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The acoustic phonon radiation patterns and acoustic phonon spectra due to electron—acoustic-
phonon interaction in a double barrier quantum well have been investigated by solving both the
kinetic equations for electrons and phonons. The acoustic phonon radiation patterns have strongly
pronounced maximum in the directions close to the perpendicular to the quantum well direction.
The radiation pattern anisotropy is explained in terms of possible electron transitions, electron
distribution function, and the Hamiltonian of electron—phonon interaction. It was shown that, the
simple assumption that emitted phonons always have a perpendicular wave-vector component of the
order of 2w/a, wherea is the width of the quantum well, cannot explain the strong anisotropy of
the radiation patterns. More detailed analysis is required and has been carried out. The emitted
acoustic phonon spectra have maxima at energiga2a, whereu is the sound velocity. €1996
American Institute of Physic§S0021-8976)02512-]

I. INTRODUCTION interesting features in the acoustic phonon emission. In ad-
dition, in contrast to Refs. 9 and 12 we have taken into
Electron interactions with acoustic phonons in low di- account the stimulated phonon emission processes. Our treat-
mensional(LD) structures at low lattice temperatures play ment is based on solving the quantum kinetic equation for
important_roles in many kin.e_tic phenomena. They determmﬁ’ohonons as was done in Refs. 9 and 12. However, we have
the low—field electron mobility and the electron energy 10SSiormylated the boundary conditions for the energy fluxes in a
rate at low lattice temperatures. Hot acoustic phonon emissjagr integral form based on energy flux balances.
sion represents one of the significant channels for thermal As it has been understood previous®Sthe radiation
energy removal from LD electron gases. The detection of,ierms of acoustic phonons have well-pronounced maxima
acoustic phonons emitted by hot electrons provides a valyy,qije the solid angle close to the normal to the quantum well
a_\ble t_ool for the investigation of electron—phonon mterac-(QW) direction (z-direction. These orientational dependen-
tions In heterostructu_res. . . . cies are related to the quantum confinement of electrons in
The problem of diagnosing acoustic phonons emitted b he quantum well and uncertainty in the conservation of the

guasi-two—dimensional and one—dimensional electrons has
Z2-component of phonon wave vectors. In the case of QW

attracted considerable attention during the last decade. It h%?ructures the emitted acoustic phonons have wave vectors
been studied both experimentdlt§ and theoretically2°In ; P

experiments;®the energy flux of acoustic phonons has beenWlth z-componentsy,, of the order of 2r/a, wherea is the

measured by bolometers, deposited on the opp6sita re- width of the electron lateral confinement. For a 100 A wide
’ — —1 . _

spect to the quantum welkide of the semiconductor sub- quantL_lnr: well,qz~6><106 cm '.At the same t'mﬁ’ an elec_ h

strate. Theoretical analy&id® explains many features of the FON With an energy of 40 meV in GaAs emits phonons wit

. —1
experimental results. However, of all these papers studied tH@-Plane wave vector components about BF cm™?, for

acoustic phonon flux for the case when the distribution functh® case when the electron scatters in the direction, which is

tion of electrons is the Fermi functidor the Maxwell func- oppositg to .the direction of its initial motion. Thgrefore, the
tion). We formulate the problem of acoustic phonon emis-Uncertainty in the phonos-component conservation can ex-
sion in terms of the kinetic equations for both phonons and!@in only moderate anisotropy of acoustic phonon radiation
electrons allowing for in-plane heating electric field and non-Patterns. We give another explanation for the strong anisot-
equilibrium electrons. We have solved the kinetic equatiorfoPy of the angular dependence of the differential acoustic
for quasi two—dimensional electrons and obtained the eled?honon energy flux. We have also calculated the energy
tron distribution function. This function has been used tosPectrum of nonequilibrium acoustic phonons radiated from
study the acoustic phonon energy flux due to acoustic phosuch quantum well nanostructures as well as the electron
non emission by hot electrons. We have investigated deper@nergy loss rates in such structures.

dencies of the radiation patterns and the emitted acoustic In the next section, we will consider the problem at hand

phonon spectra on the applied electric field and obtained nef@r a sample double heterostructure with geometry close to
those used in experimenits~® We will also define the dif-
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neering, North Carolina State University, Raleigh, NC 27695-7911; Elec-t0 @COUStIC phonon emission, which are relevant to this ge-

tronic mail: bannov@ecehltl.ece.ncsu.edu ometry. In the following section we will formulate the prob-
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lem of phonon kinetics in terms of appropriate quantum ki-venient to normalize the differential energy flux per one elec-
netic equations. Then these equations will be transformed toon. The radiation pattern and the spectrum of acoustic
a form which takes into account the geometry of the samplg@honons are defined as

and the equation for the differential energy flux will be ob-
tained. The last section reports results from numerical simu-
lations and discusses physical interpretations of the radiation
patterns and phonon spectra presented in this paper.

ffhw(Q)=fomf'/('(ﬁw,ﬂ)d(ﬁw),

f)(h(hw)=j Hhw,0)dQ,
4

Il. GEOMETRY AND THE MEASURABLE QUANTITIES

respectively. It is worth mentioning, that the differential en-

We will consider a double-barrier heterostructure €y flux detected by sensors on a surface of the semicon-

guantum-well of widtha bounded by planeg=a/2 and
z=—al2. The Cartesian coordinatesandy refer to the
plane of the quantum well, the axids going in the direction

ductor substrate is strongly modified by focusing due to the
elastic anisotropy of crystal lattices. The directions of the
phonon phase velocitgwhich is determined by the phonon

of the average electron velocity, tiyeaxis augments the- ~ Wave vector and the group velocitywhich defines the di-
and z-axes to form a right-handed basis. Accordingly, thef€ction of energy flow differ in anisotropic crystals. This
electric field,E, is going in the direction of negative The  results in an increase of energy flo_vv alqng some directions
dimensions of the quantum well in the-y plane are_, and a_nd a d_ecrease along other directions in real_space_. If the
L,. The acoustic phonons are detected by sensors located @fferential energy flux of the source and the dispersion re-
a surface of the substrate. We assume that the distance, lationship for phonons is known, energy flow detected by
from the quantum well to the surface is large in comparisors€Nsors may be calculated through_ curvatures of surfaces of
with the lateral dimensions of the quantum well: €qual phonon energgee, e.g., areview in Ref. L@ecause
d>L,,L,; in this limit, the quantum well represents a point this task is quite laborious from a practical point of view,
source of acoustic phonons. The described geometrical cof®MPputer programs have been developed to calculate incom-

figuration corresponds to those of Refs. 5 and 6 as well a!d energy to a detector energy flow allowing for a realistic
those of other experiments. geometry of the source of phonon radiatidn.

We define measurable quantities related to acoustic pho-
non emission by a point source; these include: the differen-
tial energy flux.(fw,Q), the radiation pattern;,(£2),  |I1. THE PHONON KINETIC EQUATION
and the spectrum of acoustic phonof#g, (% ). The energy
flux density of acoustic phonond,g, is defined as The problem at hand may be described by the kinetic
equations for electron and phonon density matri€gg, and
044, N which electron—phonon interactions are taken
within the second order of the perturbation theory. The indi-
the PIancIPGSk and q describe complete sets of electron and phonon
quantum numbersk=(k,n), q=(q;,q,). We will use
these simple indices despite the obvious possibility of con-
fusion with absolute values, because they significantly sim-
plify and shorten formulae. If we need an absolute value of
some vector, we will designate such quantities through the
use of two vertical lines as itk|| for example. The kinetic
equation for the phonon density matrix has the following
form:

1
Ag= Wququqﬁquq(r).

Here N, is the phonon occupation number, e.g.,
function, 7w, is the phonon energy, ang, is the phonon
group velocity. The units foAg are the energy per unit time,
per unit area. The symbd in Ag refers to the volumelq
of integration. The energy flux of acoustic phonoisG;,
through a given surface, is defined by the formula

1
AG:LdSAgz WquqLdSuqﬁquq(r).

We assume a simple linear isotropic dispersion relation
wg=uq and a simple formula for phonon group velocity
Ug=uag/qg. ThenAG is given by the formula

&Uq’qr
ot

2

+i(wg—wg)oqq = Zph-et Zph-phs

where 7, and 7o denote terms for phonon—electron
and phonon—phonon interactions respectively.

AG= L(,,,a,)d(ﬁw)LQdQ’(f(ﬁw'Q)’ (1) The phonon—electron collision integral is given by the
formula
where “(h w,Q) is the differential energy fluxthe phonon _
energy passing through a surfaBeper unit time, per unit , o w(k,k",g")w* (k,k",Q)
(/th—e_ - % 2

solid angle, per unit energy interyatietermined by the for-
mula

kK0 e— e thaog—iA

X[(l_fk)fk’éq,Q_‘_(fk’_fk)O—q,Q]

2 w(k,k",Q)w* (k,k",q)
KK .Q ex—ep thaog+ik

1
A hw,Q)= ggfsdsguqmq(r).

i
%
We will measure the differential energy flux in the units
(ps sr) L. In numerical Monte Carlo calculations, it is con-

X[(A=f ) bg,q +(Fir —Ff)og,q ] (3
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In the above equation, ind€) denotes the phonon variables,
A—+0. We have taken into account that electron gas is
homogeneous in the—y plane and the electron intersub-
band transitions are significantly slower than the intersub-
band transitions; therefore, the electron density matrix is di-
agonal:  fy =0 = 5k,k’fn,kH- In our numerical
calculations, we will consider only the case of strong elec-
tron lateral confinement, when only the lowest subband is
occupied, therefore, the above assumptions are held. The ma-
trix element,w(k,k’,q) determines the rate of electron—
phonon scattering. We take the Hamiltonian of the electron—
acoustic phonon interaction in the standard form,

I (1,1,q)

qa/m

— * T
He*Ph_ % (Xq(r)bq+Xq (r)bq)' FIG. 1. The overlap integral(1,1,q) for electron transitions inside sub-
band number one.

wherey, gives the strength of the electron—acoustic phonon
interaction, andb, and bg are the destruction and creation
operators respectively. For the system under consideration,
Xq(r)=explqr)I’y. With this notation, the matrix element, N(F) = exr(iAar 4
w(k,k’,q), is given by the formula o1 % Tq+agra-aq@XAIAAL). @

w(k,k",q)=(kj ,n’[xqlkj,n) _ _

_ If we apply the Fourier transform defined by Ed) to the

=i+ q ,k”'Fq<n'|eXp(|qu)|n>- phonon kinetic equation given by E¢@), we obtain the fol-

. - . lowing equation
For the case of the deformation potential interaction, geq

which makes the major contribution to electron scattering by
acoustic phonons

/ h
Fq=Fq= c—.ianv
2p7 g where uq=dwq/dq, and the collision integrald,,_. and

whereE, is the acoustic deformation potential constanis ~ Jpn—pn are the Fourier transforms of the collision integrals
the crystal density, and’}, is a principal volume. Because 7pn—eand Zph-pn, respectively. We have used the fact that
electrons do not interact with transverse acoustic phononl,(r) is a slowly varying function of coordinates in the left
through the deformation potential, we have not included théand side of Eq(5) and neglected the derivatives of, and
phonon mode index in the phonon variables. Accordingly Ng(r) overq andr respectively of the third, fifth, and higher
wg=uq is the phonon dispersion relation for longitudinal orders.
phonons andi is the longitudinal phonon velocity. When making estimates for the acoustic phonon propa-
We will need the overlap integral,.7(n’,n,q,) gation and their interactions with electrons, it is convenient
=|(n’|expla)|n)|>. For the case of electron wave functions to treat them as wave packets of finite siae, and, accord-
for an infinitely-deep rectangular quantum well, the overlapingly, of finite width in the phase spacAg. A typical en-
integral may be calculated analytically. It takes the form  ergy for acoustic phonons emitted by quasi-two-dimensional
S~ s e’ - electrons, as is shown below, is equal to abott:R/a; for
7' ,n,q,) = 23%(2 na) [21 g ~12) ;08” Czl ]2 , usual material and quantum well paramet@sAs quantum
n m[q "=2(n"“+n9)q “+(n“—n’"9)]*’ well 100 A wide it is equal to about 2 meV. A typical
wavelength of acoustic phonons emitted by quasi-two—
the lowest subbandn=n’=1) is shown on Fig. 1. From dimensional electrons}\., ?s equal toa; so for our estimate
Fig. 1 it follows, that typical values ofy, for acoustic A~100A. Therefore, it is reasonable to take=10a or

phonons interacting with electrons in QW are approximatel)Ja_‘rger' At the same time, we assume, that the in-plane dimen-
equal to 27/a. sions of the quantum well are much larger thar:

The electron density matrix(distribution function, A7 <Lx.Ly. We define a volum¥,_. such that the bound-

foK, satisfies the corresponding kinetic equation which"Y of this volume is O.ff.S(.-','t by a distancer from the quan-
ol . . . tum well. By the definition ofV,,_., we may consider
takes into account the interaction of electrons with acoustic : '
. . électron—phonon processes in this volume as homogeneous
phonons as well as with optical phonons. . . )
in the x—y plane and neglect fringe effects on the acoustic
phonon emission.
In accordance with definition ahr, the collision inte-

gral J,;,—¢ is equal to zero outside the volumg,, .. We

INg(T) INg(T)
&qt *+Uq ;I' =Jph—et Jph-ph> 5

whereg=aq,/=. The function7(n’,n,q,) for electrons in

IV. DIFFERENTIAL ENERGY FLUX

We will use the phonon distribution functiomy(r), integrate the kinetic equatio(®) over the volumeV, .
defined by the Fourier transform The result of such an integration is given by the formula
J. Appl. Phys., Vol. 79, No. 12, 15 June 1996 Mitin et al. 8957
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d Ng(r) Ng(r) mines anisotropy in respect to a spherical argjl¢ghe angle
dr é s
ph—e

tly. A Ugyy A ds between the axig and a given direction The initial cause
ph-e "PNTE ph—e for anisotropy in thex—y plane is the applied electric field
=Jph-et Tph-ph- (6) which modifies the electron distribution function, and

_ ) through this function it makes the phonon differential energy
where S,;,_. is the surface which bounds the volume flux anisotropic in thec—y plane.

Vpn—e, the ratio Ng(r)/Vpn_e is the phonon distribution Outside the volume&/,,_. the phonon kinetic equation
function normalized per unit volume, so the surface mtegral1as the form
represents the flux of phonons with wave vectpr and
Jph—e and Jpn_pn Stand for integrated collision integrals INg(r) INg(r)

. +u =Jph-ph-
Jph—e @ndJpn_pn, respectively. We assume that the length at a  or ph=p

of phonon—phonon interaction is considerably larger thar]f the phonon decay due to phonon—phonon interactions and
any dimension of the volum¥, .. For such materials as ) : T

. o . other possible mechanisms of scattering is small over the
Si or GaAs, it is really the case for phonons with Wavelengthdistanged from the quantum well o a ph?)non detector. the
of the order of 100 Ajph_e is given by the formula '

phonon propagation may be treated as ballistic and the ap-

(10

4 U proximation of the geometrical optics be employed. This
Jpn-e=— 1Tl > - 7(n",n,G)[(1=fn ) condition is held for the samples used in experimefites-
kp.n.n timates are given in the next sectjoifherefore, the phonon
X fn’,k”+q”+(fn’,k”+q”_ fn,k”) 0q.q) energy detected by a sensor on a surface of the sample is the

same as that determined by E8).
X 5(8n’kH—snr,kHJrqH-i-ﬁwq). (7)

The term in Eq(7) proportional to o describes the pro- V. RESULTS OF NUMERICAL SIMULATION AND
cesses of stimulated phonon emission and absorption. If theISCUSSION

change in o4 due to phonon emission and absorption by We h wdied th iic oh diati t
quasi-two-dimensional electron gas is small in comparison € have studied the acoustic pnonon radiation patterns

with the phonon density matrix in thermal equilibrium, we and the acoustic phonon emission spectra for the case of a
may substitute the Planck functid)th} for oqqin Eq.(7) nondegenerate electron gas. The restrictions which this im-
From Eqs.(6) and (7) it follows ltaﬁat the ggergy flux of POseson the applicability of our results are not strict as long

acoustic phonons with wave vectors in a domai@ emitted as we consider a heated electron gas. Appropriate estimates

by quasi two—dimensional electrons is given by the formuls®"® considered in this section. Parameters of the materials are

taken for a GaAs/AlGaAs double barrier heterostructure. The

4 ) o, numerical results presented here correspond to the case
- alt q Zn%,n,q; where the lattice temperature is . igher temperatures
AG—ﬁqgQﬁwIFIKE,ﬂ”nq) here the lattice temperat 30 K. At higher temperat
e.g. at room temperatureoptical phonon scattering domi-
R ( t t tureoptical ph tt d
X[(l_fn,k”)fn’,k”+q”+(fn’,k”+q“_fn,kH)N;l’;w] nates over other mechanisms and the equilibrium acoustic
phonon population is too high to accurately resolve phonons
X (enk~€n k+q T hwg). (8)  emitted by quasi-two—dimensional electron gas. At very low

o ) lattice temperature&.g., 4.2 K the electron gas degeneracy
From Eq.(8) and the definition of Eq(1) we obtain the i more important and limits the applicability of our model.

differential energy fluxs (% »,() The width of the quantum welh, is taken to be 100 A. For
E2q* this width, the second electron subband is approximately 150
Aho,Q)= 4:% 7(n" ,n,g)[(1— fn,kH) meV above the first subband. It is substantially higher than
kH n,n’

the average electron energy, for this reason the second sub-
<f., +(fo —f, NI ] band is practi_cally un.populated. _
kg T innkte s ink e The kinetic equation for electrons takes into account all
X 8(enk—&nr k+q,F F0g)- (99  significant mechanisms of electron scattering in QW: elec-
'” S tron scattering by acoustic phonons, as well as electron scat-
It is worth mentioning, that Eq(9) takes into account tering by confined and interface optical phonons. We use the
both the phonon emission and phonon absorption processesame Hamiltonians of electron interactions with optical
In addition, due to integration over the closed surfacephonons in a quantum well as given in Ref. 18. The
Soh—e Which bounds the volume of acoustic phonon interac-electron—phonon collision integrals follow from these
tion with quasi-two-dimensional electrons, Ef) gives the  Hamiltonians. However, in electron collision integrals with
differential energy flux in excess of the equilibrium differen- phonons we take the equilibrium phonon distribution func-
tial energy flux, determined by the functid)dl,Tm. It will be  tion assuming that the thermal bath is only slightly disturbed
shown later, that the differential energy fl(&) is a strongly  due to phonon emission by heated electrons. This is consis-
anisotropic function. This anisotropy enters K@) through tent with the assumption we made to obtain Bj.from Eq.
the electron distribution function and through the overlap(7). We have solved the kinetic equation for electrons em-
integral. The electron distribution function determines an-ploying the Monte Carlo technique. The electron distribution
isotropy in thex—y plane, while the overlap integral deter- function is approximated by an ensemble of a large number

8958 J. Appl. Phys., Vol. 79, No. 12, 15 June 1996 Mitin et al.
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FIG. 2. The average electron kinetic energy as a function of the applied™!G. 3. The electron energy dissipated through acoustic phonon emission
electric field. GaAs/AlAs quantum well[=30 K, a=100 A. (marked AP and through optical phonon emissigmarked OR per unit
time, per one electron as a function of the applied electric field. GaAs/AlAs

quantum welll T=30 K, a=100 A.

of electrong(particles. We traced the trajectories of the par-

ticles in the phase space in a given electric field and scatterdl; < E<E, are downconverted to acoustic phornnsith a
them to obtain a stationary distribution function. We used theenergy of about 18 meV. These phonons may decay into
standard Monte Carlo method for two-dimension@D) lower energy phonons. However, for a realistic thickness of
electrons as described in detail in Ref. 19. The electron disthe substratg~1 mm), the downconverted phonons and
tribution function obtained by this technique has been useg@roducts of their decay may be discriminated from the
to calculate the differential energy flux of E®). However, phonons directly emitted by electrons, because their energies
because“(fiw,Q}) is a three-dimensional function of the belong to different ranges. The mean free path of 1 (this

spherical angle® and ¢, and the phonon energyw, all  is a typical thickness of the semiconductor subsjratere-
results will be presented as integrated over energies or solisponds to acoustic phonons with an energy of 9 meV. The
angles functionss; () and £ (hw), respectively. energy dependence of the mean free path is inversely pro-

The average electron energy as a function of the appliegortional to the fifth power of energy. Due to this strong
electric field is shown in Fig. 2. It allows us to analyze the energy dependence, all products of the optical phonon decay
applicability of the applied approach. The estimate for thereach boundaries of the sample well before the phonon en-
electron Fermi energy in a GaAs QW is given by the formulaergy approaches the energy range of that directly emitted by
ep~3.5X (n/10"cm™2) meV, wheren, is the electron sur- electrons acoustic phonons.

face concentration. Then, for,=10' cm~2, the electron The radiation patterns of quasi-two-dimensional electron
gas may be considered nondegenerate if the electric field gas in electric fields of 10, 100, and 1000 V/cm are shown on
10 V/cm or higher. Fig. 4. To visualize the two—dimensional function

We may mark two characteristic fields on Fig. 2 at %;,(Q)=%;,(0,¢), we fix an anglep and plot a paramet-
which the curve for average energy bends. The fiEst, is  ric curve (£;,(60,9)|sing, <;,(0,4)cosd), 0<O</2;
equal to 10 V/cm, and the seconH;, is approximately #=0 corresponding to the-direction, #= /2 corresponds
equal to 16 V/cm. In the fieldsE<E, practically all the to a direction in thex—y plane, namely the direction given
electron energy is dissipated through the acoustic phonohy the unit vector (cog,sing, 0). The plots above the ab-
emission. The electron average energy grows linearly wittscissa correspond to prevailing phonon emissjpositive
the electric field. The saturation in the region of low fields of £ ,(6,¢)), the plots below the abscissa correspond to pre-
about 1 V/cm is due to the lower limit imposed by the ther-vailing phonon absorptiofmegatives; (6, ¢)). The spectra
mal energy, which for the lattice temperatufe=30 K is  of the acoustic phonons given by the functigi, (% ) are
equal to 2.6 meV. In the range of electric fields shown on Fig. 5 for several electric fields.

E,<E<E,, a significant part of the electron energy is ini- Comparing curves on Fig. 4 we may conclude, that for
tially transferred to the optical phonons. The optical phonong~0 and thex—direction(the direction of the average elec-
emission, which is much stronger than the acoustic scattetron velocity), the increase of the electric field from 10 to
ing, stabilizes the electron energy growth. In electric fields1000 V/cm results in an increase of the maximum of
E>E, electrons run away from optical phonons. The elec-%;,(6,0) by approximately two timeg¢from 5.5x10 3 to
tron energy dissipated through the acoustic phonon emissiol2x 10" 3 meV/(ps sr electroy). At the same time, for
and through the optical phonon emission is shown on Fig. 3¢~0 and thez—direction, the maximum o7 ,(6,0) is in-

We have investigated the differential energy flux for creased approximately 3.5 time§from 7.5x10 2 to
acoustic phonons in the range of electric fietEisE,. The 25X 10 2 meV/(ps sr electrop). The absolute value of en-
optical phonons emitted in the case of strong electric fieldgrgy per unit solid angle, transmitted in tkalirection is an

J. Appl. Phys., Vol. 79, No. 12, 15 June 1996 Mitin et al. 8959
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FIG. 4. Radiation pattern of acoustic phonoffs,,(6, ), in units meV(ps

sr electron as a function of the angl® for azimuthal anglesp = 5°,

55°, 85°, 115°, 175°. The numbers at the curves correspond to the angles
¢. GaAs/AlAs quantum well of width 100 A, lattice temperature
T=30 K. Electric field 10 V/cm(a), 100 V/cm(b), 1000 V/cm(c).

order of magnitude or more larger than the energy transmittron velocity. For¢ close tor and some angleg acoustic

ted in thex-direction. There is well pronounced anisotropy of phonon absorption exceeds emission and the resultant differ-
the phonon radiation in the—y plane; the acoustic phonons ential energy fluxs; (0, ¢) is negative(parts of curves be-
are emitted preferentially in the direction of the average eleclow the abscisga In addition, the radiation patterns,

0.016

0.014f

0.0121

0.008f

Ga(hw)

0.006

0.004

0.002

0 1 2 3 4 6 7
Acoustic Phonon Energy, meV

FIG. 5. The spectra of the acoustic phonon energy flgg(% ), in units
1/(ps electromfor electric fields 1 V/cn(1), 10 V/cm(2), 100 V/cm(3), 300
Vicm (4), and 1000 V/cm(5). GaAs/AlAs quantum well, T=30 K,
a=100A.
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Zho(0,0), have many details.

A simple estimate cannot explain so strong a radiation
pattern anisotropy. The-component of the phonon wave
vector in Eq.(9) is determined by the overlap integral
7(1,14,). Itis given in Fig. 1. Therefore, the typicdl, is
approximately 2r/a. For a 100 A wide quantum well it is
equal to 6<10° cm 1. A typical in-plane wave vector of
phonon emitted by a 20 meV electron is equal to
3%x10° cm 1. This anisotropy is much smaller, than shown
in Fig. 4.

There are two major factors which contribute to the an-
gular dependence of the radiation pattern. The first is the
radiation pattern of a single electron. The second is the shape
of the electron distribution function, which averages the ra-
diation patterns of individual electrons. Let us consider the
radiation pattern of a single electron in the lowest subband. It
can be obtained from Ed9) if we take the electron distri-
bution function in the forrrfn,k”= 5”’15k\\ 'kﬁo)' The radiation

pattern for the 30 meV electron is given on Fig. 6.
Fig. 6@ is a significantly magnified part of Fig. @).
The meaning of the curves is slightly different from
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FIG. 7. Diagram of the lowest electron subbat(t, ,k,). The initial state
< of the electron is marked by 0. Possible electron final states are marked by
n numbers 1 through 5 for the case of phonon emission and numbers 6 and 7
3 for the case of phonon absorption. Possible final states for a given angle
—~ 307 (b) 0 i ¢ of emitted phonons lie in the curves marked by letters C and D. Possible
& electron final states after acoustic phonon emission with the maximal elec-
:g 20 /3’0 | tron energy lie in the curve marked B. The circle marked by the letter A is
- e a cross-section of the paraboloid by the plane of equal energy.
> 7
=
& 107 s
// R
47 60
< O the curve “B” represents possible final states of the electron,
§ —;7 which has emitted an acoustic phonon with arbitragyy The
—~ 10t W | height of this area is determined by the overlap integral.
:: Y From Fig. 1, the maximuny, is approximately equal to
S ol . ‘ 47la, therefore the shaded area height is equal to
& 0.2 0 0.2 0.4 Axfiul/a.
Gno(0,9) sin, Gu,(0,¢+7) sinb Let us fix the anglep, so that¢p=0. Then all possible

final states for the electron lie on the parabola “C,” i.e. the
FIG. 6. Radiation pattern of an individual electron with energy 30 meV, intersection of the paraboloid ef=¢(k,,k,) and the plane
Zho(0,4), in units meV(ps sh as a function of the anglé for several  (g,k,). Now we trace the change in the radiation pattern,

azimuthal anglesp. Cross—sections of the surfacg,,(6,4) by the plane  \vhen we move the electron final state through points “1,”
$»=0° (solid line), $=30° (dashed ling ¢=60° (dotted ling are shown. Gy 1y oty 11 G g 1 wp : '
The numbers at the curves correspond to the anglgSaAs/AlAs quantum 2,7 "3, "4, an_d 5,' NOtej that these points co'rre-
well, T=30 K, a=100 A. () zoom in; (b) zoom out. The dash—dotted SPONd to sequentially increasing angleElectron transitions

line is used to draw a curve of the constant functigp, (6, ¢). from “0” to “1” correspond to the acoustic phonon emis-
sion with @ close to zero. They result in the largest peak in
the first quadrant on Fig. 6. The electron scatterings from
that which was used in Fig. 4. We make an imaginary plot‘0” to “2,” “3,” and “4” correspond to acoustic phonon
of the surface defined in parametric form asemissions with sequentially larget. However, the prob-
(¢3,,(0,d)sin bcosp, &5 (0, P)sin Bsing, < ,,(6,P)cod), abilities of those processes are almost zero as a result of the
0< o< w2, — m< <7 and then make a cross—section by atoo large values of the correspondigg. The quasi conser-
plane which makes an angig with the axisx and includes vation of the phononj, defined by the overlap integral limits
the axisz. Therefore, for a givew, curves in the first quad- the electron transitions within the shaded area on Fig. 7. For
rant correspond to positivey (6, ¢) and curves in the third this reason, we practically do not have radiation on Fig. 6 for
guadrant correspond to negativ&, ,(6,¢). Curves in the some range of corresponding to electron transitions from
second and fourth quadrants correspond to positive antD” to “2,” “3,” and “4.” The electron transitions from
negative (6, ®) respectively, however, the polar angle “0” to “5” fall within a range of allowed q, (shaded area
¢ should be replaced by + 7. on the diagramand these electron transitions give a second
We will explain the radiation pattern of Fig. 6 using the peak in the first quadrant. From the geometry of Fig. 7 it is
diagram on Fig. 7. Let us consider possible electron transielear that on thed scale the first peaktransitions “0” —
tions from an initial state “0”(Fig. 7) due to acoustic pho- “1"” ) is much more narrow, than the second pé&sénsitions
non emission. The circle A” represents a cross—section of “0” — “5” ). At the same time, the scattering rates “0”
the paraboloid by the plane=const the curve “B” rep- — “1” and “0” — “5” are practically the same, because
resents all possible final states of the electron, which hathey are determined by the total phonon wave vectprs
emitted acoustic phonon wittp,=0. The shaded area below which are almost the same due to lagge For this reason,
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the phonon energy irradiated to the first peak and to thdave two major peaks for two differet This is due to

second peak are almost the same. As a consequence, the figgetched shapes of the distribution functions.

peak is much larger than the second. In spite of the significant modification of the electron
Between the two just discussed strong maxima of thedistribution function and the phonon radiation patterns when

radiation pattern in the first quadrant of the Fig. 6, there arg¢he electric field grows, the spectrum of irradiated phonons

several small maxima. They resulted from oscillations of theremains remarkably unchangirigee Fig. 5. The average

overlap integralsee Fig. 1 energy of the phonons is determined by the width of the
The maxima in the third and the fourth quadrants on Figquantum well and is approximately equal ter2u/a. The

6 are due to acoustic phonon absorpti@s is explained position of the maxima may be changed only if both the

above, we plot the negative’; (6, ¢) below the abscisga lattice temperature and the electric field are so low, that the

The peak in the third quadrant corresponds to electron trargverage electron energy is smaller tham#i/a. Equation

sitions from “0” to “6”; the peak in the fourth quadrant (9) gives the differential phonon energy flux in excess of the

corresponds to electron transitions from “0” to “7.” It is thermal equilibrium background determined Ky, . There-

assumed that both “6” and “7” final states are within a fore, the total energy of the irradiated phonons is equal to

range of allowedy,, as determined by the overlap integral. zero if E=0. It grows in small electric fields and then be-
If the angle between electron and phonon wave vectors;ome almost field independefgee Fig. 3. It happens be-

¢, is not equal to zero, the electron final states lie on thecause the average phonon energy does not depend on the

cross—section of the paraboloid=(ky,ky) and the plane, electric field, and the electron—acoustic phonon scattering

which is perpendicular to thek{,k,) plane, goes through the rate in one electron subband 2D case is also almost constant

point “0,” and make the angles with the plane £,k,) (the ~ due to energy independent density of states.

curve “D” on Fig. 7). The analysis of the radiation pattern

for ¢ + 0 can b.e done in the same fashion as it was done fO{/I_ CONCLUSIONS

¢=0. It is obvious, that positions of maxima i& space

should depend orp. Such dependence is shown on Fig. We have analyzed the acoustic phonon radiation emitted

6(b). Moreover, if the¢ is close tomr/2 and/or electron en- by quasi-two—dimensional electrons in double barrier quan-

ergy is small, the maxima of the radiation pattern becomdum well structures. We have included effects of the non-

broader(in terms of§) and may merge. equilibrium electron distribution and stimulated emission
The radiation patterns of individual electrons are aver{frocesses. As a result, we have obtained strong asymmetry

aged over the electron distribution function. We will give for the radiation pattern in the plane of the quantum well for

only a qualitative description for the electron distribution the case where the electric field is strong enough. The radia-

function transformation when the electric field increases irtion pattern of a quasi-two-dimensional electron gas has

the range 82E<1000 V/cm. Important information for the strong anisotropy which has been explained in terms of ra-

average electron energy change is given in Fig. 2. The eledliation patterns of the individual electrons and the electron

tric field growth from 0 to 10 V/cm results in electron gas distribution function.

heating, while the electron distribution function remains
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