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We present a method for the approximate semianalytical calculation of wave functions and cigen-
energies in systems consisting of domains with known bulk solutions of the corresponding Schrodin-
ger equation (e.g. with piccewise constant potential). The trial wave function is written as a nor-
malized linear combination of several bulk solutions for the given energy. The coefficients of the
linear combination are found by minimization of the integral of square mismatch along the bound-
arics. Mathematically the problem is equivalent to the minimization of the Rayleigh quotient or
solution of the generalized eigenproblem for the vector of coefficients. The value of the residual
provides an estimation of the accuracy of the results and gives the possibility to choose an optimal
set of trial functions. We illustrate the use of the method by caleulation of eigenfunctions of infi-
nitely long triangular and quadrilateral wires.

1. Introduction

Over two decades of research on low-dimensional systems has resulted in the creation of
a large variety of artificially grown structures with space gquantization that have found
numerous applications in high-specd electronic and optoelectronic devices. The growing
needs of device designers and manufacturers for full-featured device simulation have
brought into existence a fast-growing industry of CAD software allowing to predict the
physical behavior of optoelectronic structures with confined geometries, device character-
istics, and their circuit performance.

A common feature of these packages is a solution of the set of partial differential
equations to find self-consistently the distribution of charge, cwrrent, and radiated
light in the structure. This complex mathematical problem requircs heavy numerical
calculations and takes a considerable amount of computer time. Computer simulation
of nanostructure devices demands also the solution of the Schrodinger equation for
the carricrs increasing drastically the computer time consumption. On the other
hand, consideration of mesoscopic systems and the problem of electron ballistic trans-
port in confined geometries requires a semianalytical solution of the Schrodinger
equation which allows calculations for flexible system geometry and accurate treat-
ment of up to several orders of magnitude change in the calculated values, e.g. trans-
mission probabilities.
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From the mathematical point of view, the description of the electron systems with
space quantization starts with calculation of the eigenfunctions of the system by solution
of the corresponding wave cquation. Unfortunately, the exact analytical solution of the
wave equation exists only for a limited set of geometries (quantum well, rectangular and
cylindrical quantum wire, etc.) which do not cover all systems of interest. Numerical
solutions result in tables of values which should be processed numerically, in contrast to
analytical solutions, for which such quantities as form factors, transition probabilitics,
etc., can often be evaluated analytically, reducing drastically the amount of calculations.

Therefore, the search of nonconventional numerical techniques allowing to diminish
the amount of computation while preserving the accuracy and conveniency of the analyt-
ical solutions, is of major importance. Within the proposed boundary least squares meth-
od (BLSM) for the solution of the wave equation, a significant reduction of computa-
tional time can be achieved at the sacrifice in universality and owing to a proper
account of the known bulk solution of the equation.

The rest of the paper is presented as follows. Section 2 provides a brief classification of
numerical schemes for numerical solution of the wave equation based on the weighted
residuals method. The BLSM is introduced in Section 3 and applied in Section 4 to cal-
culation of eigenfunctions in infinitely deep triangular and quadrilateral quantum wires.
Coefficients of overlap matrices required for the solution of the problem are presented in
the Appendix.

2. Method of Weighted Residuals

In order to compare advantages and disadvantages of different numerical approaches we
provide a brief classification of numerical methods for the solution of partial differential
equations based on the weighted residuals method [1].

We assume that the linear differential (eigen)equation

Sw=0 (1)
should be solved in the domain S subject to the linear boundary condition
Ly =0 (2)

on the boundary L (i.e. perimeter of the domain).
The approximate solution  is constructed as a linear combination of the set of trial
functions {w;},

W= Z G- (3)

In a boundary method the trial functions satisfy exactly the differential equation (1),
Sy, =0, and the residual is calculated over the boundary,
R=2Ly=3% cy;. (4a)
i
On the other hand, in an interior method the boundary conditions are satisfied exactly,

Ly, =0, and the residual is calculated in the interior of the domain,

R=Sy =3 %y, . (4b)
i
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To obtain the approximate solution (3) the coefficients {¢;} should be found, minimiz-
ing in some sense the residual (4). In the weighted residual method another set of fest
functions {¢,} is introduced, and the coefficients of the linear combination (3) are ob-
tained from the requirement of orthogonality of the residual R to each test function,

2l py) =0 or c(Ly, ¢;)=0. (5)

[ i

Thus, the solution of the eigenproblem (1) is reduced to the system of linear algebraic
equations (5). If the set of trial functions coincides with the set of test functions the
described procedure is called Galerkin method.

A distinction is made also between the local and g¢lobal methods depending on
whether the individual trial and test functions span the whole domain or a part of it.

The standard methods in device numerical simulation are finite difference and finite
elements methods (see, e.g. [2 to 7]). In fact, both of them are subclasses of local interior
weighted residual methods with trial functions defined on the points of the mesh or,
usually, relatively small triangular or guadrangular subdomains. A group of boundary
element methods [8] is also coming into use.

Main advantages of these methods are universality, existence of ready-to-use
packages, and orthogonality of different test functions leading to well-conditioned ma-
trices. However, the solution is obtained in the form of a table and is much less conveni-
ent than the analytical form (especially if interpolation, differentiation, and subsequent
calculation of the matrix elements of transition are necessary). Moreover, to obtain a
reasonable accuracy, a large number of elements N should be used, and the calculation
of the eigenvalues of the resulting N x N matrix is very time consuming. Application of
these methods runs into difficulties for problems with singularities.

Obvious benefits of analytical (versus numerical) forms of solution brought into use
the global methods, where the trial functions y; span the whole domain. In the interior
version the basis functions satisfy automatically the given boundary conditions and are
chosen to possess the proper symmetry of the problem and required asymptotic beha-
vior. With the most popular choice of the trial functions as Gaussians with different
exponential factors, this method was applied to the calculation of valence band struc-
ture in quantum wires [9], donor [10] and acceptor[11] energy spectrum in low-dimen-
sional structures, etc.

Another version of global interior methods is the Rayleigh-Ritz variational procedure.
In the case where the variational parameters are just the coefficients of the linear
combination (3), this technique is a subclass of the weighted residuals method. In the
nonlinear version the parameters enter the argument of a general function, usually as
exponent. Though the latter approach is onc of the oldest in quantum mechanics and
is standard now for the exciton-type problems in confined geometries [12], its appli-
cability is limited to the ground and few first excited states and the accuracy is rather
poor.

One of the most successful methods in the semianalytical solution of the Schrodinger
equation in restricted configurations is the borrowed from waveguiding theory [13, 14]
global boundary method called the mode-matching technique. Being essentially a Galer-
kin-type global boundary technique, the method is applied to a set of subdomains where
the wave equation is separable by matching the modes of neighboring subdomains at the
boundary.
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Over the last seven years the mode-matching technique has been successfully applied
to the calculation of transmission coefficients in ballistic electron waveguides, such as
nanosize L- and T-junctions [15] and multiple-bend junctions [16]. crossed four-terminal
junctions [17], coupled parallel waveguides [18], constriction between two two-dimen-
sional [19] and three-dimensional electron gases [20]. Recently other than rectangular
subdomains were considered in the problems of sharply bent waveguides [21] and circu-
lar bends [22].

3. Boundary Least Squares Method

Despite the obvious success of the mode-matching technique in applications to electro-
magnetic and electronic waveguides, there is a number of factors which limit its appli-
cability. The most important restriction is the requirement that subdomains should be of
the form in which the wave equation is separable (rectangular, sectors, etc.). The method
also is inconvenient for the consideration of waveguides with a variable effective mass.

Moreover, the trial wave functions are strictly specified by the geometry of a problem,
which quite often leads to slow convergence of the solution and strongly evanescent
modes with unphysically large coefficients. At last, there is no built-in criterion of accu-
racy of the obtained solution, the convergence is estimated from the comparison of the
results of calculation with a different number of trial functions.

The global boundary least squares method [1] combines the main advantage of the
mode-matching technique — the usage of the known gencral analytical solution for an
infinite domain — with the universality, applicability to almost arbitrary shape of do-
main, flexibility in the choice of the set of trial functions, and the built-in indicator of
the accuracy of the obtained solution, the least-squares deviation from the specified
boundary conditions.

In order to introduce the main idea of the method we consider the construction of the
approximate solution for a two-dimensional Schrédinger (wave) equation in the single
finite domain S subject to the zero boundary conditions on the perimeter L of the do-
main.

We take a set l//EE) (x,y) of linearly independent bulk solutions of the Schrodinger
equation corresponding to the energy F. The trial eigenfunctions for the wave equation
in the domain S are sought as a linear combination of the bulk solutions

T

, 1 B .
= —— e (6)
A=l

where the positively defined quadratic form
T
N =[P Pds= Y. ce;Ny; = CTNC (7)
S ij=1
is introduced for normalization.
Here C = (cy, ..., cn)T is a vector of coefficients in a linear combination (6) and the
normalization matrix N is given by
_ o, (E) (E
HNH” =N =[] dzdyy, )1//; ) (8)
The first step in obtaining the approximate cigensolution of the wave equation is to
optimize (make minimal) with respect to coefficients C the functional of square devia-
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tion #(F) from the required boundary conditions for a given energy E. In case of a
closed domain with zero boundary conditions (infinitely high well) we have

R(E) = min § [y PP dl, 9)
Gy € T,
or, equivalently,
g?
R(E) = min — , (10)
c N
where
n -
F = Z] Ci({jEj - (:l FC (11)
t=
is a non-negatively defined quadratic form with coefficients
Fjy=¢dl 1//£E) l//E-E) . (12)
7 .

The second step is to find cnergies E,, at which a close to zero minimum of Z(E) is reached.
These energies should correspond to the spectrum of an electron in a quantum wire.

It can be shown [23] that the minimum of the ratio of two positively defined quadrat-
ic forms (termed Rayleigh quotient) is equal to the minimal eigenvalue of some general-
ized eigenvalue equation,

C'FC

min ———— = min A, 13
¢ CTNC : (13)

where {1;} are the eigenvalues of the matrix equation

FC = ANC. (14)

In practice there are two ways to minimize the Raylcigh quotient. First is to find all
eigenvalues of the equation F'C = ANC with the help of MATLAB [24] command
eig (F, N) and choose the minimal eigenvalue 4. The mathematical package MATLAB
implements an efficient Q2 factorization [25] to find the solutions for the gemneralized
eigenequation. The usage of the built-in function eig is very convenient for not very
time consuming problems, but for elaborate calculation it is disadvantageous because an
overhead of calculation of all eigenpairs of the problem.

A second, more efficient procedure is to find the minimum of the Rayleigh quotient
directly, using the so-called Rayleigh quotient iteration [26]. The latter procedure is, in
fact, a modified shifted power method for solution of the eigenproblems, with the vari-
able shift equal to the previously obtained estimation of the minimal eigenvalue. Due to
change of the shift in the process of iteration the conversion of the procedure is not
geometrical, as in a power method, but much faster cubical [23]. In practice, usually
only few iterations are necessary to find the minimum of the Rayleigh quotient for the
given energy F.

We note that a similar method of solution of two-dimensional wave equation has been
applied by Heller et al. [27, 28] to a problem of chaotic behavior in quantum billiards.
As in the proposed method, Heller [27] seeks a solution of the wave equation as a linear
combination of the bulk solutions (sines and cosines) corresponding to the given energy E.
However, instead of minimization of the global residual along the boundary, as given by

5*




68 Yu. M. SireNkO and V. MiTin

(9), the author forced the trial function equal to one at an arbitrary chosen point inside the
domain, and equal to zero at a large number of points at the boundary. Thus, during the
first step, instead of dealing with the eigenvalue equation, an inhomogeneous set of line-
ar equations was solved. In the second step the wave function was normalized and eval-
uated at about four times as many points as were initially set to zero; the residual
(termed “tension”) was obtained by summing up the squares of the wave function at
these points. Finally, as in the proposed method, the eigenstates corresponded to deep
minima of the residual as a function of F.

Thus, the approach of Heller [27] is essentially a combination of colloration and least
squares methods. With the advantage of an excellent numerical stability, the method
was applied to study of semiclassical behavior of quantum billiards, providing an accu-
rate description of states with quantum number exceeding 10*. However, by definition,
in quantum wires and dots only few lowest quantum levels are important, and the pro-
posed method, based on integrals over the domain and the boundary, given by (8) and
(12), is more simple and efficient. The next section details the implementation of the
proposed method to a specific quantum wirc geometry.

4. Triangular and Quadrilateral Quantum Wires

Recently a large progress has been reached in the fabrication of GaAs quantum wires
[29] and quantum dots [30] using an n situ MOCVD selective growth technique on SiO,
patterned substrates. Triangular, trapcrzoidal, and arrowhead-shaped GaAs quantum
wires have been obtained with lateral widths as small as 100 A. Using a similar but
slightly = different selective growth technique, GaAs dots with dimensions of
250 x 250 x 120 A® surrounded by AlGaAs regions were prepared. The photolumines-
cence and magneto-photoluminescence measurements clearly demonstrated the evidence
of carrier quantization in these confined structures.

In this section we apply the proposed boundary least squares method to the calcula-
tion of the confined states of quantum wires with triangular and symmetric quadrilateral
cross-sections.

Let us consider first a quantum wire of a triangular cross-section with vertices in
points (a, 0), (0, &a), and (—a, 0) in the zy-plane. Due to the symmetry of the structure
two independent sets of eigenstates exist, symmetric and antisymmetric with respect to
the coordinate x. We choose the trial functions for the symmetric states in the form

W; = cos (k, %) sin <%, E%) , (15)

where i =1, ..., n; and

ki = Ka cos a;,
{Hi =£Ka sin q; . (16)
The trial functions (15) with the wave vectors (16) automatically satisfy the Schrodin-
ger equation for the energy
W K?
2m

E= (17)

as well as zero boundary conditions at y = 0. Due to the symmetry of the problem the
angles a can be chosen from the interval (0, 7/2).
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Fig. 1. Cross-section of the quadrilateral
wire

To obtain the approximate solution of the Schrodinger equation we need to minimize
the square deviation of the wave function along the line y = £(a — x), where x belongs
to the interval (0, @), while other boundary conditions arc satisfied identically by the set
(15). The coecfficients of the norm matrix N,y and the deviation matrix Fjy, required for

the procedure, are calculated in the Appendix.

Similarly, the antisymmetric solution is constructed of the trial functions of the follow-

ing form (i =1, ..., m)

w,; = sin <k, -> sin <%,[. 7> )
a Ea

For the implicit form of the norm and deviation matrices see the Appendix.
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Next we turn to the more complicated
problem of a symmetric quadrilateral
structure consisting of two attached tri-
angles with equal bases of length 24 and
heights &a and #a, see Fig. 1. Note, that
the syminetric triangle considered above
can be reproduced by putting 7 =0,
while bound states of the nonsymmetric
triangle correspond to the antisymmetric
states of the structure on Fig. 1.

Fig. 2. Dependence of the residual # on cn-
ergy F for the symmetric wave functions of a
quadrilateral  wire  with &=+v2 and
n= \/i/ 3. Number of trial functions: ny =7

and no =5
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Ground state Second symmetric state

e
y 05 0 x y 05 0 x

Third symmetric state Fourth symmetric state

Fig. 3. Wave functions of the four lowest symmetric states. Right half of the wire is shown. a)
Ground state, cnorgy Ejy = 4.40; b) second symmetric state, Eo = 10.81; ¢) third symmetric state,
E, = 18.16; d) fourth symmetric state, Fy = 20.24

Since for the geometry shown on Fig. 1 the boundary condition w(z, y) =0 at y =0 is
absent, we add to (15) and (18) another set of trial functions,

@; = cos (kJ %) COS | #; gi (19)
: a
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Antisymmetric states

Fig. 4. Dependence of the residual # on en-
crgy E for the antisymmetric wave functions
of a quadrilateral wire with £ =+v2 and
n = \/5/3 Number of trial functions: n; =7
and ny =5

Residual
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for the symmetric states, and

@,; = sin (]‘7,/ %) cos <A, ;}) (20)

for the antisymmetric states, where j =1, ..., na.

The norm and deviation matrices are equal to the sum of the corresponding matrices
for the upper and lower constituting triangles (sce Fig. 1). Due to existence of two sets
of trial functions, (15) and (19) or (18) and (20), the matrices contain cross terms Fj;
and N;; (cf. the Appendix).

To illustrate the procedure described above we consider the quantum wire of quadri-
lateral cross-section as shown on Fig. 1. To climinate the obvious dependence of all per-
tinent values on the distance a and concentrate on their dependence on the shape of the
structure we will measure all distances in units of a and energies in units of #2/2ma?.

For the numerical calculations we choose the parameters € and 7 to be equal to v2
and v/2/3. That corresponds to the crystallographic planes (111) and (113).

The results of the calculation of the least squares residual for the symmetric states
versus the energy is shown in Fig. 2. The calculation was performed with ny = 7 trial
functions of the form (15) and ns =5 functions of the form (19). The angles a; were
chosen to be equidistant in the interval (0, 7z/2).

On Fig. 2 one can see well-pronounced minima of the residual #(FE) corresponding to
the eigenenergies of the symmetric states. Fig. 3a to d show the three-dimensional plots
of the lowest four symmetric wave functions.

The dependence of the residual # versus energy E for the antisymmetric states with
ny = 7 trial functions of the form (18) and ny = 5 functions of the form (20) is shown in
Fig. 4. The normalized wave functions w(x, y) of the four lowest antisymmetric states
are plotted on Fig. Ha to d.
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Fig. 5. Wave functions of the four lowcest antisymmetric states of the quadrilateral wire (right half
shown), or, equivalently, the four lowest states of the triangular wirc. a) First antisymmetric state,
energy FE; = 10.72; b) second antisymmetric state, energy Es = 21.03; ¢) third antisymmetric
state, energy F5 = 28.18; d) fourth antisymmetric state, encrgy E; = 34.05

As seen from Fig. 2 to 5 the proposed boundary least squares method produces very
accurate results for the structurc under consideration. We emphasize that the approxi-
mate solutions are sums of n; +ny, = 12 analytical functions of form (15) and (19) or
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(18) and (20), which are in fact products of sines and cosines. Calculations show that the
obtained wave functions, corresponding to different bound states, are mutually orthogo-
nal with a high accuracy. Thus, we have obtained a very accurate global semianalytical
solution of the Schrodinger eigenproblem for the chosen quadrilateral quantum wire.

We note that in general case the quadrilateral structure shown on Fig. 1, or the trian-
gle with arbitrary lengths of sides, does not allow for an analytical solution of the corre-
sponding Schrodinger equation. However, in the important case of a right triangle, the
analytic solution of the eigenproblem exists and corresponds to the wave functions of a
rectangle, antisymmetric with respect to the diagonal. In this case the BLSM reproduces
the analytical results for energies and wave functions.

In conclusion, we have presented a boundary least squares method for the solution of
the Schrodinger equation in quantum wires. This method takes advantage of known
bulk solutions of the Schrédinger equation, and is based on the minimization of the
square deviation of the trial function on the boundary, while inside the domain the
equation in satisfied exactly. Application of the method to triangular and quadrilateral
wires produced high accuracy solutions with a small number of global analytical func-
tions.

Acknowledgement 'This work was supported by the U.S. Army Research Office and
National Science Foundation.

Appendix A

Below we calculate the coefficients of matrices N and F , defined by (8) and (12) for the
triangle with vortices at (—a, 0), (a, 0), and (0, &a).
For the symmetric state, substituting (15) into (8) and (12), we find

2
Ny = & az [C(k; + Kir, 2t — ) + Clky — ke, 2t — 25)

— C(lﬂ + ki, x; —}—%,‘f) - C(]CI — ki, % Jr%,'/)]

and

Fiy = 5 AL+ & Sk 4 ki, o = 20) + S(hi — ki, 00— )

— S(ki+ F, 2 + #y) — S(ki — ko, ot + 2],
where
o8 ® — cos k

Ol )=~ —a—
and

Sk, %) = k sin k — x sin

k2 — 2

For the antisymmelric state, substituting (18) into (8) and (12), we obtain

2
Ny = & az (C(ki + Kir,y 2t 4 oe0) + C(ky — Ky, 227 — 2¢7)
— C(k, + k'/,',/, M, — %j’) — C(]C, — ]{?7'/, #; + %7'/)]
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and

Fi = % 1+ E (S + ki, 2+ o) + S(ki — by, o — )

*S(]ﬂl -+ k,‘/, M, — %,‘J) — S(k, — ]i?,‘/, % + %ﬂ)} .

The expressions for the quadrilateral structure of Fig. 1 is given by the sum of the

correspondent coefficients for the upper and lower triangular parts. Due to the presence
or (20), we need the following

of the additional set of trial functions, given by (19)
coefticients of block norm and deviation matrices.
In the case of the symmetric wave function we have

2

22
Ny =¢&7
+ C(k/ -+ kj/, g — K

(O + ks 2+ oep) + Clhy = Ky 25— %7)

i)+ Clky — Ky, # + 7))

2

a
Nig= & [Sulki + ky, oty = o) + Sk = by wy — %))

+ Silki + Ky, o+ #5) + S1(ki — Ky, #i + )]

U’*Z\/ S(kj+ ky, 2y +oey) + Sy — ky, 25— )

TSk + kg, oy —oep) + Sk — ks %5+ %7)]5

\/ k + ]ij, M, — %I) -+ C(l\] - l\'?}', M — %J)}

-+ (%,‘ + %j) [C(k, + ]ﬂﬁ i + %j) + C(]ﬁ, — l.“,j, X+ %j)]} .

and

=~ Q

In the case of the antisymmetric states we have

az
Nip = & 7 [O(kj = Ky, +25) + Clky = Ky, 2 — )
- C(A’J' + kgt y) = Ol + by, o — %)l
kj, o, — %)

—5*[51( — ki, #i o) + Sk

— 5 (k, + ]47]‘, M + %1> — 5 (l.] + ]{‘,j, o — 7”"]')]

and
Fjj/:%\/ig[S( ke, ko) + Sk =y, g — )
=Sk Ry, 7+ %.f/) — Sk + Ky, 2y = 27)];5
Fy= G148 (=) (Ol = ks, = ) = Clhi by, 71— )
+ (i + 55) [Clki — oy s+ #5) — Clhi + kj # + #5)]}
Here

y 1 {sin k& ksin kb —» sin %
51(k~%):;J: k - k2 2
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