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The acoustic phonon radiation patterns and acoustic phonon spectra due to electron–acoustic-
phonon interaction in a double barrier quantum well have been investigated by solving both the
kinetic equations for electrons and phonons. The acoustic phonon radiation patterns have strongly
pronounced maximum in the directions close to the perpendicular to the quantum well direction.
The radiation pattern anisotropy is explained in terms of possible electron transitions, electron
distribution function, and the Hamiltonian of electron–phonon interaction. It was shown that, the
simple assumption that emitted phonons always have a perpendicular wave-vector component of the
order of 2p/a, wherea is the width of the quantum well, cannot explain the strong anisotropy of
the radiation patterns. More detailed analysis is required and has been carried out. The emitted
acoustic phonon spectra have maxima at energies 2p\u/a, whereu is the sound velocity. ©1996
American Institute of Physics.@S0021-8979~96!02512-1#
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I. INTRODUCTION

Electron interactions with acoustic phonons in low d
mensional~LD! structures at low lattice temperatures pl
important roles in many kinetic phenomena. They determ
the low–field electron mobility and the electron energy lo
rate at low lattice temperatures. Hot acoustic phonon em
sion represents one of the significant channels for ther
energy removal from LD electron gases. The detection
acoustic phonons emitted by hot electrons provides a v
able tool for the investigation of electron–phonon intera
tions in heterostructures.

The problem of diagnosing acoustic phonons emitted
quasi-two–dimensional and one–dimensional electrons
attracted considerable attention during the last decade. It
been studied both experimentally1–8 and theoretically.9–15 In
experiments,1–8 the energy flux of acoustic phonons has be
measured by bolometers, deposited on the opposite~with re-
spect to the quantum well! side of the semiconductor sub
strate. Theoretical analysis9–15 explains many features of th
experimental results. However, of all these papers studied
acoustic phonon flux for the case when the distribution fu
tion of electrons is the Fermi function~or the Maxwell func-
tion!. We formulate the problem of acoustic phonon em
sion in terms of the kinetic equations for both phonons a
electrons allowing for in-plane heating electric field and no
equilibrium electrons. We have solved the kinetic equat
for quasi two–dimensional electrons and obtained the e
tron distribution function. This function has been used
study the acoustic phonon energy flux due to acoustic p
non emission by hot electrons. We have investigated dep
dencies of the radiation patterns and the emitted acou
phonon spectra on the applied electric field and obtained

a!Present address: Box 7911, Department of Electrical and Computer E
neering, North Carolina State University, Raleigh, NC 27695-7911; E
tronic mail: bannov@ecehlt1.ece.ncsu.edu
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interesting features in the acoustic phonon emission. In
dition, in contrast to Refs. 9 and 12 we have taken in
account the stimulated phonon emission processes. Our t
ment is based on solving the quantum kinetic equation
phonons as was done in Refs. 9 and 12. However, we h
formulated the boundary conditions for the energy fluxes i
clear integral form based on energy flux balances.

As it has been understood previously,1,2,9,15the radiation
patterns of acoustic phonons have well-pronounced max
inside the solid angle close to the normal to the quantum w
~QW! direction ~z-direction!. These orientational dependen
cies are related to the quantum confinement of electron
the quantum well and uncertainty in the conservation of
z-component of phonon wave vectors. In the case of Q
structures, the emitted acoustic phonons have wave vec
with z-components,qz , of the order of 2p/a, wherea is the
width of the electron lateral confinement. For a 100 Å wi
quantum well,qz'63106 cm21. At the same time, an elec
tron with an energy of 40 meV in GaAs emits phonons w
in-plane wave vector components about 63106 cm21, for
the case when the electron scatters in the direction, whic
opposite to the direction of its initial motion. Therefore, th
uncertainty in the phononz-component conservation can e
plain only moderate anisotropy of acoustic phonon radiat
patterns. We give another explanation for the strong ani
ropy of the angular dependence of the differential acou
phonon energy flux. We have also calculated the ene
spectrum of nonequilibrium acoustic phonons radiated fr
such quantum well nanostructures as well as the elec
energy loss rates in such structures.

In the next section, we will consider the problem at ha
for a sample double heterostructure with geometry close
those used in experiments.1,3–6 We will also define the dif-
ferential energy flux and other measurable quantities rela
to acoustic phonon emission, which are relevant to this
ometry. In the following section we will formulate the prob

ngi-
c-
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lem of phonon kinetics in terms of appropriate quantum
netic equations. Then these equations will be transforme
a form which takes into account the geometry of the sam
and the equation for the differential energy flux will be o
tained. The last section reports results from numerical si
lations and discusses physical interpretations of the radia
patterns and phonon spectra presented in this paper.

II. GEOMETRY AND THE MEASURABLE QUANTITIES

We will consider a double-barrier heterostructu
quantum-well of widtha bounded by planesz5a/2 and
z52a/2. The Cartesian coordinatesx and y refer to the
plane of the quantum well, the axisx is going in the direction
of the average electron velocity, they-axis augments thex-
and z-axes to form a right-handed basis. Accordingly,
electric field,E, is going in the direction of negativex. The
dimensions of the quantum well in thex2y plane areLx and
Ly . The acoustic phonons are detected by sensors locat
a surface of the substrate. We assume that the distancd,
from the quantum well to the surface is large in compari
with the lateral dimensions of the quantum we
d@Lx ,Ly ; in this limit, the quantum well represents a po
source of acoustic phonons. The described geometrical
figuration corresponds to those of Refs. 5 and 6 as we
those of other experiments.

We define measurable quantities related to acoustic
non emission by a point source; these include: the diffe
tial energy fluxG (\v,V), the radiation pattern,G \v(V),
and the spectrum of acoustic phonons,G V(\v). The energy
flux density of acoustic phonons,Dg, is defined as

Dg5
1

8p3E
Dq
dquq\vqNq~r !.

HereNq is the phonon occupation number, e.g., the Pla
function, \vq is the phonon energy, anduq is the phonon
group velocity. The units forDg are the energy per unit time
per unit area. The symbolD in Dg refers to the volumeDq
of integration. The energy flux of acoustic phonons,DG,
through a given surface,S, is defined by the formula

DG5E
S
dSDg5

1

8p3E
Dq
dqE

S
dSuq\vqNq~r !.

We assume a simple linear isotropic dispersion rela
vq5uq and a simple formula for phonon group veloc
uq5uq/q. ThenDG is given by the formula

DG5E
D~\v!

d~\v!E
DV
dVG ~\v,V!, ~1!

whereG (\v,V) is the differential energy flux~the phonon
energy passing through a surfaceS per unit time, per unit
solid angle, per unit energy interval!, determined by the for
mula

G ~\v,V!5
1

8p3E
S
dS
q

q
uq3Nq~r !.

We will measure the differential energy flux in the un
(ps sr)21. In numerical Monte Carlo calculations, it is co
8956 J. Appl. Phys., Vol. 79, No. 12, 15 June 1996
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venient to normalize the differential energy flux per one elec
tron. The radiation pattern and the spectrum of acoust
phonons are defined as

G \v~V!5E
0

`

G ~\v,V!d~\v!,

G V~\v!5E
4p
G ~\v,V!dV,

respectively. It is worth mentioning, that the differential en
ergy flux detected by sensors on a surface of the semico
ductor substrate is strongly modified by focusing due to th
elastic anisotropy of crystal lattices. The directions of th
phonon phase velocity~which is determined by the phonon
wave vector! and the group velocity~which defines the di-
rection of energy flow! differ in anisotropic crystals. This
results in an increase of energy flow along some directio
and a decrease along other directions in real space. If t
differential energy flux of the source and the dispersion re
lationship for phonons is known, energy flow detected b
sensors may be calculated through curvatures of surfaces
equal phonon energy~see, e.g., a review in Ref. 16!. Because
this task is quite laborious from a practical point of view
computer programs have been developed to calculate inco
ing energy to a detector energy flow allowing for a realisti
geometry of the source of phonon radiation.17

III. THE PHONON KINETIC EQUATION

The problem at hand may be described by the kinet
equations for electron and phonon density matrices,f k,k8 and
sq,q8, in which electron–phonon interactions are take
within the second order of the perturbation theory. The ind
cesk andq describe complete sets of electron and phono
quantum numbers:k5(ki ,n), q5(qi ,qz). We will use
these simple indices despite the obvious possibility of co
fusion with absolute values, because they significantly sim
plify and shorten formulae. If we need an absolute value
some vector, we will designate such quantities through th
use of two vertical lines as inukiu for example. The kinetic
equation for the phonon density matrix has the followin
form:

]sq,q8
]t

1 i ~vq2vq8!sq,q85J ph2e1J ph2ph , ~2!

whereJ ph2e andJ ph2ph denote terms for phonon–electron
and phonon–phonon interactions respectively.

The phonon–electron collision integral is given by the
formula

J ph2e52
i

\ (
k,k8,Q

w~k,k8,q8!w* ~k,k8,Q!

«k2«k81\vq2 il

3@~12 f k! f k8dq,Q1~ f k82 f k!sq,Q#

1
i

\ (
k,k8,Q

w~k,k8,Q!w* ~k,k8,q!

«k2«k81\vq81 il

3@~12 f k! f k8dQ,q81~ f k82 f k!sQ,q8#. ~3!
Mitin et al.
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In the above equation, indexQ denotes the phonon variables
l→10. We have taken into account that electron gas
homogeneous in thex2y plane and the electron intersub
band transitions are significantly slower than the intersu
band transitions; therefore, the electron density matrix is d
agonal: f k,k85dk,k8 f k5dk,k8 f n,ki

. In our numerical
calculations, we will consider only the case of strong ele
tron lateral confinement, when only the lowest subband
occupied, therefore, the above assumptions are held. The
trix element,w(k,k8,q) determines the rate of electron–
phonon scattering. We take the Hamiltonian of the electron
acoustic phonon interaction in the standard form,

He2ph5(
q

~xq~r !bq1xq* ~r !bq
†!,

wherexq gives the strength of the electron–acoustic phono
interaction, andbq and bq

† are the destruction and creation
operators respectively. For the system under considerati
xq(r )5exp(iqr )Gq . With this notation, the matrix element,
w(k,k8,q), is given by the formula

w~k,k8,q!5^ki8 ,n8uxquki ,n&

5dki1qi ,ki8
Gq^n8uexp~ iqzz!un&.

For the case of the deformation potential interactio
which makes the major contribution to electron scattering b
acoustic phonons

Gq5Gq5A \

2rV prvq
iEaq,

whereEa is the acoustic deformation potential constant,r is
the crystal density, andV pr is a principal volume. Because
electrons do not interact with transverse acoustic phono
through the deformation potential, we have not included th
phonon mode index in the phonon variables. Accordingl
vq5uq is the phonon dispersion relation for longitudina
phonons andu is the longitudinal phonon velocity.

We will need the overlap integral,I (n8,n,qz)
5u^n8uexp(iqzz)un&u2. For the case of electron wave function
for an infinitely-deep rectangular quantum well, the overla
integral may be calculated analytically. It takes the form

I ~n8,n,qz!5
32~n8nq̃ !2@ 12~21!n1n8cospq̃ #

p2@ q̃ 422~n821n2!q̃ 21~n22n82!2#2
,

whereq̃5aqz /p. The functionI (n8,n,qz) for electrons in
the lowest subband (n5n851) is shown on Fig. 1. From
Fig. 1 it follows, that typical values ofqz for acoustic
phonons interacting with electrons in QW are approximate
equal to 2p/a.

The electron density matrix~distribution function!,
f n,ki

, satisfies the corresponding kinetic equation whic
takes into account the interaction of electrons with acous
phonons as well as with optical phonons.

IV. DIFFERENTIAL ENERGY FLUX

We will use the phonon distribution function,Nq(r ),
defined by the Fourier transform
J. Appl. Phys., Vol. 79, No. 12, 15 June 1996
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Nq~r !5(
Dq

sq1Dq/2,q2Dq/2exp~ iDqr !. ~4!

If we apply the Fourier transform defined by Eq.~4! to the
phonon kinetic equation given by Eq.~2!, we obtain the fol-
lowing equation

]Nq~r !

]t
1uq

]Nq~r !

]r
5Jph2e1Jph2ph , ~5!

where uq5]vq /]q, and the collision integralsJph2e and
Jph2ph are the Fourier transforms of the collision integra
J ph2e andJ ph2ph , respectively. We have used the fact th
Nq(r ) is a slowly varying function of coordinates in the le
hand side of Eq.~5! and neglected the derivatives ofvq and
Nq(r ) overq andr respectively of the third, fifth, and highe
orders.

When making estimates for the acoustic phonon pro
gation and their interactions with electrons, it is convenie
to treat them as wave packets of finite size,Dr , and, accord-
ingly, of finite width in the phase space,Dq. A typical en-
ergy for acoustic phonons emitted by quasi-two-dimensio
electrons, as is shown below, is equal to about 2p\u/a; for
usual material and quantum well parameters~GaAs quantum
well 100 Å wide! it is equal to about 2 meV. A typical
wavelength of acoustic phonons emitted by quasi-tw
dimensional electrons,l, is equal toa; so for our estimate
l'100Å. Therefore, it is reasonable to takeDr510a or
larger. At the same time, we assume, that the in-plane dim
sions of the quantum well are much larger thanDr :
Dr!Lx ,Ly . We define a volumeVph2e such that the bound-
ary of this volume is offset by a distanceDr from the quan-
tum well. By the definition ofVph2e , we may consider
electron–phonon processes in this volume as homogene
in the x–y plane and neglect fringe effects on the acous
phonon emission.

In accordance with definition ofDr , the collision inte-
gral Jph2e is equal to zero outside the volumeVph2e . We
integrate the kinetic equation~5! over the volumeVph2e .
The result of such an integration is given by the formula

FIG. 1. The overlap integralI (1,1,q) for electron transitions inside sub
band number one.
8957Mitin et al.
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]tEVph2e

Nq~r !

Vph2e
dr1 R Sph2e

uq
Nq~r !

Vph2e
dS

5Iph2e1Iph2ph , ~6!

where Sph2e is the surface which bounds the volum
Vph2e , the ratio Nq(r )/Vph2e is the phonon distribution
function normalized per unit volume, so the surface integ
represents the flux of phonons with wave vectorq, and
Iph2e and Iph2ph stand for integrated collision integrals
Jph2e andJph2ph , respectively. We assume that the leng
of phonon–phonon interaction is considerably larger th
any dimension of the volumeVph2e . For such materials as
Si or GaAs, it is really the case for phonons with waveleng
of the order of 100 Å.Iph2e is given by the formula

Iph2e5
4p

\
uGqu2 (

ki ,n,n8
I ~n8,n,qz!@~12 f n,ki

!

3 f n8,ki1qi
1~ f n8,ki1qi

2 f n,ki
! sq,q#

3d~«n,ki
2«n8,ki1qi

1\vq!. ~7!

The term in Eq.~7! proportional to sq,q describes the pro-
cesses of stimulated phonon emission and absorption. If
change in sq,q due to phonon emission and absorption b
quasi-two-dimensional electron gas is small in comparis
with the phonon density matrix in thermal equilibrium, w
may substitute the Planck functionN\v

T for sq,q in Eq. ~7!.
From Eqs.~6! and ~7! it follows that the energy flux of

acoustic phonons with wave vectors in a domainDQ emitted
by quasi two–dimensional electrons is given by the formu

DG5
4p

\ (
qPDQ

\vquGqu2 (
ki ,n,n8

I ~n8,n,qz!

3@~12 f n,ki
! f n8,ki1qi

1~ f n8,ki1qi
2 f n,ki

!N\v
T #

3d~«n,ki
2«n8,ki1qi

1\vq!. ~8!

From Eq.~8! and the definition of Eq.~1! we obtain the
differential energy fluxG (\v,V)

G ~\v,V!5
Ea
2q4

4p2ru (
ki ,n,n8

I ~n8,n,qz!@~12 f n,ki
!

3 f n8,ki1qi
1~ f n8,ki1qi

2 f n,ki
!N\v

T #

3d~«n,ki
2«n8,ki1qi

1\vq!. ~9!

It is worth mentioning, that Eq.~9! takes into account
both the phonon emission and phonon absorption proces
In addition, due to integration over the closed surfa
Sph2e which bounds the volume of acoustic phonon intera
tion with quasi-two-dimensional electrons, Eq.~9! gives the
differential energy flux in excess of the equilibrium differen
tial energy flux, determined by the functionN\v

T . It will be
shown later, that the differential energy flux~9! is a strongly
anisotropic function. This anisotropy enters Eq.~9! through
the electron distribution function and through the overla
integral. The electron distribution function determines a
isotropy in thex–y plane, while the overlap integral deter
8958 J. Appl. Phys., Vol. 79, No. 12, 15 June 1996
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mines anisotropy in respect to a spherical angleu ~the angle
between the axisz and a given direction!. The initial cause
for anisotropy in thex–y plane is the applied electric field
which modifies the electron distribution function, an
through this function it makes the phonon differential energ
flux anisotropic in thex–y plane.

Outside the volumeVph2e the phonon kinetic equation
has the form

]Nq~r !

]t
1uq

]Nq~r !

]r
5Jph2ph . ~10!

If the phonon decay due to phonon–phonon interactions a
other possible mechanisms of scattering is small over t
distanced from the quantum well to a phonon detector, th
phonon propagation may be treated as ballistic and the
proximation of the geometrical optics be employed. Th
condition is held for the samples used in experiments1–8 ~es-
timates are given in the next section!. Therefore, the phonon
energy detected by a sensor on a surface of the sample is
same as that determined by Eq.~9!.

V. RESULTS OF NUMERICAL SIMULATION AND
DISCUSSION

We have studied the acoustic phonon radiation patte
and the acoustic phonon emission spectra for the case o
nondegenerate electron gas. The restrictions which this i
poses on the applicability of our results are not strict as lo
as we consider a heated electron gas. Appropriate estima
are considered in this section. Parameters of the materials
taken for a GaAs/AlGaAs double barrier heterostructure. T
numerical results presented here correspond to the c
where the lattice temperature is 30 K. At higher temperatur
~e.g. at room temperature!, optical phonon scattering domi-
nates over other mechanisms and the equilibrium acous
phonon population is too high to accurately resolve phono
emitted by quasi-two–dimensional electron gas. At very lo
lattice temperatures~e.g., 4.2 K! the electron gas degeneracy
is more important and limits the applicability of our mode
The width of the quantum well,a, is taken to be 100 Å. For
this width, the second electron subband is approximately 1
meV above the first subband. It is substantially higher th
the average electron energy, for this reason the second s
band is practically unpopulated.

The kinetic equation for electrons takes into account a
significant mechanisms of electron scattering in QW: ele
tron scattering by acoustic phonons, as well as electron sc
tering by confined and interface optical phonons. We use t
same Hamiltonians of electron interactions with optic
phonons in a quantum well as given in Ref. 18. Th
electron–phonon collision integrals follow from thes
Hamiltonians. However, in electron collision integrals wit
phonons we take the equilibrium phonon distribution fun
tion assuming that the thermal bath is only slightly disturbe
due to phonon emission by heated electrons. This is cons
tent with the assumption we made to obtain Eq.~8! from Eq.
~7!. We have solved the kinetic equation for electrons em
ploying the Monte Carlo technique. The electron distributio
function is approximated by an ensemble of a large numb
Mitin et al.
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of electrons~particles!. We traced the trajectories of the pa
ticles in the phase space in a given electric field and scatt
them to obtain a stationary distribution function. We used
standard Monte Carlo method for two-dimensional~2D!
electrons as described in detail in Ref. 19. The electron
tribution function obtained by this technique has been u
to calculate the differential energy flux of Eq.~9!. However,
becauseG (\v,V) is a three-dimensional function of th
spherical anglesu andf, and the phonon energy\v, all
results will be presented as integrated over energies or
angles functionsG \v(V) andG V(\v), respectively.

The average electron energy as a function of the app
electric field is shown in Fig. 2. It allows us to analyze t
applicability of the applied approach. The estimate for
electron Fermi energy in a GaAs QW is given by the form
«F'3.53(ns/10

11cm22! meV, wherens is the electron sur-
face concentration. Then, forns51011 cm22, the electron
gas may be considered nondegenerate if the electric fie
10 V/cm or higher.

We may mark two characteristic fields on Fig. 2
which the curve for average energy bends. The first,E1 , is
equal to 10 V/cm, and the second,E2 , is approximately
equal to 103 V/cm. In the fieldsE,E1 practically all the
electron energy is dissipated through the acoustic pho
emission. The electron average energy grows linearly w
the electric field. The saturation in the region of low fields
about 1 V/cm is due to the lower limit imposed by the th
mal energy, which for the lattice temperatureT530 K is
equal to 2.6 meV. In the range of electric fiel
E1,E,E2 , a significant part of the electron energy is in
tially transferred to the optical phonons. The optical phon
emission, which is much stronger than the acoustic sca
ing, stabilizes the electron energy growth. In electric fie
E.E2 electrons run away from optical phonons. The el
tron energy dissipated through the acoustic phonon emis
and through the optical phonon emission is shown on Fig

We have investigated the differential energy flux
acoustic phonons in the range of electric fieldsE,E2 . The
optical phonons emitted in the case of strong electric fie

FIG. 2. The average electron kinetic energy as a function of the app
electric field. GaAs/AlAs quantum well,T530 K, a5100 Å.
J. Appl. Phys., Vol. 79, No. 12, 15 June 1996
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E1,E,E2 are downconverted to acoustic phonons
20 with a

energy of about 18 meV. These phonons may decay in
lower energy phonons. However, for a realistic thickness
the substrate~'1 mm!, the downconverted phonons and
products of their decay may be discriminated from th
phonons directly emitted by electrons, because their energ
belong to different ranges. The mean free path of 1 mm~this
is a typical thickness of the semiconductor substrate! corre-
sponds to acoustic phonons with an energy of 9 meV. Th
energy dependence of the mean free path is inversely p
portional to the fifth power of energy. Due to this strong
energy dependence, all products of the optical phonon dec
reach boundaries of the sample well before the phonon e
ergy approaches the energy range of that directly emitted
electrons acoustic phonons.

The radiation patterns of quasi-two-dimensional electro
gas in electric fields of 10, 100, and 1000 V/cm are shown o
Fig. 4. To visualize the two–dimensional function
G \v(V)5G \v(u,f), we fix an anglef and plot a paramet-
ric curve (uG \v(u,f)usinu, G \v(u,f)cosu), 0,u,p/2;
u50 corresponding to thez-direction, u5p/2 corresponds
to a direction in thex–y plane, namely the direction given
by the unit vector (cosf,sinf, 0). The plots above the ab-
scissa correspond to prevailing phonon emission~positive
G \v(u,f)), the plots below the abscissa correspond to pr
vailing phonon absorption~negativeG \v(u,f)). The spectra
of the acoustic phonons given by the functionG V(\v) are
shown on Fig. 5 for several electric fields.

Comparing curves on Fig. 4 we may conclude, that fo
f'0 and thex–direction~the direction of the average elec-
tron velocity!, the increase of the electric field from 10 to
1000 V/cm results in an increase of the maximum o
G \v(u,0) by approximately two times~from 5.531023 to
1231023 meV/~ps sr electron!!. At the same time, for
f'0 and thez–direction, the maximum ofG \v(u,0) is in-
creased approximately 3.5 times~from 7.531022 to
2531022 meV/~ps sr electron!!. The absolute value of en-
ergy per unit solid angle, transmitted in thez-direction is an

liedFIG. 3. The electron energy dissipated through acoustic phonon emiss
~marked AP! and through optical phonon emission~marked OP! per unit
time, per one electron as a function of the applied electric field. GaAs/AlA
quantum well,T530 K, a5100 Å.
8959Mitin et al.
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FIG. 4. Radiation pattern of acoustic phonons,G \v(u,f), in units meV/~ps
sr electron! as a function of the angleu for azimuthal anglesf 5 5°,
55°, 85°, 115°, 175°. The numbers at the curves correspond to the ang
f. GaAs/AlAs quantum well of width 100 Å, lattice temperature
T530 K. Electric field 10 V/cm~a!, 100 V/cm~b!, 1000 V/cm~c!.
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order of magnitude or more larger than the energy transm
ted in thex-direction. There is well pronounced anisotropy
the phonon radiation in thex–y plane; the acoustic phonon
are emitted preferentially in the direction of the average el

FIG. 5. The spectra of the acoustic phonon energy flux,G V(\v), in units
1/~ps electron! for electric fields 1 V/cm~1!, 10 V/cm~2!, 100 V/cm~3!, 300
V/cm ~4!, and 1000 V/cm ~5!. GaAs/AlAs quantum well,T530 K,
a5100Å.
960 J. Appl. Phys., Vol. 79, No. 12, 15 June 1996
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tron velocity. Forf close top and some anglesu acoustic
phonon absorption exceeds emission and the resultant dif
ential energy fluxG \v(u,f) is negative~parts of curves be-
low the abscissa!. In addition, the radiation patterns,
G \v(u,f), have many details.

A simple estimate cannot explain so strong a radiatio
pattern anisotropy. Thez-component of the phonon wave
vector in Eq. ~9! is determined by the overlap integra
I (1,1,qz). It is given in Fig. 1. Therefore, the typicalqz is
approximately 2p/a. For a 100 Å wide quantum well it is
equal to 63106 cm21. A typical in-plane wave vector of
phonon emitted by a 20 meV electron is equal t
33106 cm21. This anisotropy is much smaller, than show
in Fig. 4.

There are two major factors which contribute to the a
gular dependence of the radiation pattern. The first is t
radiation pattern of a single electron. The second is the sha
of the electron distribution function, which averages the r
diation patterns of individual electrons. Let us consider th
radiation pattern of a single electron in the lowest subband
can be obtained from Eq.~9! if we take the electron distri-
bution function in the formf n,ki

5dn,1dki ,ki
(0). The radiation

pattern for the 30 meV electron is given on Fig. 6
Fig. 6~a! is a significantly magnified part of Fig. 6~b!.
The meaning of the curves is slightly different from
Mitin et al.
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that which was used in Fig. 4. We make an imaginary p
of the surface defined in parametric form
(G \v(u,f)sinucosf, G \v(u,f)sinusinf, G \v(u,f)cosu),
0,u,p/2, 2p,f,p and then make a cross–section by
plane which makes an anglef with the axisx and includes
the axisz. Therefore, for a givenf, curves in the first quad
rant correspond to positiveG \v(u,f) and curves in the third
quadrant correspond to negativeG \v(u,f). Curves in the
second and fourth quadrants correspond to positive
negativeG \v(u,f) respectively, however, the polar ang
f should be replaced byf1p.

We will explain the radiation pattern of Fig. 6 using th
diagram on Fig. 7. Let us consider possible electron tra
tions from an initial state ‘‘0’’~Fig. 7! due to acoustic pho
non emission. The circle ‘‘A’’ represents a cross–section o
the paraboloid by the plane«5const, the curve ‘‘B’’ rep-
resents all possible final states of the electron, which
emitted acoustic phonon withqz50. The shaded area belo

FIG. 6. Radiation pattern of an individual electron with energy 30 me
G \v(u,f), in units meV/~ps sr! as a function of the angleu for several
azimuthal anglesf. Cross–sections of the surfaceG \v(u,f) by the plane
f50° ~solid line!, f530° ~dashed line!, f560° ~dotted line! are shown.
The numbers at the curves correspond to the anglesf. GaAs/AlAs quantum
well, T530 K, a5100 Å. ~a! zoom in; ~b! zoom out. The dash–dotte
line is used to draw a curve of the constant functionG \v(u,f).
J. Appl. Phys., Vol. 79, No. 12, 15 June 1996
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the curve ‘‘B’’ represents possible final states of the electron
which has emitted an acoustic phonon with arbitraryqz . The
height of this area is determined by the overlap integral
From Fig. 1, the maximumqz is approximately equal to
4p/a, therefore the shaded area height is equal to
4p\u/a.

Let us fix the anglef, so thatf50. Then all possible
final states for the electron lie on the parabola ‘‘C,’’ i.e. the
intersection of the paraboloid of«5«(kx ,ky) and the plane
(«,kx). Now we trace the change in the radiation pattern,
when we move the electron final state through points ‘‘1,’’
‘‘2,’’ ‘‘3,’’ ‘‘4,’’ and ‘‘5.’’ Note, that these points corre-
spond to sequentially increasing angleu. Electron transitions
from ‘‘0’’ to ‘‘1’’ correspond to the acoustic phonon emis-
sion with u close to zero. They result in the largest peak in
the first quadrant on Fig. 6. The electron scatterings from
‘‘0’’ to ‘‘2,’’ ‘‘3,’’ and ‘‘4’’ correspond to acoustic phonon
emissions with sequentially largeru. However, the prob-
abilities of those processes are almost zero as a result of th
too large values of the correspondingqz . The quasi conser-
vation of the phononqz defined by the overlap integral limits
the electron transitions within the shaded area on Fig. 7. Fo
this reason, we practically do not have radiation on Fig. 6 for
some range ofu corresponding to electron transitions from
‘‘0’’ to ‘‘2,’’ ‘‘3,’’ and ‘‘4.’’ The electron transitions from
‘‘0’’ to ‘‘5’’ fall within a range of allowed qz ~shaded area
on the diagram! and these electron transitions give a second
peak in the first quadrant. From the geometry of Fig. 7 it is
clear that on theu scale the first peak~transitions ‘‘0’’ →
‘‘1’’ ! is much more narrow, than the second peak~transitions
‘‘0’’ → ‘‘5’’ !. At the same time, the scattering rates ‘‘0’’
→ ‘‘1’’ and ‘‘0’’ → ‘‘5’’ are practically the same, because
they are determined by the total phonon wave vectorsq,
which are almost the same due to largeqz . For this reason,

V,

FIG. 7. Diagram of the lowest electron subband«(kx ,ky). The initial state
of the electron is marked by 0. Possible electron final states are marked b
numbers 1 through 5 for the case of phonon emission and numbers 6 and
for the case of phonon absorption. Possible final states for a given ang
f of emitted phonons lie in the curves marked by letters C and D. Possibl
electron final states after acoustic phonon emission with the maximal elec
tron energy lie in the curve marked B. The circle marked by the letter A is
a cross-section of the paraboloid by the plane of equal energy.
8961Mitin et al.
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the phonon energy irradiated to the first peak and to
second peak are almost the same. As a consequence, th
peak is much larger than the second.

Between the two just discussed strong maxima of
radiation pattern in the first quadrant of the Fig. 6, there
several small maxima. They resulted from oscillations of
overlap integral~see Fig. 1!.

The maxima in the third and the fourth quadrants on F
6 are due to acoustic phonon absorption~as is explained
above, we plot the negativeG \v(u,f) below the abscissa!.
The peak in the third quadrant corresponds to electron t
sitions from ‘‘0’’ to ‘‘6’’; the peak in the fourth quadrant
corresponds to electron transitions from ‘‘0’’ to ‘‘7.’’ It is
assumed that both ‘‘6’’ and ‘‘7’’ final states are within
range of allowedqz , as determined by the overlap integra

If the angle between electron and phonon wave vect
f, is not equal to zero, the electron final states lie on
cross–section of the paraboloid«5«(kx ,ky) and the plane,
which is perpendicular to the (kx ,ky) plane, goes through th
point ‘‘0,’’ and make the anglef with the plane («,kx) ~the
curve ‘‘D’’ on Fig. 7!. The analysis of the radiation patter
for f Þ 0 can be done in the same fashion as it was done
f50. It is obvious, that positions of maxima inu space
should depend onf. Such dependence is shown on F
6~b!. Moreover, if thef is close top/2 and/or electron en
ergy is small, the maxima of the radiation pattern beco
broader~in terms ofu) and may merge.

The radiation patterns of individual electrons are av
aged over the electron distribution function. We will giv
only a qualitative description for the electron distributio
function transformation when the electric field increases
the range 0,E,1000 V/cm. Important information for the
average electron energy change is given in Fig. 2. The e
tric field growth from 0 to 10 V/cm results in electron ga
heating, while the electron distribution function remai
close to a displaced Maxwellian function. The radiation p
ternG \v(u,f) for the electric fieldE510 V/cm is given on
Fig. 4 ~a!. It is slightly asymmetric in thex–y plane. How-
ever, the radiation patterns for individual electrons are s
stantially smeared due to stochastic motion of electrons.

Electric fields from approximately 50 V/cm to 200 V/cm
correspond to the streaming regime. The vast majority
electrons have their energies below the optical pho
threshold and perform quasi-periodic motion inki2space.
The electron distribution is strongly asymmetric, it
stretched along the direction of the electric field. The rad
tion pattern of phonons forE5100 V/cm is given on Fig. 4
~b!. It is strongly asymmetric in thex–y plane.

For the electric fields close to the run-away thresh
~which is slightly larger than 1000 V/cm!, a significant num-
ber of electrons have energies notably above the optical p
non threshold. The electron distribution function is asymm
ric in thex–y plane and stretched along thex-axis, however
it is substantially broader in bothx- andy-directions, than for
E5100 V/cm. The radiation pattern of phonons f
E51000 V/cm is given on Fig. 4~c!. It is also strongly
asymmetric in thex–y plane. The radiation patterns fo
f50 in the electric fields 100 V/cm and 1000 V/cm car
features of the individual electron radiation pattern, th
8962 J. Appl. Phys., Vol. 79, No. 12, 15 June 1996
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have two major peaks for two differentu. This is due to
stretched shapes of the distribution functions.

In spite of the significant modification of the electron
distribution function and the phonon radiation patterns whe
the electric field grows, the spectrum of irradiated phonon
remains remarkably unchanging~see Fig. 5!. The average
energy of the phonons is determined by the width of th
quantum well and is approximately equal to 2p\u/a. The
position of the maxima may be changed only if both the
lattice temperature and the electric field are so low, that th
average electron energy is smaller than 2p\u/a. Equation
~9! gives the differential phonon energy flux in excess of the
thermal equilibrium background determined byN\v

T . There-
fore, the total energy of the irradiated phonons is equal t
zero if E50. It grows in small electric fields and then be-
come almost field independent~see Fig. 3!. It happens be-
cause the average phonon energy does not depend on
electric field, and the electron–acoustic phonon scatterin
rate in one electron subband 2D case is also almost consta
due to energy independent density of states.

VI. CONCLUSIONS

We have analyzed the acoustic phonon radiation emitte
by quasi-two–dimensional electrons in double barrier quan
tum well structures. We have included effects of the non
equilibrium electron distribution and stimulated emission
processes. As a result, we have obtained strong asymme
for the radiation pattern in the plane of the quantum well fo
the case where the electric field is strong enough. The radi
tion pattern of a quasi-two-dimensional electron gas ha
strong anisotropy which has been explained in terms of ra
diation patterns of the individual electrons and the electro
distribution function.
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