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The intermediate state considered here is the state of incomplete blocking of the structure, for
which the gate current is inadequate to completely switch off the anode current but

substantially compresses the conductive region, increasing the current density in it. This
incomplete-shutoff regime can be useful for controlling light-emitting strnuctures and can make it
possible to adjust the size of the luminous region, its position, its radiance, the relationship
between the various recombination channels, etc. A steady-state theory of the potential distribution
and the current densities in the incomplete-shutoff regime of a four-layer structure has been
developed for various values of the total anode and gate currents. The current limits have been
found for the existence of heterogeneous states, including the conducting and “blocked”

regions. The effect of the finite conductivity of the controlled (high-resistance) base has been taken
into account. Computations have been carried out for the very simple case of a linear )
recombination law in each base and at small injection levels at least in the controliing (low-

resistance) base.

1. The object of study in this paper is the four-layer
semiconductor p*—n—p-n* structure shown in Fig. 1. A
segment of the structure having the shape of a long uniform
strip with a width of 2/ is investigated (in an actual situation,
this is the width of the cathode strip). The outer p* and
n* regions (at the bottom and top in Fig. 1) are assumed to

be so strongly doped that they unconditionally ensure that.

the injection coefficients equal unity for the majority carriers
in the middle base regions (the inner regions of the circuit
shown in Fig. 1). Nonequilibrium phenomena in the outer
pt and n™ regions are therefore disregarded. Such phenom-
ena are considered in the inner p and n regions—the bases of
the structure. One of these bases— the controlling p base—is
equipped with side electrodes at y= */ (Fig. 1). These side
electrodes, which are ohmic p™ contacts to the controlling p
base, are called gates (following American usage).

We shall consider the open-structure regime, in which all
three p—n junctions (numbered I, 2, and 3 in Fig. 1) are
biased in the forward direction, and a large forward current
flows through them. If the gate circuits are interrupted and
there is no current in either gate, %,,=_%,,=0, 2 homoge-
neous anode current j,(0)=_%Z_ /2] flows through the entire
width of the device; Z, is assumed to be given. We shall
supply identical potentials ¢, = ¢,,= ¢, at the gates, nega-
tive with respect to the cathode, which provide the gate cur-
rents 7, . These biases tend to block not only by cathode
p—n junction I, but also the middle p—n junction 2. Such
blocking can be considered approximately homogeneous,
provided the following condition is satisfied:

5¢g=zgl < Z, . (1

0'p €

where o, is the longitudinal conductivity of the controlling p
base, and T is the temperature in energy units. In this case,
the structure under consideration behaves like a homoge-
neous device which is characterized by a single current den-

sity j, , approximately identical in the entire interval (=1, ).

1021 Semiconductors 29 (11}, November 1395

1063-7826/95/111021-09510.00

© 1995 American Institute of Physics.

As 7, increases, so that inequality (1) breaks down and is
replaced by the inequality with the opposite sense, the struc-
ture of the anode current density becomes essentially hetero-
geneous: A central conductive region |y|<x, appears. In this
region the current density increases compared to the initial
value,

T,

j —>

Ja(T)= 770 7a(0). ) )
A peripheral blocked region x,<|y|<! also appears. The
width of this region increases with increasing 7, . There is a
certain critical value of &,, which can be calculated and
which equals Z),( Z,); when this value is exceeded, the
device is completely blocked, and the conductive region dis-
appears. In the range

oL
— <T<Iu(T0) 3

we are dealing with a certain heterogeneous intermediate
state of the structure, which is partly blocked and partly
open, so that the higher the current 7, (for a given Z,) and
the larger the area of the blocked part of the structure, the
larger is the cumrent density in the open part. This
incomplete-shutoff regime (ISR) is the main subject of con-
sideration here.

We should point out that the ISR considered here is of no
great interest in power thyristors, since decreasing the con-
ductive region means increasing the current density j, in it
and, consequently, increasing the voltage ¢ on the device,
while the volume in which the evolved power is dissipated
simultaneously decreases. Therefore, the only transition pro-
cess of interest in power devices is that of complete block-
ing, which switches off the anode current in thyristors
blocked from the base [ie., in gate turn-off (GTO) thyris-
tors].
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FIG. 1. Cross section of four-layer p*—n~p-n* structure.

The ISR, briefly considered by Gribnikov and Rothwarf
in Ref. 1, which is devoted to the theory of the GTO thyris-
tor, can be of definite interest for controlling light-emitting
devices (including hére injection lasers).? In fact, the ISR
makes it possible to vary the size of the light-emitting region
[and, if the gates are supplied asymmetrically, also its posi-
tion in the interval (—1, [)]. By varying the current density
and the carrier concentration in the conductive region in this
case, we can (1) cross the threshold of the laser regime, and
(2) vary the ratio between the radiative and nonradiative re-
combination channels. Changing the position and size of the
light-emitting region has the possibility of varying the inter-
action of the charge carriers with the light field, varying the
. frequency of the radiation in the laser regime, modulating the
“#output radiation, etc. .

Therefore, a detailed study of the ISR (not only static
properties, but also transition processes) can be of consider-
able practical interest.

2. Here we shall propose a theory of the potential distri-
bution, current density, and carrier concentrations in the ISR
for a pt—n—p—-n* structure that satisfies the following set
of conditions:

a. The thicknesses of the internal regions w, and w, are
small:

w, ,<1. (4)

Such inequalities are not satisfied in actual GTO thyristors.
In the controlling p base, the weaker condition w,</ is
more often satisfied, but in the wide controlled n base (as a
consequence of the requirement of high voltage), we have an
inequality which is the opposite of condition (4). However,
in actual light-emitting and laser thyristor structures, which
are currently very widely used (see, for example, Refs.
3-10), condition (4) generally satisfied, with a good margin.
Inequality (4) makes it possible to use a quasi-one-
dimensional approach to describe the carrier distribution in
the bases.

b. Each internal base is assumed to be so highly doped
that a low-injection-level regime is realized in them at cur-
rent densities of interest to us; i.e., the condition n<€p holds
in the p base, and the opposite condition holds in the n base.
To make our estimates easier, we also always assume both
bases to be homogenecously doped. The smallness of the in-
jection levels allows us to ignore the voltage drop across the
bases in the x direction, assuming that the entire drop is
concentrated at the three p-n  junctions (ie.,
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©=@,+ @, + ¢3). The potential of the bases thus depends on
y: @M= 01(3), ()= 1M+ 2= ¢(Y) = @3(»).

¢. The functions of the bases are separate. In general, we
assume that one of the bases—the controlling p base—is
more highly conductive (i.e., much more highly doped) and
at the same time thinner (and therefore is characterized by a
higher gain). The second base (in this case the n base), with
lower conductivity and lower gain, makes the chief contribu-
tion to the recombination.

The choice of the n* cathode as the common electrode
and of the p base as the controlling electrode is based on the
dominant, routinely used structure of a silicon power thyris-
tor. In the case of a controllable light-emitting pt—n-p-
n* diode made from GaAs or other III-V material (or alloy),
the conductivity type of the layers can be something else.
Since it is preferred to use a base made from a p-type mate-
rial in the case of an ordinary LED, it is more suitable in the
case of a p*—n—p-n* diode to use the p base as the main
light-emitting base. The n base must then assume the func-
tion of the controlling base, while the p™ anode must be-
come the common electrode. The transition to such a struc-
ture from the case considered below—the traditional
structure—is obvious.

3. The basic system of equations, which determines the
steady-state potential distribution of the two bases (¢, and
®,), consists of two continuity equations of the currents in
these bases:

o 5

dy ‘_Jl—sz ()
u

o

dy 2T (6)

where ﬂ(gp ) is the total current (per unit length in the z di-
rection) flowing in the p base in the y direction, ﬂg") is the
same current in the n base, and /|, are the densities of the
currents flowing through each of the three p—n junctions of
the structure. Since we are considering only small injection
levels

dep,n

(p.n) -
G ==y, dy

0
which where the o, , are the longitudinal conductivities of
the bases, which are independent of the biases and which are
determined by the majority carriers, the densities j,,3 are
determined by the voltages ¢, ,3(y), so that, to obtain the

“corresponding functionals, it is necessary to solve the prob-

lem of the two-dimensional distribution of minority carrier
concentrations in the bases. In the p base, this equation has
the form

*n  é*n &) d

T T gl o = ®
where n is the nonequilibrium part of the electron concen-
tration [i.e., the total concentration equals ng+n(x,y),
where  ng is the  equilibrium  concentration];
a2=(D'" 7))~ is the square inverse diffusion length;
D'? is the electron diffusion coefficient in the p base; 7 is
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the electron lifetime, which is independent of n because of
the small injection levels for any recombination mechanisms;
and u/D is the ratio of the electron mobility in the p base to
the diffusion coefficient, determined by the Einstein relation,
pu/D=elT. '

The equation analogous to Eq. (8) for the holes in the n
base has the form

#p p X
e ~¥n 2
X oI Doy (p+ Po) =a; p, 9

where the meaning of the new parameter ai is obvious.

Equations (8) and (9) include field terms associated with
the ¢, ,(¥) dependence, but there are no analogous terms in
the fields E,= — d¢/dx. For small injection values, it would
seem that it is possible to ignore the latter terms on the left-
hand sides of Egs. (8) and (9), retaining only the diffusion
fluxes in them. However, the boundary conditions on the
p—n junctions,

ni=nolexp(ee,/T)—1], (10)
ny=nolexple(e,—¢,)/T]—1}, (11)
pa=polexple(@,~ ¢,)/T]~ 1}, (12)
ps=polexple(o— )/ T1- 1}, (13)

(ny, and p, 5 are the charge-carrier concentrations near p—n
junctions 1, 2, and 3) show that the third terms on the left-
hand sides of Eqgs. (8) and (9) are of the same order of mag-
nitude as the second terms, while disregarding these terms
and the others corresponds to the quasi-one-dimensional ap-
proximation in the bases: the y coordinate appears only as a
parameter in the boundary conditions. Solving Egs. (8) and
(9) and obtaining the n(x,y) and p(x,y) distributions makes
it possible to compute the normal components of the diffu-
sion fluxes at the p—n junctions: '

(n 41 . _ i
Jnlz_Dn dx > Jn2T T Uy, dx s (14)
x=0 x=w
dp dp
;= plm Py
JpZ_ P dx . > Jp3 P dx et (15)

These fluxes are functionals of ¢, and ¢, , since the n(x,y)
and p(x,y) distributions are obtained with the boundary con-
ditions of Eqs. (10)—(13). For the current densities j, , 5 that
appear in Egs. (5) and (6) we have

jl=_ejnl+j1g(‘lop)’ (16)
j2=ejp2_ejn2+j2g((pp—q)n)’ (17)
j3:€jp3+j3g(@_(,0n). (18)

The last terms on the right-hand sides of Egs. (16)—(18) are
the generation—-recombination currents directly in the layers
of the volume charge of the p—n junctions, given in the form
of direct functions of the voltages on these junctions.

The currents j,,3 computed from Egs. (16)-(18) and
used in Egs. (5) and (6) make it possible, using Eq. (7), to
obtain a closed system of equations for determining ¢, ,-
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Equations (5) and (6) are solved with the boundary condi-
tions at y= = [/. These are either the specified-current condi-
tions

FTHE==7), (19)

+ =) .
where j( )= fg ) in the case of symmetric supply, or the
specified- potent1al conditions

o =" (20)
In each case we should add
FM(=n=0 @D

to these conditions, since the n base (according to the struc-
ture model, see Fig. 1) has no current contacts.

If the quasi-one-dimensional approximation is used in
the bases, the system of equations and boundary conditions
introduced above is complete. If the treatment of the carrier
distributions in the bases is to be two-dimensional, the sys-
tem of equations should be supplemented with

in the p base and an analogous condition in the n base. Since
the inequalities are assumed to be [>w,, ,, the contribution
of these supplementary conditions should not be of any sig-
nificance in the regimes of interest to us.

Ordinarily it is not the voltage ¢ that is recorded on the
structure but the total current Z,=[ L ja(y)dy, which
makes 1t possible to compute ¢ for each given set of ﬂ 2 =)
or (p

4 The possibility of using the qua51-one-d1men51ona1 ap-
proach is especially promising. Let us consider this possibil-’
ity in more detail. From Eq. (8) without the second and third
terms on the left-hand side, we have

n=n,(y) sinh a,(
+n,(y) sinh a,x/sinh a,w,. (22)

w,—x)/sinh a,0,

Likewise, from Eq. (9) we have

p=p,(y) sinh a,(w,—x)/sinh ¢, w0,

+ps(y) sinh apx/sinh a,w,; (23)

in Eq. (23), we first transposed the x readings into the n
region at the boundary with p—n junction 2. Equations (22)
and (23) make it possible to implement Egs. (14) and (15), to
obtain currents j; 23 from Egs. (16)—(18), and to compute
Egs. (5) and (6) in explicit form:

d2<p

Tp —Efp_szg((Pp—(Pn)_Jlg( (:Dp)

+eD(P)a tanh( )(n1+n2)

+eD;,")a,,[p2 cosh{a,w,)
—p3)/sinh a,w,, (29
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d2 .
vo'n'z;T .’3g((P ¢n) ]2g(¢’p (Pn)

—-eD(")a tanh( )(p2+p3)

—-efo’)ap[nz cosh(a,®,)

—n,]/sinh a,w,, (25)
where n,, and p, , are explicit functions of ¢, and ¢, ac-
cording to Egs. (10)—(13). We thus obtain a system of two,
coupled, nonlinear, second-order differential equations,
which determine, along with the boundary conditions of Egs.
(21) and (19) {or Eq. (20)], the ¢,(y) and ¢,(y) distribu-
tions for a given 7, value.

In its complete form, the system of equations (24) and
(25) is an object to be studied by computer. Assuming, how-
ever, that the main contribution both to current Z, and to
current 7, comes from the region with high ¢,, ¢,— ¢y,
and ¢— ¢, values, we can disregard the unities next to the
exponentials in Eqs. (10)—(13) and also the currents jj 23,
next to the diffusion currents on the right-hand sides of Egs.
(24) and (25). We can then rewrite Eqs. (24) and (25) in the
form

.
dd)l’p E=pletrtes™ i)+ B(1+ y,)et v
— ¥a 7Y, (26)
d*y, 2 g 2 -
E 57 == BUelrIm) = BoL(1+ v, et I y,et],
. @7

where

gbp_n:etjlp,,,/i%— {=o,la,,

B2=62D$’p)a”'n° anh apw,
P o, T 2 /)
2y(n)
e‘D Va,po a,w
2_ P n n
B; o, T tanh( 2 ),

p“’p)

5. The controlling base actually possesses a substantially
higher longitudinal conductivity than the controlled base;
therefore, the parameter £ is small, £<€1. This makes it pos-
sible to obtain a partial solution of the system of equations
(26) and (27) which does not explicitly use the condition
given in Eq. (21) (since we ignore the current through the n
base everywhere), completely omitting the left-hand side of
Eq. (27); in this case we have

. aw, a
7n=1/23inh2( 3 ) v,= 172 sinhz(

e ¥n— ‘yp c"bp (l + yp)e*”r’+ ;7 (€¢F+Cd’) (28)

and
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d? l/IP ﬁ e’ 1+ (1+ ‘)’n)ew"— Vn e/+x’ ed]p)
dyr ~Fr Yr et e+ x2(1+'yp)e¢'1’ ’
29)

where x=(8,,/f3, . Equation (29) is integrated in quadratures,
which makes it possible to study the given limiting case
analytically.

In the case of a uniform distribution of the potential ¢,
and the current density, setting the right-hand side of Eq. (29)
to zero, we have

YpYn—1

Uy W0 — ¥
er=e¢ =¢c .
Yo ¥nt Yt 1+ 2 (1+27,)

(30)

In other words, the solution that we need must satisfy the
condition y,y,>1 or

cosh™!(a,,)+cosh™ ! (a,0,)>1. (31)

This is the well-known condition for the open state of a
thyristor. Using Eq. (30), it is convenient to write Eq. (29) in
dimensionless form,

d’xy  eX(e¥—1)

dnf” 1+eNA (32)
where 7= B,y \¥p¥a— 1 exp(12),  x= i~ <0,
and A= (1+'yp+'ypyn+x2(1+2'}’p))/('yp'y,, 1)
X (1421 + 7,)). When # <1, we have

A=(1+v,+7,7:)/(¥p7,—1). We should point out that
Eq. (32) is much simpler when A> 1. This condition is sat-
isfied, first, in the case of small supercriticality, i.e., when
¥p¥n— 1<€1; second, for moderate supercriticality
(vpyn—1=1), which is attained when y,>1 (and, conse-
quently, y,<1), i.e., when there is a sharp difference in the
gains of the bases.

Equation (32) has two homogeneous solutions, for which
d*x/d n*=0:

(1) x=0,ie., ¢, = 9 this is a homegeneous conduc-
tive region with no transverse electric field (dx/d=0),
which represents a thyristor in the open state.

(2) x——= (ie., ¢,——=); this is a blocked region
with a homogeneous transverse field,

fj_)ﬁ I 9,/(0),2 (33)
dn IOB ’

where Iy=0,T/e, and B= BpNYp¥n—1. In what follows,
we shall use 7, to mean the absolute value of the blocking

current.

Let us consider such an nonuniform distribution (),
which in the limit 77— —oo, undergoes a transition to the
homogeneous state i,= (0) (with no transverse field or
transverse current), and in the limit %— %, it undergoes a
transition to a distribution with the constant field, given by
Eq. (33), and a constant current through the p base. We
should point out that this current is “generated” in the inter-
mediate region with a nonuniform field distribution,
dx!dn, which we are considering. Integrating Eq. (32) once,
we obtain

1 (dx 2—1+A 1+4 .
A d ( } In ) —1+er. (34)
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When y— —oo, it follows from this equation that

dx

:':%=(2A(1+A) In(1+1/A)—24)=C. (35)

In other words, using Eq. (33), we obtain
(0)

F,=CBIy e’ 2. (36)
When A> 1, it follows from Eq. (34) that

dx

=+ — X ’

an =(1-¢Y), (347)

and for C we have C=1.
Since for the current density in a homogeneous conduc-
tive region (where j,=j,=j,=j;) we have
(0)
JD=BpAd €, (37
where

(I y,)(1+27,) +#7(1+7,)(1+27,)
b 1+2y,+ 2 (1t vt yay,) -

using Eq. (36), we obtain
ggzcl(lojfzo))llz, (38)

where C,={(24/A)(v,v,— DI(1+A)In(1+1/A)— 1 ]}"2
When #%<1, we have A =1+ Yp if it is also assumed that
A>1, then C;=[(7,7,— 1)/(1 +yp)]“2 The specific form
of the transition layer can be obtained by integrating Eq.
(34), but the spatial scale which describes its thickness can
be obtained, for example, by linearizing Eq. (32) for small
x values. In this case, it is given by the length

e (1+1/4)72
YT B (Vpra D2

where C,=[A,(1+1/A)/(y,y,—1)]"%. When A>1, it fol-
lows from Eq. (34') that

=CaIo i)™, (39)

e Mo=gT X1, (40)

where 7, is a certain arbitrary quantity that characterizes the
position of the transition layer in the interval (—oc, +o0),
When |x|>1, a linear dropoff is obtained for y; i.e.,
7. When the conditions A>1 and %?<1 are satis-

X=To—

fied at the same time, we have

Je=j1=B, ey, + 1)eX, (41)

. (0 Yp¥n— 1

Ja=J3=12=5,2,10‘3""P (y,+1)eX| 1+ E2—(1—-eX)|.
'yp-i-l

(42)

By combining Egs. (41) and (42) with Eq. (40) we have
obtained simple dependences that determine the spatial dis-
tribution of the anode current density j,(7), the cathode
current density j.(7), and the “generation” rate of the gate
current j,(7)—j.(7) in the transition layer.

It is natural that the solution described above in the form
of two regions with a transition layer between them can be
fitted into the half-strip with a width [ when a number of
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strong inequalities are satisfied. Most importantly, the condi-
tion y.<¢! should be satisfied, or, using Eq. (38), the condi-
tion

CCyly/ Tl (43)

should be satisfied; the product C|C, virtually always differs
only slightly from 1. As &, increases, and, for a rigorously
given 7, value, as a consequence of the increase of current
density j, in the conductive region, its effective size is com-
pressed,

X, =9, /_](0). (44)

In this case, the characteristic size y., according to Eq. (39),
decreases more slowly than x., and the condition

ye<x,, (45)
[
beginning with a certain value of jg , breaks down; to sat-

isfy inequality (45), it is necessary to satisfy the inequality
T, <T,C,1C,. (46)

In other words, an inhomogeneous distribution, which in-
cludes an almost homogeneous conductive region and a pro-
nounced depletion region, is formed in the range of 7, val-
ues determined by conditions (43) and (46):

C1Colo 1 I<T,<T,C,ICy. (47)

This range is itself formed for a sufficiently large 7, value

T3> C2y /1. (477
Let us estimate, first, the possibility of satisfying inequality
(47’) and then the existence of the necessary interval of
Zg values. We thus will estimate the value of %, /1. For a
conductivity of the controlling base of ~10% (- cm)~! and
a base thickness w, of -~ 10* cm, we have
0,~107> Q7' When T=300 K, we obtain
=2.5X10"* A. When /= SO;Lm we have I,/1=5x1072

A/crn Setting the constant c2 3==1 (which is reasonable when
the supercriticality ¥,y,— 1 is not too small), we obtain con-
dition (44) in the form j(o)—ﬂa/2l>10/212=5 AJcem?. Since
it is required to satisfy the condition of small injection levels,
there is a certain upper limit of possible j, values. When the
acceptor concentration in the p base exceeds 10" cm™3 and
its thickness is ~107% cm, this limiting density exceeds
10% A/cm?, so that we have some range in which the calcu-
lation being developed is applicable.

6. Let us consider the character of the j,(y) distribution
when ﬂ'g is outside the interval of inequalities (47). For
small 7, values corresponding to an inequality opposite to
inequality (43), we encounter the situation symbolized by
inequality (1). In fact, the product C;C,={2(1+A)
X[(1+A)In(1+1/4)—1]}"? is rigorously equal to unity
when A—%, but, as pointed out above, differs little from
unity virtually everywhere (even for A=1, which is the
lower limit of this quantity). When inequality (1) is satisfied,
as was pointed out, we can ignore the dependence of all the
concentrations and potentials on y by considering the homo-
geneous state. In this state we have
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2 o 1—eX
3 YpVn g, B2
=210 T3 257y ¢ el (49)

where B=A(1+1/y)[1 +x%(1+ 'yp)]> 1. It is possible to
use Egs. (48) and (49) to express exp(¥,) and exp(y) in terms
of Z, and Z,. As a result, we have

B,-B(29,/9,)
" B,—(29,19,) "’
where Bl—1+[1+jp+x2(l+27p)]/j,,jp>1 Increasing

Z, for a given 7, causes a decrease of exp(y), which
reaches the zero mark when

e (50)

29 BI (7p7n 1) (51)
Ta B y(1+7)

This limiting ratio 2 %,/ %, corresponds to the limiting
value
7,
v, a

TV 2
The attainment of this limit is possible only for fairly small
Z., for which, instead of Eq. (47"), the inequality opposite
in sense is satisfied. ,

When condition (47') is satisfied and 7, reaches the
values given by the right-hand side of inequality (47), the
conductive region is compressed to the order of magnitude of
its wall thickness and loses homogeneity. It is obvious in this
case that current 7, already controls the current density j,
not only by varying the size, but also “directly”—Dby select-
ing the part of the anode current in the base electrode. In this
case ¢/,(0) is less than the z//i,o) value determined by Eq. (30)
from the given value of the total voltage ¢ on the structure.
Assuming that exp[¢,(0)]< exp(z,bl(,o)), we easily obtain the
following expressions after integrating Eq. (32) and comput-
ing the total current Z,:

Ty=Blo(2 W),

1+
7= 11, 2 (g0

prn
ie., some limiting relationship arises between Z, and
Z,[see inequality (3)]:

*qa ‘)Ipyn_l
Y1ty

It is easy to see that the right-hand side of this equation is not
much different from the right-hand side of the strong in-
equality (46). There are no stationary states with a given total
current 7, for 7, values whicht exceed the right-hand side
of Eq. (53). We should point out that Eq. (53) does not differ
from Eq. (51), which was obtained for small &, and Z,
values,

7. The above calculations and estimates make it possible
to describe a fairly unified picture of how the blocking gate
current 7, affects the distribution of the anode current den-
sity j, in a four-layer structure with a given total current

=Iu( s )— (53)
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Z,. While this total current is small and the inequality
which is opposite in sense to inequality (47') is satisfied, the
action of 7, nowhere causes a significant change in the cur-
rent density j,, which roughly retains its homogeneity. The
action of jlg causes only an increase of the total voltage ¢
on the region. The increase in 7, is restricted by the limiting
relationship given by Eq. (51): steady-state values of 7,
which exceed this level are impossible for the given value of
7, .

7 When _Z, increases and inequality (47) is satisfied, the
action of Z, changes sharply. This current accounts for an
essentially heterogeneous picture of the j,(y) distribution;
the conductive region is compressed—its half-dimension de-
creases as 7, increases:

2 IOga
x.=C ‘75 , (54
while the current density in it increases accordingly [see Eq.

(38)]. The total voltage ¢ also increases accordingly. We are
mainly interested in precisely this heterogeneous picture, in
which the size of the conducting region and its current den-
sity can be controlled. Even in this case, the possible in-
crease of 7, is not infinite; in the stationary case, this cur-
rent can attain only the maximum value of Eq. (53), which
corresponds to the limiting compression of the conducting
region. When it approximates this value, the criteria for the
approximation of small injection levels used in the above
calculations and estimates break down. This breakdown is
apparently substantial only for the controlling p base, since,
when £<€1 and x<€1, the controlled n base appears in our
formulas only in the form of the argument («,w,) in the
hyperbolic functions (i.e., ultimately as the gain of this base
with respect to current). This, of course, relates to the rather
thin n bases in the regime in which the main voltage drop
occurs at the p—n junctions. The criteria used above for the
quasi-one-dimensional approach can also break down for the
limiting compression of the conductive region.

Let us illustrate what has been said by means of graphs.
Figures 2 and 3 show the spatial distribution of the anode
current density A, for two different structures as a function
of the gate current. We use the dimensionless spatial variable
¢=y/l, which allows us in all cases to use the interval (0,1).

The graphs were drawn by solving Eq. (32) for the given
Z, and 7, values. Each \,=\ ,({) curve is determined by
the five parameters already introduced, y,, ¥,, * x?, and also
A= 71127 and A, = Z,1/29, . The anode current density
is normalized in such a way that fo)\ (Hde = 1, ie.,

=1j,/ Z,. InFig, 2, a family of X ;({)) dependences for a
g'rven A, value and various A, values is constructed when
condition (47") is definitely satisfied and a sufficient range
of Z, values, which satisfy conditions (47), exists. Both the
blocked regions and the homogeneous conductive regions,
which are separated by comparatively narrow transition lay-
ers clearly seen in this range. In contrast with Fig. 2, Fig. 3
illustrates the situation in which, condition (47') is satisfied,
though not too clearly. Even in this case, as 7, increases, we
obtain essentially heterogeneous states, but the range with
homogeneous narrowed conductive regions is missing.
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FIG. 2. Anode current density distribution X, () for various
gate currents A, . The curves with numbers N=1-17 are con-
structed for currents AK(N)=3O+5(N— 1), and the curves
with N= 18, 19, and 20 are constructed for Ag= 150, 200, and
275, respectively. (The numbers on curves 12—16 in the figure
are not shown) The value A,=275 corresponds to
Fo= Fu(FZ,). The other parameters are A, =500, y,=3,
v,=2, x2=0.5, and {=0.
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We should point out that the values of the parameters
Yns Vpo and %2 used for the curves in Figs. 2 and 3 do not
involve the simplifying approximations A>1 or even
x*<1. In Fig. 4, the dependences A (¢) and
N (D) =1j.1 Z, are shown simultaneously for several values
of 7, and Z,. In addition to the case of an intermediate
value of 7, with a homogeneous conductive region [Fig.
4a], we show the case of a large Z, with a compressed,
inhomogeneous conductive region [Fig. 4b). In the first case,
the current 7, is “generated” only in the transition boundary
layer. In the second case the entire conductive region is bi-
ased by the gate current. Figure 5 shows the potential distri-
butions ,({) and ,({) for the same “sample” and current
Z, as in Fig. 2; it also shows the levels of the total potential
¥, which also depends on Z,. As 7, increases, the poten-
tial ¢ increases, along with the potential i,({) in the con-
ductive region, whereas the potential ¢,({) is retained as an
invariant. It begins to vary when the conductive region loses
its homogeneity.

Note the linear growth of the negative potential ¢,({) as
the gate contact is approached. It is associated with the
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ohmic voltage drop as a result of the presence of current
Z, . The analogous linear increase of the positive potential
¥,({) has no physical meaning and is associated with a de-
fect of the approximation (see Sec. 8). We should point out
that this defect shows up only in the blocked region, where
the current density j ({) is negligible.

8. The preceding treatment in no way allows for the
finite value of the conductivity o, of the controlled n base.
Taken together with the fact that the thermal carrier genera-
tion is ignored in Eqs. (26) and (27) [and, consequently, in
Eq. (32)], this means that the n base reproduces with re-
versed sign the variation of the potential of the p base [see
Eq. (28)]. As a result, a nonphysical growth of its floating
potential arises in the blocked region of the controlled base, -
which blecks not only the middle (interbase) n—p junction,
but also the anode junction. This effect is ciearly observed in
Fig. 5, which shows the potential distribution of both bases.
This unphysical behavior of potential ¢, occurs in the region
of small anode current density and therefore has a weak ef-
fect on the total results.

FIG. 3. Anode current density distribution \,({) for various
gate currents A, . The curves with numbers N=1-10 corre-
spond to currents A (N)=2+(N—1). The value A= 11 cor-
responds to F,=_Zy(%,). The other parameters are
A,=100, y,=3, ¥,=0.5, x*=0.5, and {=0.
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0.8 7.0 FIG. 4 Distributions of A ,({) (I-4) and A ({) (I'~4") for the
same values of the sample parameters as in Fig. 2. a—A (N)
values: 1—30; 2—40; 3—50; 4—70. b—A, valves: 1—90,
2—110, 3—150.
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Here we shall attempt to roughly take into account the  negative bias of the base of the p*—n—p~ transistor, in
_ contribution of the low conductivity along the n base in the which the forward- biased anode p*—n junction is a hole
“distribution of potential ¢, and current density j,(y) in the emitter, while the reverse-biased middle n—p junction is a
blocked region. The presence of this conductivity results ina  hole collector.
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We restrict ourselves for simplicity to the more transpar-
ent case of A> 1. Here the right-hand side of Eq. (27) can be
greatly simplified by dropping the terms with exp(¢,— ;) in
it. As a result, the equation acquires the form

d2

{I d_27;Y_:eX'—-eX, (55) ’

where  {'={(y,¥am DY, and X' ===
—ln(xz'yp). We assume that the finiteness of quantity { has
little effect on the dependence of x{(#), but strongly influ-
ences the y'(%) dependences. This allows us to assume the
function y(7) in Eq. (55) as given [see Eq. (40)]:

x(7)=—In[exp(n—10)+1]. (56)
Assuming, as before, that y'(77)=x(7), we have

d !

—X—=—(l+e"7+’70)_1; (57)

d7y

i.e., the transition region ‘“generates” not only the gate cur-
rent of the controlling base, but simultaneously also a current
in the controlled base, which is a factor of { lower than
Z,» which is directed in the opposite direction. In contract
with the current Z,, for which a special electrode exists—
the gate—the current through the controlled base can enter
only through the anode, which should be open even in the
blocked region and through which should flow the forward
current, part of which constitutes the mentioned current
through the controlled base, while the other part enters the
reverse-biased middle p—n junction. This means that we
have in the blocked region an effective p*~n~p transistor
with the anode p*—n junction as an emitter and the middle
p-n junction as a collector. This transistor is biased with
respect to the controlled n base by the base current, which
flows through the conductive region. :
To calculate the anode current distribution in such a tran-
sistor, we must solve Eq. (55) without the last term on the
right-hand side (since it is negligible in the blocked region).
The solution that satisfies the condition dx'/d7|,- =0,

where 771=Blexp(aﬁ§,0)/2), is
N 20" ®?
71 cos’[®(m— n)/ m]’

(58)

where @ is a constant of integration (0<® </2), and 7, is
the length of the blocked region {and, consequently, of the
effective transistor), so that 7 varies in the interval
(7~ n,,7;). The length of the blocked region is undoubt-
edly a conditional concept, whose precise quantitative mean-
ing can be explained only after solving Eq. (55) in total form
(which is left here for the future). Here we restrict the solu-
tion to equating the derivative dx'/d 5, found from Eq. (58),
to its value —1, which follows from Eq. (57) for
n=n;—7,. For & we then obtain

2® tan D=7, . (59)

For large blocked regions (7,>1), ®=7/2 follows from
Eq. (59). Using this value in Eq. (58), we obtain for the edge
point = 7; the expression

explx'(n)]=¢ 727} (60)
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It is always possible to single out such large c//‘f,o) values
(which increase with increasing current Z,) that the value
Y— ¥, (7,) is positive and the resulting estimates are legiti-
mate.

9. Let us summarize the results.

a) We have demonstrated the possibility of steady-state
compression of the conducting region in the structure under
consideration. In the case of a large Z,/[see condition
(47')] this compression in a wide range of values of the gate
current results from narrowing of the homogeneous conduct-
ing region, which is pressed toward the center of the struc-
ture by the peripheral blocked regions. In the case of mod-
erate 7.l values, the gate current also substantially varies
the anode current density distribution over the area of the
anode, forming a heterogeneous structure with an inhomoge-
neous conductive region, whose size is on the order of its
wall thickness.

b) In the case of large Z,l, the size x, of the homoge-
neous conductive region decreases with increasing 7, as
%2[566 Eq. (54)]. This result is in complete agreement with
the analogous result of Ref. 1, which was obtained for a
different thyristor structure under the same condition of low
injection levels in the p base. Under the condition x<1,
{<¢1 and when 7, is independent of the current density, the
controlled n base apparently does not have too critical an
effect on the processes studied here. This makes it possible to
hope that the gate can control the structure considered here,
and that the assumptions made here concerning the n base
can be substantially broadened.

It is easy to show that, when one goes from small to
large injection levels in the controlling base (as in the case
considered in Ref. 1), despite the variation of certain quan-
titative regularities, the qualitative character of the compres-
sion picture will remain the same, even though the theoreti-
cal treatment must be based on slightly different principles.
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