Superlattices and Microstructures, Vol. 18, No. 4, 1995

Terahertz absorption by electrons and confined acoustic phonons
in free-standing quantum wells

N. A. Bannov, F. T. Vasko*, V. V. MITIN
Department of Electrical and Computer Engineering, Wayne State University, Detroit, MT 48202, USA

( Received 21 August 1995)

The acoustic phonon confinement in a free-standing quantum well (FSQW) results in an
acoustic phonon energy quantization. Typical quantization energies are in the terahertz fre-
quency range. Free electrons may absorb electromagnetic waves in this frequency range if they
emit or absorb acoustic phonons. Therefore, the terahertz absorption reveals the characteris-
tic features of the acoustic phonon spectrum in free-standing structures. We have calculated
the absorption coefficient of an electromagnetic wave by free electrons in a FSQW in the
terahertz frequency range. We took into account a time dependent electric field, an exact form
of the acoustic phonon spectrum and eigenmodes, and electron interactions with confined
acoustic phonons through the deformation potential. We demonstrate numerical results for
GaAs FSQW of width 100 A at low lattice temperatures in the frequency range 0.1-1 THz.
The absorption coefficient exhibits several structures at frequencies corresponding to the
lowest acoustic phonon modes. These features occur due to absorption of photons by elec-
trons, which is accompanied by the emission of corresponding acoustic phonons.
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1. Introduction

Electromagnetic wave absorption under conditions when the photon energy, #Q, is comparable with
the average kinetic energy of electrons, €, is a useful tool for investigating various types of interac-
tions in solids. In this case, the spectral dependence of the absorption coefficient depends on the
details of the scattering processes and it carries information about such processes, as opposite to the
quasiclassical case AQ«&, where the Drude formula is valid. Measurements of the absorption coef-
ficient in the far-infrared region have been used to investigate electron scattering in bulk semicon-
ductors [1]. The light absorption by free carriers with the participation of optical phonons in quasi-
two-dimensional systems have been studied in Ref. {2]. To the best of our knowledge, so far there
has been no work devoted to light absorption by two-dimensional (2D) electrons with participation
of acoustic phonons.

It is well known that acoustic phonons in heterostructures have confined modes which interact
with photons in a specific way. This phenomenon is much sironger in the case of free-standing
quantum wells (FSQWs) [3.4] or unsupported thin metallic films [5]. A typical energy of acoustic
phonons in such structures is about As/a, where a is the width of the quantum well and s is the
acoustic phonon velocity. For typical values a=100 A, s=5 x 10° cm s~ 1, the phonon energy is equal
to 1 meV (or about .25 THz), It is a small energy in the case of high lattice temperatures; however,
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Fig. 1. The dispersion relation for dilatational modes in a GaAs FSQW of width 100 A. Ten branches of the
lowest order are depicted.

it may become a very significant energy, if the lattice temperarture, T, is low in comparison with
phonon energy. Then the absorption coefficient should show structures at confined acoustic modes
energies. For typical FSQWs, it happens in a terahertz range of frequencies.

Acoustic phonon modes and their spectrum in an isotropic solid slab have been known for a
long time [6]. Electron interactions with these acoustic modes through the deformation potential and
through the piczoelectric potential were obtained [7]. In a solid slab, there are three types of acoustic
meodes which differ in their specific symmetry: dilatational, flexural, and shear. As an illustration, the
acoustic phonon dispersion relation for ten lowest dilatational modes, calculated for GaAs FSQW
of width 100 A, is shown in Fig. 1.

In this paper, we will employ the quantum kinetic equation for electrons [8-10] in a FSQW
placed in a high-frequency electric field and which interact with confined acoustic phonons through
the deformation potential. Flectron absorption and emission of photons with simultaneous scattering
by confined acoustic phonons (which is required to conserve the in-plane wave vector) results in a
structure in the absorption coefficient due to scattering by different phonon modes.

2. Absorption Coefficient

We consider FSQW which is situated in the x—y plane with axis z perpendicular to the quantum well.
The electromagnetic wave propagates in the z direction, and the electric field of the electromagnetic
wave is given by the formula —E cos Q1. We use the gauge with zero scalar potential so that the
electron Hamiltonian has the form H, = Z,e(fala,, where &k =(1,k), n is electron subband number, k is
electron in-plane wave vector, g(t)=e,,{)=¢,+ (k+eE/Q sin QN*2m*, and m* is the effective
mass.

The acoustic phonon Hamiltonian in FSQW, H,, has the standard form H,=Z hw blb,, where
the quantum number g=(u,m,q) includes the phonon symmetry o (« takes values from the set dilata-
tional, flexural, shear), the mode number m, and the in-plane wave vector q.
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The Hamiltonian for electron interactions with acoustic phonons has the standard form

H,_,= Y wkk.g)alab,+hc, 1)
k&g

where /.c. stands for Hermitian conjugate terms,

W(k,k’,q) =5k'.k +q<”'|r(ﬂf,m,‘I)|n>, (2)

| T{(a,m,q)n) is the matrix element between electron subbands n and »' due to the interaction
through acoustic phonon (x,m,q) given in Ref. [7].

The kinetic equation for the diagonal components of the one-clectron density matrix, f, .(1).
may be written in the form

Pes® _ 11k ®

where the collision integral, J( f|n.k,?), is similar to the collision integral considered in Refs. [8-10],
except the following two points: (1) the electron states are described by the subband number and
electron in-plane wave vector instead by three-dimensional wave vectors; (2} phonons are also de-
scribed by the mode number and by phonon in-plane wave vector instead of bulk phonon wave
vector. The electron distribution defined by eqn (3} is periodic, f, (#) =1, .(t +27/Q), and it may be
expanded in the Fourier series

Sasd D=2 fi0e™ ™ (4)

When the frequency of the electromagnetic field is high compared with the inverse of the average
collision time 7, Q7> 1, the first harmonic of the function f, (¢ is given by the formula

i)

f(?)—l-,[ dt exp(— Q1) I/ nk.1). ©

nk
2ni | _p0

If the electric field intensity is relatively low, so that eEl|q|//m*Q*« 1 (i.e. the muliiphoton processes
are negligible [8]), and if we can neglect the electron heating, then /9 on the right hand side of egn
(5) can be taken in the form of the equilibrium Fermi function f,, .

The power absorbed by the electron-phonon system, ¢, may be determined as an average over
the period 27/Q of the instantaneous absorbed power and is equal to Q= — ReEj'", where j'M is the
first harmonic of the surface electric current density

RejV=— *A z kAW, (6)

It is more convenient to deal with a dimensionless relative absorption coefficient, #, than with
the absorbed power Q. » is defined as followed: n= Q/{P), where (P)-c\/ xE%/8x is the Poynting
vector averaged over a period, « is the dielectric constant. From the definition of # and formulae (5)
and (6), we obtained the following formula for the absorption coefficient :
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Fig. 2. Absorption coefficient, », as a function of photon energy {marked as sum), and contributions to # due
to dilatational modes of order 0, 1, and 2 {curves are marked by the corresponding number). GaAs FSQW of
width 10 nm; ¢, =10 meV.
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We have calculated the integral in egn (7) numerically, employing the acoustic phonon modes
and matrix elements for FSQW. We restricted our consideration to the deformation potential inter-
action of electrons with acoustic phonons, for other mechanisms of scattering give smaller contribu-
tions to the interaction.

3. Results

In this paper, we discuss the absorption coefficient for GaAs FSQW. Our calculations have been
carried out for FSQW of an intermediate thickness «=100 A, a low lattice temperature T 1 K, and
for a surface electron concentration of n,=3 x 10 ¢cm~2. Under these conditions, only the lowest
electron subband is occupied, therefore, n=n'=1 in eqn (7). In addition, due to selection rules related
to the symmetry of the phonon modes, only dilatational phonon modes contribute to the electron
scattering; therefore, a=dilatational in eqn (7).

We have calculated the absorption coefficient as a function of photon energy and lattice
temperature. Figure 2 demonstrates the dependence of # on the photon energy; the partial absorption
coefficients due to phonon modes 0, 1, and 2 are also depicted. The contributions of higher order
modes are negligible. Though different phonon modes make their contributions to photon absorption
preferentially at different photon energies, the total absorption coefficient does not exhibit the acous-
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Fig. 3. The first derivative (A) and the second derivative (B) of the function F,=n(#Q)* with respect to € as
a function of A (marked by index sum). The curves marked 0, 1, 2, 3, 4, and 5 display the contributions of
modes 0, 1, 2, 3, 4, and 5, respectively. GaAs FSQW of width 10 nm; ¢, =10 meV.

tic phonon mode structure. The steep increase of # in the low energy region is due to the factor 1/Q°,
which is not related to specific features of a FSQW and is merely a consequence of the electron gas
dielectric function. The strong frequency dependence 1/Q° hides the features of the absorption co-
efficient which are pertinent to a FSQW. For this reason, we introduce a measurable function
Fy=4(#€¥)*, which is related to n.

Characteristic features of the absorption coefficient are much more pronounced in the deriva-
tives of F: F, =dFyld(hQ), F,=dF /d#Q). Figure 3 demonstrates the first (A) and the second (B)
derivatives of Fy, as functions of photon energy (we marked this curve with the index sum) as well as
the contributions of the modes 0 through 5. The first derivative has clearly pronounced steps and the
second derivative has maxima at energies corresponding to the dilatational phonon energies. Small
oscillations in the energy range 4-5 meV are due to computational error, the relative significance of
which is larger in the region of higher energy where the function is small.

Figure 3 demonstrates that the first dilatational phonon makes the largest contribution to the
absorption coefficient. This result agrees with the previous result on the role of the first dilatational
mode in limiting the electron mobility [11]. The physical reason for the relative ‘weight’ of different
modes is the spatial distribution of the field of relative displacement in the modes. The zeroth-order
mode has a substantial surface-bound character and its overlap with the electron wave function of
the first subband is small. The modes of the higher than the first order make too many oscillations
across the FSQW width. This results in a decrease of the electron-phonon overlap in comparison to
the first mode. However, this dependence on the mode number is not monotonic and depends on the
details of the spatial distribution of the relative displacements, as can be seen on Fig. 3(b).

The absorption coefficient is sensitive to the lattice temperature. We calculated the temperature
dependence of n for several fixed photon energies. Figure 4 demonstrates the second derivatives of the
relative absorption coefficient, d%,/dT?, versus the lattice temperature for #Q=10.5 meV (A) and 1.2 meV
{B). The contributions of different modes are also shown. The maxima in these derivatives are broad and
do not allow an identification of separate modes; however, even in this case, the graphs have structures
associated with confined acoustic modes. The steep increase of the second derivative, #2n/dT?, as a function
of Tin the low temperature region of Fig. 4(B) occurs because the energy of absorbed photon, 1.2 meV, is
very close to the cut-off energy for the first dilatational mode, where it has very high density of states. For
this reason, the absorption coefficient is very sensitive to a slight change in the lattice temperature.
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Fig. 4. The second derivative of the relative absorption coefficient with respect to T as a function of lattice
temperature for #Q2=0.5 meV (A} and 1.2 meV (B) (the curves marked by index sum). The curves marked by
indices (0, 1, and 2 correspond to contributions from the zeroth, first, and second dilatational modes. GaAs
FSQW of width 10 nm; £,= 10 meV.

4. Summary

We have demonstrated that the absorption coefficient of an electromagnetic wave in thin solid films
carries information about confined acoustic phonons. The positions of the maxima in the frequency
dependence of the second derivative of the absorption coefficient multiplied by Q° with respect to Q
correspond to the acoustic phonon energy. The spectral dependencies of the absorption coefficient in
the range 0.1-1 THz can be used to identify the confined acoustic phonon modes and to obtain the
strength of the electron-phonon interaction. The small absolute value of the absorption coefficient is
related to the small surface electron concentration (3 x 10*! cm ™2 in our calculations). Therefore, the
modulated spectroscopy techniques are of great importance for the measurements of the discussed
spectra. At the same time, the relative absorption coefficient may be several orders of magnitude
higher in the case of thin metal films due to a much higher electron concentration.
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