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Kinetic characteristics of the electron transport in a free-standing quantum well are studied 
theoretically. The quantization of acoustic phonons in a free-standing quantum well is taken into 
account and electron interactions with confined acoustic phonons through the deformation potential 
are treated rigorously. The kinetic equation for the electron distribution function is solved 
numerically for nondegenerate as well as degenerate electron gases and the electron momentum 
relaxation time and the electron mobility are obtained. At high lattice temperatures the electron 
momentum relaxation time is very similar to that obtained in the test particle approximation. Its 
dependence on the electron energy has steps which occur at the threshold energies for the 
dilatational phonons because an additional electron scattering by the corresponding acoustic phonon 
becomes important. The first mode makes the main contribution to the electron scattering, the 
contributions of the zeroth and the second modes are also important, the third and the higher modes 
practically unnoticeable for the studied electron concentrations and quantum well width. At lattice 
temperatures lower than the energy of the first dilatational acoustic mode the electron momentum 
relaxation time dependence on energy has additional peaks (in comparison with the test particle 
approximation) associated with electron scattering by several lowest acoustic phonon modes. These 
peaks occur near the Fermi energy in the degenerate case and in the energy range of the first 
dilatational modes in the nondegenerate case. They are especially pronounced for the degenerate 
electron gas. The temperature dependence of the electron mobility is similar to that described by the 
Bloch-Griineisen formula, however we obtained a smaller negative exponent in the low temperature 
region. 0 1995 American Institute of Physics. 

I. INTRODUCTION 

At present there is a considerable interest toward new 
type of nanostructures: free-standing quantum wells 
(FSQWS) and free-standing quantum wires (FSQWIS). These 
structures are either solid plates and rods connected to the 
semiconductor substrate by the side of the smallest cross- 
section or thin films and bars supported on their ends. They 
may be fabricated by various etching and lithographic tech- 
niques or by metal-organic epitaxy’-’ (see additional refer- 
ences in review’). There are several possible applications of 
the free-standing structures. They may be used for probing of 
the local properties of solids and there are several works 
where such possibilities have been demonstrated.6 Free- 
standing quantum structures may find applications as very 
sensitive sensors of forces or displacements in ways similar 
to those used for thin film sensors.8 There exists a variety of 
potential uses of free-standing structures for electronic and 
photonic applications, e.g., as low voltage field emitters, 
light emitting devices, mirrors for optical resonators.“5’9”0 

A very important peculiarity of free-standing structures 
is the quantization of acoustic phonons. It occures due to the 
transverse resonance of the acoustic waves just as it occur for 
the electromagnetic waves in waveguides where an integer 
number of half-wavelengths should fit between boundaries. 
However in the case of acoustic waves the rules for quanti- 
zation are more complicated because the transverse reso- 
nance conditions should be satisfied simultaneously for both 
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longitudinal and transverse waves. The quantization of 
acoustic waves results in the occurrence of several acoustic 
phonon branches with different frequencies. The acoustic 
phonon quantization has been observed both in optical and 
electrical experiments.6*‘1 There are only a few papers de- 
voted to a theoretical study of transport properties of the 
charge carriers in free-standing structures where the electron 
interactions with acoustic phonons through the deformation 
potential are of great importance.‘2-‘8 In Refs. 12 and 14 the 
Hamiltonians for electron interactions with confined acoustic 
phonons in FSQWs have been obtained and the electron scat- 
tering rate and the momentum and energy relaxation times 
have been analyzed in the test particle approximation. A 
similar approach has been used in Ref. 15 to study the elec- 
tron scattering rate in FSQWIs. The electron heating in thin 
metal films and wires has been studied both theoretically18 
and experimentally.” 

In this paper we have investigated the electron transport 
in FSQWs allowing for the exact form of the confined acous- 
tic modes and their spectrum. We have solved the kinetic 
equation for electrons in the low electric field limit, obtained 
the electron distribution function, the momentum relaxation 
time, and the electron mobility, and have analyzed their tem- 
perature dependences. In the next section we will formulate 
the problem mathematically, give the formulae for dilata- 
tional modes and the equations for the electron-phonon in- 
teractions, and discuss the expressions for scattering rates. 
Then we will consider the kinetic equation describing the 
electron transport in FSQW, transform it to the form of the 
integral equation for to the momentum relaxation rate, and 
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discuss the numerical solution of the integral equation and 
the physical interpretation of the obtained results in terms of 
individual scattering events. The last section of the paper is 
devoted to the analysis of the low field electron mobility. 

r&l11 ,W)=Fd,n 
hEZ 
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II. ELECTRON INTERACTIONS WITH CONFINED 
ACOUSTIC PHONONS THROUGH THE DEFORMATION 
POTENTIAL 

This section is aimed at deriving a formula for the “gen- 
eralized” scattering rate [given by Eqs. (S)] which takes into 
account peculiarities of electron scatterings by acoustic 
phonons in FSQWs. We will start with consideration of the 
acoustic modes in FSQWs neglecting the distorsions of the 
acoustic vibrations which result from the contact with a solid 
substrate. We assume that the solid slab is infinite. The 
acoustic modes may be determined by solving the eigenvalue 
problem for elastodynamic equations (see, e.g., Ref. 19). We 
will use a coordinate system such that axis z is perpendicular 
to the semiconductor slab, and FSQW is bounded by the 
planes z = - a/2 and z = + a/2, where a is the width of the 
quantum well. The boundary conditions for the eigenvalue 
problem state that the z-components of the stress tensor are 
equal to zero at the boundaries of the slab. These conditions 
correspond to free (unstressed) surfaces of the slab. The 
specified boundary conditions result in coupling of longitu- 
dinal and transverse acoustic waves; so eigenmodes repre- 
sent, generally speaking, a mixture of both longitudinal and 
transverse waves. 

There are three different types of acoustic modes in 
FSQWs: shear waves, dilatational waves and the flexural 
waves (see e.g., Refs. 12 and 19 and references therein). 
They differ by their specific symmetry. The shear phonons 
do not interact with electrons through the deformation poten- 
tial because they are completely transverse. We restrict our 
consideration by the extreme quantum limit where only the 
first electron subband is occupied and we assume that elec- 
tron potential energy is a symmetric function in respect to the 
mid-plane. Under these conditions only the dilatational 
acoustic phonons contribute to the electron scattering 
through the deformation potential, while interactions with 
flexural acoustic phonons is forbidden by the selection rules 
originated from the symmetry of the electron and phonon 
wave functions.‘2”4 

The dilatational phonons are characterized by the in- 
plane wave-vector, 911, mode number, n (n = 0,1,2,3,. . .), and 
the phonon frequency, w,( $1). We would like to emphasize 
that the lowest dilatational phonon mode is the zeroth mode, 
the next mode is the first mode, and so on. For the sake of 
simplicity we will direct the axis x along the vector 911, so it 
has coordinates q11= ( qx,O) . 

The Hamiltonian for electron interactions with dilata- 
tional phonons has the following form’2T14 

Hdef’ c ei91”11rd(qll Jb~k,(‘4~~) +C;(-@I, 
91 JJ 

0) 

where 

c,(qll) and ci(qll> are the phonon annihilation and creation 
operators, Fd,, iS the dilatational mode normalization con- 
stant, E, is the deformation potential constant, p is the den- 
sity, ~6 is the area of the slab, qt,+= qtJqx) and 
ql,n = qIJqx) are the parameters obtained from the solution 
of the system of dispersion equations.14 The normalization 
constants, Fd,, , are determined from the mode normalization 
conditions 

lFd.tt/2/~~a[U:($I 4,z)u,(q[[ ,m,z) 

where a,,,, is the Kronecker delta, u, ,uZ are the X- and 
z- components of the vector of relative displacements, 
which for the case of dilatational modes have the following 
form 

ux=iqx 
I 

qla (qz-qf)sin F cos qlz+2qlq, sin - cos q,z , 
2 1 

(3) 

u,=ql 
[ 

-(q,2-qf)sin y sin qrz+2q,2 sin y sin q,z . 1 
(4) 

We have omitted the subscript n in the notations for qr and 
qr to simplify Eqs. (3) and (4). The y component of the 
vector of relative displacement vanishes in the specified co- 
ordinate system. The parameters ql,” and qr,n play role of the 
z components of the phonon wave vector for dilatational 
modes. ‘n-me functions, qt,n=qt,n(qx), ql,n=ql,n(qx)t and 
the phonon frequency, o,(qll), calculated numerically for 
GaAs FSQW of width 100 A are shown in Fig. 1. The val- 
ues of qt and ql above the abscissa are real and below the 
abscissa are pure imaginary. If the parameter ql or both the 
parameters ql and qt are pure imaginary numbers, the dila- 
tational mode has either partially or completely surface 
bound character in accordance with Eqs. (3) and (4). How- 
ever, the spatial dependence of the the Hamiltonian for elec- 
tron interactions with dilatational phonons is determined 
only by the parameter qr [see Eq. (2)]. Accordingly, if ql is a 
pure imaginary number, the electron interaction with the ap- 
propriate phonon will be suppressed. 

The electron probability density for the transition from 
initial state kll to the final state kli due to an interaction with 
the dilatational phonon of mode m and in-plane wave vector 
qll may be determined from the Fermi golden rule. This prob- 
ability density is given by the formula 

,Itk) = ~~“bJ(m,qll~~~,~p,,,~~~E~lo,(qll)-&’l 
41-4; JaP 

, 

(5) 
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!X. 1. Parameters qr and q, and phonon frequency o, as functions of 
in-plane wave vector, qx , for the 10 lowest dilatational modes. The values 
of q, and qr above the abscissa are real, the values of qr and q1 below the 
abscissa are pure imaginary. 

where 

*&$m,q,,) 

i +p+; 3; 1 I~~,m12(s:m-~4,2)2(q:m+qx2)2 
= 
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S(X) is the delta function, n9, ,m is the phonon occupation 
number, E = fi2ki/2m* and E I = h2k’f/2m* are the electron 
energies before and after scattering, m* is the electron effec- 
tive mass. Throught this paper the upper signs correspond to 
the phonon absorption, the lower signs correspond to the 
phonon emission. The overlap integral, F(q), is given by 
the formula 

Rr)=/ ~~~~~z~*~z)~~z~coso/Z, 

where $(z) is the ground state solution of the one dimen- 
sional Schrijdinger equation. The argument q takes both real 
and pure imaginary values. If we use the electron wave func- 
tions for a rectangular infinitely deep quantum well, the over- 
lap integral takes the form 

flq)= 
32( 1 - cos n+) 

77-2(4”2-4) 

where @ = aq/71- , and q is a real or a pure imaginary number. 
To analyze the electron transport properties we will need 

scattering rates in the following form 

-I= 
76 c 

7; 3m3411 ,B 
“([+ki G’ 

where p is used to denote either absorption or emission, G is 
some given function which may depend on all variables over 
which we take the sum. We will also use ( r $‘) - ’ and 
( r 7) -t which are defined in a similar way with the only 
distinction that we sum either only absorption terms or only 
emission terms. There is an obvious relation between them: 
r~‘=(r~b)-‘+(r~)-l . If we employ the formulae for 
transition probabilities (5) we may obtain the following re- 
sult for the scattering rates 

and the angle V! E [O,V] is a solution of the transcendental 
equation 

cos *= ms(ql) _ 411 
fi+a +E( 

Actually, the angle q is the angle between kll and q/l. In the 
transition from Eq. (7) to Eq. (8) we have replaced the sum- 
mation over a quasidiscrete variable by integration in accor- 
dance with the rule X9,= (&/27r2) Jdkll. Hereinafter we 
will use summation and integration over quasidiscrete vari- 
ables interchangeably for the sake of convenience. 

The deformation potential which we have considered 
above is the major mechanism of electron-acoustic phonon 
interactions in FSQWs. The Hamiltonian for it in FSQWs 
has been obtained in Ref. 12. The ratio of the piezoelectric 
potential strength to the deformation potential strength is 
equal to (ee 14/E,q)2, where e t4 is the piezoelectric constant 
and q is the wave vector of the participating in the scattering 
phonon. In bulk semiconductors the piezoelectric scattering 
becomes stronger than the deformation potential scattering at 
low lattice temperatures and in low electric fields because 
electrons are scattered mainly by acoustic phonons with 
small q. In FSQWs there is a lower limit for q which is 
equal to da due to the qz component quantization. For this 
reason the deformation potential scattering dominates in 
FSQWs. 

III. MOMENTUM RELAXATION TIME 

We have solved the electron transport problem for 
FSQW in the linear in respect to the drawing electric field 
approximation assuming that the electron scattering by con- 
fined acoustic phonons through the deformation potential is 
dominant. The electron distribution function (DF) f=f(p) 
(p is the electron momentum) may be represented in the 
form 
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f=$+F, 

where functions J$ and fip depend on the absolute value of p 
and do not depend on its direction. The first term in the Eq. 
(9) is the symmetric part of DF and the second term is the 
antisymmetric part of DF. Because we are looking for the 
linear transport properties (formally the external force 
F-+0) the symmetric part of DF is the equilibrium Fermi 
function. DF satisfies the standard kinetic equation (see e.g. 
Ref. 20) with electron-confined acoustic phonon collision 
integral. We multiply the kinetic equation for DF defined by 
Eq. (9) by factor p/p and average it over the polar angle C$ 
[vector p has components (p, C#J) in the polar coordinate sys- 
tem]. In the end we get the following equation for the anti- 
symmetric part of DF 

Jfi Fap=x w,-+,, fi l-$1 
P’ c 

flp’ cos 50- ‘V fl, 

(10) 

where F is the external force, W,,,, is the electron transi- 
tion probability density defined by Eq. (5), cp is the angle 
between p and p’ . We are looking for the solution of Eq. 
(10) in the following form 

+P 
f,,= - q(p)F2 . 

3P 
(11) 

Eq. (11) redefines the unknown function f,, through the 
function 71(p). It will be shown below that T,(P) may be 
interpreted as the electron momentum relaxation time. From 
Eqs. (lo), (11) we may obtain the Fredholm equation of the 
second kind for the function am 

71(p)= tip) 

+7(P)c W,,,, pr “p”” cp 
1 -p,r 

P’ 
?(P,)fl* 

where 

(12) 

T(P)-l=c Wp-+p’ 
1 -ppr 

P’ my 
03) 

Eq. (12) may be transformed to the following mathematically 
equivalent equation 

r*(&l=C w,,,, l- 
i 

p’ cos cp q(p’) I-& 

P’ P i T,(P) 1-f”, . 
(14) 

It is worth noting that Eq. (14) differs from the equation for 
the momentum relaxation time, TJP), in the test particle 
approximation (TPA) which was obtained and analyzed in 
Ref. 14 only by the factor ~~(p’)/~~(p). Accordingly, the 
equation for am has the following form 

gp)-l=C w,,,r l- ( p’ cos cp 1 -pp, 

1 P 1-J”,’ 
(15) 

P’ 

To transform the sum in Eqs. (12), (14), and (15) to the 
integral and to include the explicit expression for the electron 
transition probability density due to scatterings by confined 
acoustic phonons we used the result obtained in the previous 
section and expressed by the formulae (7) and (8). Varia- 
tional methods were almost exclusively employed until re- 
cently to numerically solve Eqs. (12) or (14).21 We have 
solved Eqs. (12) and (14) numerically using iterative proce- 
dures. The unknown function from the previous iteration has 
been used in the right hand side to obtain the updated func- 
tion. The function Q-~(P) has been used as an initial guess. 
Although Eqs. (12) and (14) are equivalent mathematically, 
they are not equivalent from the computational point of view. 
Our iterative procedure had faster convergence if applied to 
Eq. (14) than to Eq. (12). However results were the same 
within the accepted computational accuracy, which was 
taken to be equal to 0.1% in the relative error. The iterative 
method converges fast in the case of a nondegenerate elec- 
tron gas and in the case of a degenerate electron gas and high 
lattice temperatures (T> 10 K) . It took many more iterations 
(on the average, about 100) to obtain the convergence of the 
solution if the electron gas is degenerate and the lattice tem- 
perature is low (T< 5 K) . This transitional temperature cor- 
responds to the characteristical energy of the acoustic pho- 
non quantization. The numerical analysis was done for GaAs 
FSQW of width a = 100 8, We took into account five of the 
lowest phonon modes; modes of the higher order make un- 
noticeable contribution to the scattering rate. 

The inverse momentum relaxation time, 7; ’ , obtained 
by solving Eq. (14), and the inverse momentum relaxation 
time in TPA, 7; ’ , for nondegenerate electron gases at three 
different temperatures are shown in Fig. 2. The comparison 
of rF1 and rip’ in a wide range of electron temperatures 
demonstrates that the test particle approximation is quite ac- 
curate in the case of a nondegenerate electron gas. However 
even in this case there is a fine structure in the energy de- 
pendence of r; ’ which is more pronounced in the case of 
low lattice temperature. Before we discuss the origination of 
this structure we would like to note a very important prop- 
erty of the solution r; t . Eqs. (12) and (14) are linear in 
respect to unknown function 71 [Eq. (14) has a nonlinear 
form because it is an equation for r; ‘I. However these equa- 
tions are nonlinear in respect to different terms in the repre- 
sentation of W,,,,, which includes the sum of emission 
terms and absorption terms for several (five in our case) di- 
latational modes. Accordingly, the Matthiessen rule is not 
applicable and the momentum relaxation time, T; ’ , may not 
be represented as a sum of terms corresponding to the indi- 
vidual types of scatterings. It was possible in the case of the 
similar function 7-i ’ in TPA, because the equation for it does 
not contain the unknown function in the right hand side. 

It is seen from the graph for function 7; * , that the first 
dilatational mode makes the main contribution to the elec- 
tron scattering (it corresponds to the steep step at 
1.2 meV in Fig. 2), the zeroth and the second modes are 

also noticeable in Fig. 2 (steps at electron energies 0 meV 
and 1.4 meV correspondingly), the modes of the higher or- 
der make contributions which are smaller than the resolution 
of the graphs. Some decrease in the function r; ’ at energies 
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FIG. 2. The inverse momentum relaxation time, r;’ (solid line), and the EIG. 3. The inverse momentum relaxation time, 7;’ (solid line), and the 

inverse momentum relaxation time in the test particle approximation, 7;’ inverse momentum relaxation time in the test particle approximation, T;* 
(dashed line corresponds to phonon emission and dotted line corresponds to (dashed line corresponds to phonon emission and dotted line corresponds to 
phonon absorption), as functions of electron energy for nondegenerate elec- phonon absorption), as functions of electron energy for degenerate electron 

tron gas in GaAs FSQW of width a= 100 A for T= 4.2 K, T= 77 K, gas in GaAs FSQW of width a= 100 8, for T= 4.2 K, T= 77 K, and 

and T= 300 K. T= 300 K, e,=50 meV. 

just lower that 1.2 meV and an increase at energies just 
higher that 1.2 meV in respect to the energy dependence of 

-1 
rP 

is related to the steep variation of the ratio 
ri(p’)/rl(p) near the threshold energy of the first dilata- 
tional phonon. An additional structure in the energy depen- 
dence of r;’ at 2.4 meV is a translation of the similar 
dependence at 1.2 meV to the region of higher energy. It is 
due to the fact that electrons with energy about 2.4 meV 
may emit phonons of the first dilatational mode with energies 
in the range 1 .l - 1.3 meV which have very high density of 
states (see Fig. 1) and get the final energy near the threshold 
for the first dilatational mode, so the ratio ~~(p’)/r~(p) in 
the Eq. (14) will be very sensitive to the initial electron en- 
ergy. The modes of the zeroth and the second order make 
their own contribution to the energy dependence of r; ’ 
which, as it was discussed above, may not be separated and 
the overall behavior of r;’ is quite complex. 

We have performed calculations of the inverse momen- 
tum relaxation times, r; ’ and ri ’ , in the case of a degen- 
erate electron gas in a wide range of the lattice temperatures. 
The Fermi energy is taken to be equal to .eF= 50 meV, 
which corresponds to the electron concentration 
1.4X lOI cme2, The results of our calculations for 

T=4.2 K, T=77 K, and T=300 K are displayed in Fig. 
3. Similarly to the case of a nondegenerate electron gas the 
energy dependences of r; ’ and ri ’ are very close to each 
other if the lattice temperature is high. If the lattice tempera- 

i 0.02 
; 

7 T= 77K 

0.6 

0.4 

i 
T= 300K 

OO-- z-, ‘-4b .~ 66 80 
& (meV) 

ture is lower than the energy of the first dilatational mode 
(about 1 meV= 10 K), the inverse momentum relaxation 
time, 7; * , acquires a highly pronounced additional structure 
at energies near the Fermi energy. We have studied this effect 
in more detail calculating the unknown function, T; ‘, on a 
very fine mesh in the two-dimensional space electron energy 
-Zattice,temperature. The overall behavior of ryl is shown 
on the three-dimensional graph in Fig. 4 in the temperature 
range 3 K-5 K. More detailed energy dependencies for 
r;’ are demonstrated in Fig. 5. 

The obtained functions for rr’ are almost symmetrical 
in respect to eF in an energy range near the Fermi level. 
There are two symmetrical peaks at energies e,-C 1.3 meV 
which disappear at the lattice temperature T= 4.47 K . 
There are also two other peaks wider than those mentioned 
above and located approximately at energies Ed+- 3.5 meV. 
These peaks have some substructures which also disappear at 
the lattice temperature T= 4.47 K. Although the peaks 
themselves are being preserved, they become smoother and 
smaller and disappear at a lattice temperature higher than 
10 K. On the contrary the peaks located closer to the Fermi 

level maintain their magnitude and position until disappear- 
ance at T= 4.47 K. When the lattice temperature ap- 
proaches T= 4.47 K these peaks become thinner and thin- 
ner and finally disappear at T= 4.47 K. 

The approximate symmetry of rF1 in respect to the 
Fermi energy cF= 50 meV follows from the analysis of the 
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Electron energy, meV 

FlG. 4. The inverse momentum relaxation time, T;‘, as a function of the 
electron energy and the lattice temperature. GaAs FSQW of width 
a= 100 A, &,=50 meV. 

integrand in Eq. (14). The quantum mechanical probability is 
the same for both transitions: for phonon emission 
(kl/ = kll+qll) and for phonon absorption (kll+qll= kl/) as 
long as the same quantum states kll ,+i ,911 are involved. 
There is an additional factor in Eq. (14) which is symmetri- 
cal in respect to the Fermi energy, Ed, and it makes a deci- 
sive impact on the symmetry of the momentum relaxation 
time. It reflects the population of the electron and phonon 
states. For the case of the phonon absorption we denote it as 
YO(e) and for the case of the phonon emission we denote it 
as Ye(e). In accordance with Eqs. (5), (6), (14) 

1 -.fz+*w ~a(E)=%J 1-e > 1 -fLo ~e(&)=(% l+ll*~ * 
Subscripts in the above equations denote the appropriate en- 
ergies. It may be easily shown that 

Thus, the electron in quantum state k/i emits the phonon in 
quantum state 911 and acquires the final state kll with exactly 
the same probability as probability of the opposite process: 
electron in quantum state kll absorbs phonon in quantum state 
qll and acquires the final state ki . Actually this is nothing 
more than the principle of the detailed balance. It ensures 
that the discussed symmetry of the momentum relaxation 
t ime to be preserved. 

It is obvious that the origin of the peaks stems from the 
electron scattering by acoustic phonons whose energy is 
quantized. It follows from the analysis of Fa(&) and 
.?‘JE) that if the lattice temperature, T, is lower than the 
phonon energy, ho, then the electrons with energies 
E> eF+ fi w primarily emit phonons [emission is in 
exp(hwl7’) times more probable than absorption], electrons 
with energies E -=C &F- fi w primarily absorb phonons [absorp- 
tion is in exp(hwl7’) times more probable than emission]. 
Accordingly, the peaks in the energy dependence of r; ’ are 
associated with phonon emission (on the right of the Fermi 
energy) and phonon absorption (on the left of the Fermi 

/s ’ 1~~~~~ ,n,L I (al . , 

46 48 50 5i 54 
~5 hev) 

46 48 50 52 54 
& (meV) 

FIG. 5. The inverse momentum relaxation time, 7; ’ , as a function of the 
electron energy for lattice temperatures T= 3 K, T= 4.2 K, T=4.4 K  (a), 
and T=4.47 K, T=6 K, T= 10 K  (b). GaAs FSQW of width 
a= 100 A, e,=50 meV. 

energy). The maximum acoustic phonon wave vector is 
approximately equal to doubled kF and in our case consti- 
tutes 6X lo6 cm-‘. If we restrict the length of the wave 
vector by this maximum value, the energies of five the 
lowest mode acoustic phonons lies in the ranges (see 
Fig. 1) 0- 1.3 meV, 1.1-2.2 meV, 1.3-2.5 meV, 
2.4-3.2 meV, 3.5-4.0 meV. Due to interference of dif- 

ferent phonon modes, the positions of the peaks in 71 and 
consequently in the antisymmetric part of the distribution 
function are determined by a simultaneous action of all the 
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FIG. 6. The transport relaxation time, ~~ (solid line), as a function of the 
lattice temperature. The dotted line corresponds to the dependence l/T, the 
dashed line corresponds to the dependence l/r3. Transition to the Bloch- 
Griineisen regime occurs in the temperature range 40 K- 8 K. GaAs 
FSQW of width CZ= 100 A, eF=50 meV. 

confined modes. Mathematically it is expressed in the non- 
linearity of Eq. (14) in respect to scatterings by different 
phonon modes which is discussed above. The lattice tem- 
perature at which two peaks near the Fermi energy cease to 
exist (4.47 K) corresponds to the characteristic energy of 
the acoustic phonon quantization. 

IV. LOW FIELD ELECTRON MOBILITY V. SUMMARY AND CONCLUSIONS 

The electron mobility, p, is expressed by the formula 
p=er,lm*, where 7t is the transport relaxation time ob- 
tained by averaging TV: 

S;d&~Wd4~U -f”,> 
7-t= 

J-;d&e * 
(16) 

We have solved the kinetic equation for 2DEG in FSQW 
for the case where only the first electron subband is occupied 
in the low drawing electric field limit. We have considered 
both nondegenerate and degenerate electron gases in a wide 
range of lattice temperatures. The dominant mechanism of 
the electron scattering is taken to be the deformation poten- 
tial interactions with several of the lowest mode dilatational 
phonons. We obtained the electron momentum relaxation 
time r1 and the electron mobility. In the case of a degenerate 
electron gas r;l has several peaks at low temperatures re- 
lated to the interactions with different quantized phonons. 
The electron mobility has the lattice temperature dependence 
which is similar to the Bloch-Griineisen formula. It has 
T-’ dependence at a high lattice temperatures and Tm3 de- 
pendence at low lattice temperatures. The transition tempera- 
ture is not clearly pronounced and the transition occurs in the 
temperature range 40 K-8 K. 

We took integral (16) for series of temperatures and obtained 
temperature dependences of rt and electron mobility. We will 
consider here only the case of a degenerate electron gas 
( eF= 50 meV) . The temperature dependence of rt is shown 
in the Fig. 6. This result is very similar to the temperature 
dependence of p for the 2DEG in GaAs-A&Gal-,As het- 
erostructure observed in Ref. 22. At high lattice temperatures 
the phonon population is much larger than unity and propor- 
tional to the lattice temperature. Therefore the rate of the 
electron scattering by phonons and the electrical resistivity 
are proportional to the lattice temperature. At low lattice 
temperatures the phonon occupation number is less than 
unity for substantial part of phonons and consequently their 
contribution to the electron scattering is significantly 
reduced. In the case of metals this results in Te5 dependence 
of the electron mobility (Bloch-Griineisen formula*l). The 
same power dependence has been observed for 2DEG 
semiconductor quantum welLa We have obtained a smaller 
negative power (Ts3) for the temperature region 
( 3 K<T< 8 K). This results in a smaller r1 and electron 
mobility than in the case of a double barrier heterostructure. 
For lattice temperatures T-C 3 K the negative power be- 
comes larger (see Fig. 6), however we did not proceed with 
our calculations below T< 2 K because the convergence of 
our computational algorithm deteriorates when the lattice 
temperature decreases. 

A peculiarity of the Bloch-Griineisen regime (the tem- 
perature range in which the electron-phonon scattering pro- 
cesses are dominated by restraining k-space selection 
rules**) in FSQWs consists in a discrete character of transi- 
tion from linear region to nonlinear region. In FSQWs elec- 
trons are scattered by several acoustic modes which have 
consecutively growing frequencies. If we decrease the lattice 
temperature, the most energetic mode will cease to be ther- 
mally exited first, then the next in energy mode will be fro- 
zen out, and so on. The lowest mode begins loosing ther- 
mally exited states with large in-plane wave vectors at 
T= 10 K. ‘Ihe transition from the linear dependence of r1 
to Bloch-Griineisen regime takes place in the temperature 
range 40 K-8 K. 

It is interesting to note that though the momentum relax- 
ation rate 7; ’ has peaks near the Fermi energy, the transport 
relaxation time, rl, and the electron mobility, p, do not have 
peaks associated with quantized acoustic phonons. Such 
peaks have been observed in the conduction variations of the 
electrically heated AuPd films and wires.” However their 
origination lies in the nonlinear response of the electron - 
phonon system on the heating electric field. A similar depen- 
dence could be observed in the energy loss due to emission 
of the acoustic phonons. 

Our calculations are based on a model of FSQW with 
perfect parallel surfaces. Real structures have finite rough- 
ness which may affect measurable quantities. The closest to 
ideal FSQWs are unsupported metal films. The Brillouin 
light scattering from such films gives confined phonon spec- 
tra which are very close to the theoretical predictions.6 Semi- 
conductor FSQWs are less perfect.’ The rough surfaces 
cause modification of both electron and phonon states which 
will depend on statistical properties of the spatial fluctua- 
tions. Electron transport in such systems is much more com- 
plicated and we will only outline its qualitative features. 
Rough surfaces may be treated as an additional source of 
scattering for both phonons and electrons. If the thickness of 
the FSQW is very small, surface scattering may significantly 
reduce electron mobility.23 The effect of the surfaces rough- 
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ness on the relaxation times, which we have calculated, con- 
sists in smearing of fine structures as well as in smoothing a 
transition from the linear regime to the Bloch-Griineisen re- 
gime. It occurs because the energy of confined phonons is 
inversely proportional to the FSQW thickness which fluctu- 
ates; at the same time, positions of the peaks depend on the 
phonon energy. The two regimes of conductivity are the con- 
sequence of the restrictions in k-space for degenerate sys- 
tems at low temperatures, therefore they will exist in FSQWs 
with rough surfaces. The last effect which we would like to 
mention consists in a possible localization of acoustic pho- 
non modes in FSQWs with rough surfaces. It is similar to 
photon localizationz4 or electron localization in low- 
dimensional systems. 
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