parameters. For largq
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one should specify the shape of the external poten
U(y). We setU(y)2n5U0@ch(2y/dy)21#, so that the
width of the channel isdy . Corresponding dimensionles
‘‘potentials’’ ṽ5v(y)d2 are presented in Fig. 2 for differen
values ofq̃5q/2kF,M . For q̃51 electrostatic effects are ne
glected andṽ localizes up to six modes. The lowest one
localized inside the channel and has the splitt
v2D2v1D5180 MHz, while for the two-dimensional phono
we getk52.63105 cm21, v3D2v2D517 GHz.

For the one-dimensional case the main conclusions
sented in this section are valid. The supplementary local
tion of the single excitation is relatively weak and its cha
acteristics are given by the Eq.~44!. From Eqs.~43!, ~44!,
and ~59! it follows that, if the dielectric constant of the ma
terial«0 is large and electrostatic effects are not essential,
localization parameterx(q) increases infinitely in the region
of q'2kF,M andv1D

2 (q) can change its sign. The latter in
dicates well-known Peierls phase transition28 to the state
with periodical deformation of the medium along the axis
the electron channel. The distinction of this case from
usual Peierls model is that this transition would appear in
system of three-dimensional elastic medium and on
dimensional electrons. As a result, the periodical deforma
tion would be also dependent on two other coordinates
would decay far away from the electron channel with on
dimensional electrons. Note that there exist quantum het
structures, based on materials with large«0 ~for example,
A4B6 compounds with«05300...1000!. For A3B5 and
A2B6 heterostructures the electrostatic effects prevent
phase transition. However, the system shows nonmon
nous, rotonlike behavior of the dispersion curve. This beh
ior is a rudiment of the Peierls phase transition and exist
low temperatures.

For numerical estimates of the one-dimensional case
need to specify the electron wave functionC1(y). Let us
assume that the electrons are confined in the external po
tial U(y) near its parabolic bottom. Thus, we can s
C1(y)5(4/pdy

2)1/4 exp(22y2/dy
2), in which dy characterizes

a spreading of the square of wave function. Equation~55!
givesg(q)5(1/4p)K0(q

2dy
2/16)exp(q2dy

2/16). In addition to
the above parameters, let us assumen1D51.53106 cm21

and dy5150 Å, then one can obtainkF52.43106 cm21,
qsc51.43106 cm21. The localization parameter and roto
like behavior are shown in Figs. 3, 4. The splitting of on
dimensional excitation equals v2D(2kF)2v1D(2kF)
520 GHz. According to Sec. IV, in this range there is a pe
of the density of states for the excitation. Thus, although
collective excitation of the system with one-dimension
electrons exists at arbitraryq, it is much more pronounced in
the narrow region aroundq52kF .

One can compare the results of this paper with the ef
of the electron-phonon interaction on phonon behavior
the cases of three- and two-dimensional electron subsyst
For the first case the main effect35 is contained in a renor
malization of the phonon frequencyDv3D proportional to
b2n3D /l

2
3EF , wheren3D , EF are the electron concentratio

and the Fermi energy, respectively. For the case under
sideration the splitting down of one-dimensional branch
proportional to the fourth power of the coupling constanb
and for certain situations is almost independent on the e
al
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tron concentration.36 Then, in bulk material the renormaliza
tion is weakly dependent on the phonon wave vector sh
ing anomaly~Kohn anomaly37,38! only in derivative ofv3D
with respect toq: increasingdv3D /dq and diminishing the
density of states around 2kF . The latter are just the opposit
to the above analysis. For two-dimensional electron sys
the electrons split off the two-dimensional phonon bran
and the splitting reaches a maximum atq52kF . Then, at
q.2kF the branch approaches the bulk dispersion curv20

which is also in opposition to the results of this paper.
For two cases, the narrow two-dimensional channel a

strictly one-dimensional case, the collective excitati
should manifest itself in different experiments. For the fi
case, the excitation can be studied by acoustic methods.
strong anisotropy and localization in a vicinity of the chann
can be used to distinguish the one-dimensional branch f
bulk and two-dimensional modes. Currently the interact
of the acoustic waves with low-dimensional electrons is
tively studied.39–41By this method very small changes in th
sound velocity caused by the electron system can
measured.41 A high-frequency region is much more suitab
for this acoustic measurements. A special technique
developed42,43 that allows one to excite and detect sho
wavelength acoustic vibrations in nanostructures44 with fre-
quencies up to several hundred GHz.

Using advanced Brillouin spectroscopy is also possib
By this technique different types of low-energy excitatio
can be detected. The maximal wave vector of phono
which participates in the Brillouin process, isqB,M
54pNR/lL ~backward scattering!, wherelL andN

R are the
wavelength and the refractive index, respectively. For typi
wavelengthlL55000 Å andNR53,5, we obtainqB58,8
3105 cm21. Using the estimates given above, we can s
that the two-dimensional phonon can be detected as
Stokes line in the Brillouin spectra~see, for example, Refs
45 and 46!. In the one-dimensional case the excitation w
contribute to the red tail of this line. Note that because
scattering signal is expected to be small, multiple-quantu
well structures have to be used in such experiments. O
optical methods, such as high-order light scattering or dis
der breakdown of the wave vector conservation, allow on
detection of excitations withq.qB . For the one-
dimensional case discussed above, the behavior of the
sity of states peculiar to a rotonlike dispersion curve can l
to an additional peak in these scattering spectra~by this
method the roton feature for low-dimensional magnetopl
mons has been detected33,34!.

VI. CONCLUSIONS

In a many-electron system interacting with a lattice,
crossover from two- to one-dimensional electron gas lead
the appearance of the collective excitation which consists
the lattice vibrations and electron charge-density wave
companied by an electrostatic field. The excitation is loc
ized in two directions and is one dimensional in charac
The spectrum of this excitation is quite similar to that of t
phonons. Therefore, the excitation can be considered
one-dimensional phonon branch localized by electrons.
splitting of this branch and localization increase with t
wave vectorq of the excitation. The two-dimensional elec
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10 718 55V. A. KOCHELAP AND V. V. MITIN
tron gas with a submicrometer width conductive channel
most localizes the excitation within the channel. For the o
dimensional electron gas the excitation, in principle, exist
any wave vectors, but the maximal splitting and the locali
tion occur in the regionq'2kF . In this region the dispersion
curve of the excitation shows the rotonlike behavior and
density of states has a peak.

These effects augment the list of the many-body featu
peculiar to the dimensional crossover and one-dimensio
electron gas of semiconductor heterostructures. The loca
tion of the elastic wave within the region of the electr
confinement is important for low-temperature electron tra
port, acoustic and acoustoelectronic phenomena.
l-
-
t
-

e

s
al
a-

-

ACKNOWLEDGMENTS

One of the authors~V.A.K.! thanks Dr. V. P. Gnedkov for
discussions at a very early stage of this work. The work w
supported by ARO.

APPENDIX A

In order to derive Eq.~19! for the case when the electro
motion iny direction can be considered as classical, note t
in a semiclassical approximation matrix elemen
^nuh(y)un8& are exponentially small ifnÞn8.31 We assume
that only onez subband withl51 is populated. Then one
can setn5n8 everywhere in Eq.~14!, except the explicit
dependence onn,n8 in the matrix elements. In this case,
dns~x,y!'2eiqx (
l ,n,n8

(
k

Cn~y!Cn8
* ~y!

f 0~enlk1q!2 f 0~enlk!

enlk1q2enlk
E dy8Cn* ~y8!Cn8~y8!h~y8!

52eiqxh~y! (
n,l ,k

uCn~y!u2
f 0~enlk1q!2 f 0~enlk!

ek1q2ek
. ~A1!

Since at pointy the surface density of particles, having a wave vectork along thex axis, is given by

nk~y!52(
n,l

uCn~y!u2f 0~en,l ,k!, ~A2!

we obtain the form~19!, where

P~y!5(
k

nk1q~y!2nk~y!

ek2ek1q
. ~A3!

For the total energy of a two-dimensional classical particle at pointy, one can writee(kx ,ky ,y)5(\2/2m)(kx
21ky

2)
1U(y), whereU(y) is an external potential. The number of particles at pointy with a kinetic energy,\2kx

2/2m can be
presented in another form:

nkx52(
ky

f 0,k~y!, f 0,k~y!5
1

11exp@n2e~kx ,ky ,y!#/kT
. ~A4!

Substituting the last expression into formula~A3! and returning to notationek[(\2/2m)(kx
21ky

2), one can get formula~21!,
whereP2(qun) is the polarization operator of the 2D electron gas:

P2~y!52(
k

f 0,k1q~y!2 f 0,k~y!

ek2ek1q
. ~A5!

Contrary to Eq.~A3!, the summation in Eq.~A5! is taken over all possible values of the two-dimensional wave vectork. For
example, atT50 one can set for the distribution functionf 0,k(y)5Q@n2ek2U(y)#, then the calculation of sum~A5! gives
Eq. ~46!.

APPENDIX B

In the next step of the adiabatical approximation, substituting Eq.~31! into wave equation~22!, we get the differential
equation, which contains two unknown functionsA(y) andu1(y,z):

$A9~y!1@k2~y!2k2#A~y!%1exp„k~y!uzu…S ]2

]z2
1

]2

]y2
2k2Du1~x,y!

5@A~y!uzu2„k8~y!…222A8~y!uzuk8~y!2A~y!uzuk9~y!#50. ~B1!

We can define the functionA(y) as the solution of the following equation:

A9~y!1@k2~y!2k2#A~y!50. ~B2!
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Then, foru1(y,z) we can write

S ]2

]z2
1

]2

]y2
2k2Du1~x,y!52e2k~y!uzu@A~y!uzu2„k8~y!…222A8~y!uzuk8~y!2A~y!uzuk9~y!#. ~B3!

The correction to the electrostatic potentialF1 can be obtained by substituting Eq.~32! into Eq. ~24!:

S ]2

]z2
1

]2

]y2
2q2DF1~y,z!52B9~y!e2quzu. ~B4!

The matching conditions atz50 for u1 andF1 follow from Eqs.~24!, ~25!:

~l12m!
]

]z
u1~y,z!uz520

z5101S 2
]2

]y2
1q2D $l8dzu1~y,0!2bP~y!@bu1~y,0!1F1~y,0!#%

52l8dzA9~y!1b
]2

]y2
P~y!@bA~y!1B~y!#, ~B5!

]

]z
u1~y,z!uz520

z5101
4pe

«0
P~y!@bu1~y,0!1F1~y,0!#50. ~B6!

The functionsu1 ,F1 also have to satisfy conditions~26!.
Equations~B3!–~B6! compose the system of inhomogeneous linear equations with boundary conditions. The inho

neous right-hand sides are determined by the solutions of the first approximation,u0 ,F0 . One has to seek the particula
solution of the systemu1 ,F1 proportional to those inhomogeneous terms. Using the explicit forms forA(y) andB(y), it is
possible to estimate correctionsu1 andF1 induced by the right-hand sides of systems~B3!–~B6! and to find conditions, when
these corrections are small.
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