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The influence of the nonuniform photogeneration on the electric-field distribution is considered for 
quantum-well photodetectors under drift velocity saturation. We found that spatial nonuniformity of 
photogenerated electrons due to attenuation of the infrared flux induces strong electric-field 
domains. The electric-field domains formation is accompanied by degradation of the signal-to-noise 
ratio. We obtained that domain structures undergo realignment at certain threshold voltage as a 
result of feedback influence of the quantum well recharging on the photogeneration rates which in 
turn cause the additional electric-field redistribution. The realignment manifests itself in a steplike 
change of photoconductive gain and quantum efficiency of photoabsorption at threshold bias voltage 
and is followed by considerable increase of generation-recombination noise. 0 199.5 American 
Institute of Physics. 

I. INTRODUCTION 

Recently there has been some progress in understanding 
the quantum-well infrared photodetectors (QWIPs) perfor- 
mance as far as photoconductive and noise characteristics is 
concerned. Interesting models have been proposed for pho- 
toconductive gain and generation-recombination (GR) 
noise.lm4 All these models assumed that electric-field distri- 
bution in an active region of a photodetector is uniform. This 
assumption holds for QWIPs with ideal ohmic contacts and 
uniform GR rates, but is not valid for nonuniform distribu- 
tion of generated charge carriers. It has been shown by us in 
Ref. 5 that photoconductive gain and noise in QWIPs is in- 
fluenced by attenuation of the infrared flux. The nonunifor- 
mity in photogeneration due to flux attenuation induces the 
charge accumulation in quantum wells in steady-state mode 
of performance. The quantum-well charging results in a step- 
wise electric field between wells. In the ohmic region steps 
of the electric field must repeat the inverse photogeneration 
function in order to maintain the continuity of the current. In 
real devices the attenuation of the radiation flux comprises 
about 1% per period of the quantum-well structure. As a 
result the steps of the electric field between barriers are small 
in comparison with the average electric field inside the 
photodetector.5 In the multiple-quantum-well structures, 
however, the small difference of electric field in adjacent 
domains contributes to remarkable variations of the electric 
field from cathode to anode. 

The QWIPs are best suited to applications in arrays if 
their collection efficiency and signal-to-noise ratio are as 
large as possible.6 The minima of noise is achieved by de- 
creasing it down to value limited by the noise associated 
with background flux received [background-flux-limited in- 
frared performance (BLIP)]. In BLIP mode of operation the 
concentration of photogenerated charge carriers prevails over 
the dark carriers concentration. This emphasizes the impor- 

tance of the nonuniform photogeneration effects in BLIP. 
The increase of collection efficiency is realized by increasing 
the bias voltage at the expense of photoconductive gain in- 
crease. The photoconductive gain is proportional to the drift 
velocity and saturates under strong electric field. In the satu- 
ration region small variations in drift velocity needed to 
compensate changes in concentration of the photogenerated 
carriers can result in large variations of the electric field in 
barriers. This can result in strong electric-field domain for- 
mation. 

In this article we consider an electric field of arbitrary 
intensity assuming the saturation of drift velocity, i.e., we 
exploit the commonly accepted model of the vertical trans- 
port in the quantum-well structures. We investigate the do- 
main formation under infrared radiation attenuation and con- 
sider the influence of electric-field domains on 
photoconductive gain and noise characteristics. We also con- 
sider the GR noise as a main source of noise in QWIPS.~ In 
contrast to the domain formation in superlattices due to reso- 
nant tunneling between different subbands of adjacent 
wells,7 we examine the domain formation in the absence of 
tunneling. For this purpose we consider wide barriers sepa- 
rating wells and assume drift transport of charge carriers in 
barriers over the quantum wells while generation and recom- 
bination occur in the narrow well regions separating barriers. 
We consider n-type doped quantum wells with one two- 
dimensional subband of confined electron states. The photo- 
generation occurs from the ground subband of confined elec- 
trons to the extended states over the barriers. This type of 
quantum-well detector is widely used in applications6 

II. PHOTOCONDUCTIVE GAIN 

We consider N quantum wells (QWs) equally separated 
by barriers with spatial period 1. The equations for current 
density and electron concentration has been derived in Ref. 5 
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for the model of QWIP we consider here. We neglect the 
width of the QWs in comparison with the barriers’ width and 
actually replace the equation for electrons in the vicinity of 
the QW by the boundary condition imposed on the electron 
concentration in the plane of the QW location. It was shown 
in Ref. 5 that diffusion component of the electron current can 
be neglected in electric field of interest. The equations in the 
drift approximation are given by 

f div j=l$, {gi-[n(x)-nolsi>S(x-xi), (1) 

jx=enud(x), (2) 
where j, is the xth component of the electron current density 
vector j= G, ,O,O), n(x) is the volume density of electrons in 
extended states, no is the equilibrium density, Si is the rate of 
capture of electrons into confined states, &x) is the delta 
function, and ud(x) is the drift velocity of electrons. The 
value of si is analogous to the recombination velocity on 
interfaces containing QWs. It can be expressed via lifetime pi 
of nonequilibrium electrons in extended states over the ith 
barrier: Si= l/~i. It is known both theoretically and 
experimentally8~9 that carrier capture time into QWs exhibits 
oscillation as a function of QW width being typically of the 
order of several picoseconds of it minimal value in GaAs- 
AlGaAs QW structures. 

Here we assume the drift velocity dependency upon 
electric field E(x) to be equal to 

/4x) 
ud= Jl +[@(x)luJZ 

where E(x) is the electric field, p is the electron mobility, 
and u, is the saturation velocity. 

In order to find a steady-state electric-field distribution in 
the lack of illumination we have to solve the Poisson equa- 
tion for electric field E(x) with boundary conditions imposed 
on electric field. We assume instead that contacts are ohmic 
and represent both contacts as QWs of an unlimited capacity 
of electrons with a cathode contact covering any deficit in 
electron concentration without deterioration of its injection 
capability. In this case the electric field is uniform and QWs 
retain neutrality. All the charge is placed in the contacts, the 
cathode being charged by negative and anode by positive 
charge which can be calculated by using the formula for a 
capacitor, 

Qss= V&(47rL), 

where V, is the bias voltage and L is the distance between 
contacts (L = IN in the case considered). In what follows we 
consider effects associated with quantum wells located inside 
the structure between contacts under illumination. 

The continuity of the current density in different barriers 
should be taken into consideration in steady state. After in- 
tegration of Eq. (1) over the slab which includes the ith 
quantum well we obtain by using current continuity ji+ i =ji 

?li-no=gilSi, (4) 
where ji is the xth component of current density in ith bar- 
rier which separates the (i + 1)th and ith QWs. 

It was shown in Ref. 5 that charge accumulated in QWs 
under nonuniform photogeneration is rather small in the 
ohmic region and does not significantly influence photoge- 
neration rates. Considering a strong electric field we have to 
take into account the dependency of the generation rates 
upon concentration of the excess electrons accumulated in 
wells. 

For this purpose we consider the linear concentration 
dependency of the photogeneration rates g, . The relation be- 
tween generation rates gi with accumulated sheet density 
ANi=Ni-NIO’ and uniform generation rates gi”) corre- 
sponding to N.= N(O) is given by 1 1 

The excess accumulated charge AQi = e ANi is related to 
the electric fields Ei in the barriers. This follows from the 
Poisson equation integrated over the QW region, 

47re 
Ei-Ei_,=- 

E ANi. 

In this manner we use Poisson equation by substituting the 
expression for excess accumulated electron charge A Ni from 
Eq. (6) into Eq. (5) for generation rates gi. It is worth re- 
membering here that in our model the Debye length for elec- 
trons exceeds the sample length as happens in real QWIPs 
and the electric-field distribution is determined by the charge 
accumulation in the contacts and in the QWs. We find the 
sheet concentration of electrons in the QW by 

m” 

where N,, is the density of states in the ground subband of 
the QW, m* is the effective mass of electrons in the subband, 
and 0, is the ith QW filling factor, which is equal to the ratio 
of the Fermi energy E, to the energy Ephot,, of the photoion- 
ization threshold. By substituting the expression for NY into 
the equation for photogeneration rates we obtain the equation 
for gi : 

gi=gI”[ 1 + (Ei-Ei- 1)/E,(i)], (8) 

where the electric field E, characteristic for accumulated 
charge is determined by 

E,(i) = 
4 e&photo 

eaB* . 
(9) 

Here uz is the effective Bohr radius for electrons, 

e/i2 
a*=_- B m*e2’ 

The characteristic electric field E, depends upon initial fill- 
ing factor 8i of the ith QW. The typical electron concentra- 
tions in wells correspond to &O.l-0.3. For a detector based 
on GaAs-AlGaAs with the long-wavelength cutoff h,=lO 
pm (E,,,,,=0.124 eV) we obtain the typical value of the 
characteristic electric field, 

E,-5 X lo4 V/cm. 
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Next we consider high photogeneration rates, gi*>ncSi , 
i.e., the BLIP mode of operation. The formula for current 
density in ith barrier follows from Eqs. (2)-(4), 

(10) 

where Ui is the drift velocity in the ith barrier. The rate of 
photogeneration gi equals 

gi’cpil?Oj 

where Qbi is the photon flux at x=xi , and ‘130 is the quantum 
efficiency of photoabsorption of the single QW, i.e., the 
probability of one photon to be absorbed by one QW while 
passing through it. 

The photoconductive gain, according to definition, 
equals 

G- ji - ji uigi = 
e@0?7 ect lgi Sixi= lgi * 

(11) 

Making equal current densities in two barrier regions 
adjacent to the ith QW, we obtain the relation between drift 
velocities in ith and (i + l)th barrier layers, 

~igilsi=ui+lgi+llsi+l. (12) 

In the presence of the nonuniform absorption (gi# gi+ i) or 
fluctuations of recombination velocities (Si# Si+ r) the drift 
velocities in ith and (i + 1)th barriers should be different in 
order to satisfy continuity of current. This is realized by set- 
ting different electric fields in barriers induced by QW 
recharging.’ We have to emphasize that here as in Ref. 5 we 
consider a photodetector with ideal ohmic contacts incorpo- 
rating the uniform distribution of the electric field in the 
absence of illumination. 

The average electric field (E) in the detector active re- 
gion equals 

(13) 

From Eq. (3) we obtain the relation between electric 
field and drift velocity in the ith barrier, 

Ei= 
vi 

PU. 
(14) 

Using Eq. (10) we express the electric field in the i th barrier 
via current density, 

05) 

where g= G(s)Nlv, , E,=v,I/J., gT=gi/(g), ST=Si/(S). 
Here the angled brackets mean averaging over the well sites, 

Substituting Eq. (15) into Eq. (13) we obtain the equation for 
the determination of g, 

(16) 

For the uniform generation gi=(g)= vlN(g*= 1) and 
for the ideal QWs Si= (s)( ST = 1) the electric field in barri- 
ers is uniform Ei= (E). In this case we obtain from Eq. (16) 
the simple equation for the photoconductive gain, 

g w -=- 
l/w Es * 

For uniform electric field the photoconductive gain 
equals 

G=ud((E))/N(s), (17) 

where 

UI(@)) = (E) 
m/l + ((E)/E,f ’ 

In the case of a weak electric field, i.e., gTlsF*g, we 
find 

(E) 
g= E,( l/N)C~=,Silgi’ 

which can be converted to 

G= G (1IN)Z” g,(:IN)ZN= s*/g ’ S I 1 I ili i 

This equation almost coincides with the equation for photo- 
conductive gain obtained in Ref. 5 for the ohmic region of 
current-voltage dependency. The distinction between Eq. 
(18) and the corresponding formula in Ref. 5 lies in geomet- 
ric fluctuations of the recombination velocities included in 
Eq. (18). It is worth considering uniform generation in Eq. 
(18), i.e., gi=(g), then taking into account (s*)=l we obtain 

(0) - 
G= N(s). 

The previous equation can be obtained from Eq. (17) under 
the condition (E)+E,. 

Next we consider the solution of Eq. (16) under the con- 
dition (E)% E, , i.e., for very strong electric field assuming 
that the generation rates are not influenced significantly by 
the electrons accumulated in the wells. We restrict our con- 
sideration to structures illuminated from the cathode side. 

In order to satisfy Eq. (16) with (E)B E, the value of g 
should be close to the minimum value of gT/sT . Let us 
assume for definiteness sake that there are no fluctuations of 
the recombination velocity from well to well, i.e., SF = 1. In 
the case of illumination from the cathode side structure the 
generation rates gT take a minimum value by i= N. The 
approximate solution of Eq. (16) in this case may be ob- 
tained by equaling the last term in the sum to right-hand side 
of Eq. (16), 

(19) 

After simple algebra we obtain 
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G= 
GsNgzv GsNgiv E--- 

T&+(E;/N~(E)~) ‘17 * 

For a detector without a back-reflecting mirror (one pass of 
the radiation flux) we obtain gi=~,( 1 - vo)i- ’ vo, where 
photon flux @ , entering the first (i = 1) QW can be expressed 
through external flux ax. For the radiation input which em- 
ploys a prism we have a correspondence @o= (1/2)@$ sin* 8. 
Quantum efficiency for one pass equals 

gl,g, 1 
v= (-& -= z [ 1 - ( 1 - ~a)N]sin2 8. 

s 
For a detector with a back-reflecting mirror (double pass of 
the radiation flux) we obtain 

gi=@‘o~O[(l-~O)~-‘+(l-~O)~~-i-‘]. 

Quantum efficiency for double pass equals 

~=$1-(1--0)2N]sin2 6. (22) 
The proof of correctness of solution (20) for photoconduc- 
tive gain is given in the Appendix. 

We obtain an analytical formula for photoconductive 
gain for two radiation input geometries by using Eq. (20). 

A. One pass of infrared radiation 

For one-pass geometry of the radiation input we obtain, 
using Eqs. (20) and (21), 

us N?;lo( 1 - 7;l0)~-l 
G=(s)N l-(l-~~)~ ’ (23) 

This equation is valid for an arbitrary number of wells N. For 
a multiple QW structure, by using relation 

(I- wJN=exp( - VON), 

which is correct for m=% 1 and N4 1, we obtain 

us NTO exp(- VON) 
G= (s)N I-exp(- vON ’ (24) 

In the case of weak absorption v0N91 we obtain from Eq. 
(30) 

G=G,=&. 

This formula is different from those obtained for the uniform 
generation. This distinction is due to different distributions of 
the electric field corresponding to uniform absorption and the 
latter formula obtained for a strong electric-field domain oc- 
cupying the Nth barrier adjacent to the anode. 

B. Double-pass of infrared radiation 

We obtain from Eqs. (20) and (21) for double pass 

For a multiple QW photodetector we obtain 

G=G, 
2N770 ew( - VOW 

l-exp(-2T0N) ’ 

05) 

(26) 

It is worth noting that in the case of weak absorption the 
photoconductive gain for double pass is the same as for one- 
pass radiation input geometry. This can be explained by the 
identical electric-field distribution we considered in both 
cases, i.e., the bias voltage drops entirely across the last bar- 
rier adjacent to anode contact. 

We considered solutions for the electric fields in barriers 
neglecting the influence of accumulated charge in wells on 
the photogeneration rates. Now we estimate the conditions 
imposed on bias voltage and device parameters under which 
this influence can be neglected for the strong electric-field 
domain occupying Nth barrier. It is evident from Eq. (8) that 
accumulated charge does not significantly influence the pho- 
togeneration rate in Nth well if the inequality 

EN-EN-I<&(N) 

is satisfied. For strong electric-field domain occupying Nth 
barrier this enequality reads 

where V, is the bias voltage, which drops almost entirely on 
the Nth barrier. By using Eq. (9) the latter inequality can be 
presented as 

eV uB* 

E photo q< *’ 
(28) 

In the case of typical filling factor 6-O. I-0.3, corresponding 
to the doping impurity concentration N,=( 1017- lo’*) cme3, 
this inequality can be satisfied for Ve< 1 V provided that 
width of the barrier is of the order of 1= 10m5 cm. This value 
of the bias voltage may be not large enough to achieve a high 
value of the ratio (E)IE, . 

The situation is different in the ohmic region 
((E) 4 E,). In this case the electron sheet concentration ac- 
cumulated in the ith quantum well produces an electric-field 
step, which equal? 

&-E,_,E~“~-~‘~) Ei-,~Eivo. 
gp 

Taking into account that in the ohmic region the electric-field 
domains are weak, i.e., E,--(E)= VIlN, we obtain that the 
condition Ei-Ei- 1 <E,(i) will be satisfied under less strin- 
gent requirements imposed on device parameters than those 
for strong electric field. We obtain 

(29) 

This inequality can be easily satisfied in low-biased struc- 
tures. 

Before considering the domain formation self- 
consistently by taking into account the influence of accumu- 
lated charge on electric-field distribution it is worth describ- 
ing the procedure of noise current calculation. 

III. NOISE CURRENT AND NOISE GAIN FACTOR 

The main source of noise in QW infrared detectors is the 
GR noise. The GR noise and relevant noise gain has been 
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considered in Refs. 2-4 for uniform electric-field distribu- 
tion and in Ref. 5 for weak electric-field domains in the 
ohmic region of the current-voltage characteristics. 

In this article we consider the Langevin-type equation 
for fluctuations in the drift approximation in the electric field 
of arbitrary strength. The equation for low-frequency fluctua- 
tions averaged over the coordinates of the points in the plane 
perpendicular to the superlattice axis is formulated as’ 

1 ddj, N 
0 
- e xzL3 [-sn(X)si+6gi-GrilGtX-Xi), C30) 

where the x component of the averaged in-plane current den- 
sity fluctuation equals 

sj,(X)=sji=eVisni+e~unisVi(X), Xi<X<Xi+l. (31) 

Here Sgi and Sri are the Langevin sources for fluctuation of 
generation and recombination rates, SVi(X) is the fluctuation 
of electron drift velocity in the ith barrier, and Sni= Sn(xi). 
Equations (30) and (31) are analogous to the corresponding 
equations for GR fluctuation derived by us for QW structure 
in the ohmic region of the current-voltage characteristic. We 
use these equations here to consider drift velocity saturation 
in the strong electric field. 

For stationary fluctuations we have an equality 

sni=(sgi-Gri)Sf’. 

After integration of Eq. (30) over the xi- I <x<xi+ i we ob- 
tain 

Sji-Sji_l=-SiSni+Sgi-Sri=O, i=1,2,...,N. (32) 

Estimation shows that the electric field produced by the 
concentration of free electrons in the barriers can be ne- 
glected and SE(X) = SE, for Xi~X~Xi+ 1. From Eq. (31) we 
obtain 

P6Ei 
6vi=[1+ = 

Gj-eVi&Zi 

elzi ’ (33) 

where 6Ei(x) is the fluctuation of electric field E,(x) in the 
ith barrier, and Sj= Sji . We used in Rq. (33) the formula 

+!=[ ls( E5)2](3’2). 
For stabilized bias voltage across a sample we obtain 

N 

After substitution of 6Ei from Eq. (33) into the previous 
equation we obtain the expression for current density fluc- 
tuation, 

Sj= 
eC~=‘,l(Vi/V~)(&Ii/?Ii) 

C~=,(V~ni)-’ . 
(34) 

The general approach to evaluation of correlation func- 
tions of noise sources Sgi and Sri is developed in Ref. 10 for 
spatially homogeneous systems. For processes concentrated 
in very narrow well regions we follow Ref. 11 and express 
the correlation functions via recombination velocity Si and 
concentration of free electrons ni over wells, 

where A is the detector cross-section square and 
ni=giS;l+nO, 

S(j2)o= e2 
C~=,(vi/v1)2n;2(4nis;‘A-1) 

[z~,(vf)-‘n;1]2 - (35) 

The mean square current noise in the frequency bandwidth 
Af equals 

(H2)=(Sj2)d2Af. (36) 

For homogeneous thermal generation ni= no and Si= (s) the 
electric field is uniform, i.e., Ei=(E), Ui=ud((E)), and we 
obtain from Eqs. (35) and (36) 

( SZ”) = 4eGoZTAf, 

where Z,=evd((E))nd is the dark thermal current. 
Next we consider background-limited infrared perfor- 

mance, when photogeneration rates exceed thermogeneration 
rates, i.e., gi~~osi. After substituting ni=gis;’ into Eq. 
(35) we obtain 

4’; Zy=,[ 1 +(Ei/E,)2]3g;3sF 

(sr2),=A {C~=‘=,[ 1 +(EilE,)2]3’2g11si}2’ (37) 

where we use Eq. (10) for current density in order to obtain 
photocurrent ZP , 

evigiA/si=Zp. 

Following Ref. 1 we introduce the coefficient F between 
photoconductive gain G and noise gain G, ; the latter is de- 
termined by 

( 6Z2),=4eG,Zp. (38) 
Using the definition of the photoconductive gain 

IP GE -= IP 
e@‘,rlA eAXi=lgi 

we obtain the equation for excess noise gain factor 
F=G,/G, 

Zy=i[l +(Ei/E,)2]3g;3sfZffflIgi 

F= {Zy!i[l +(Ei/E,)2]3’2g;1Si}2 ’ 

Using Rq. (15) we obtain 

gds> Ei 
J1+(Ei/E,)2=-- 

NTsig Es * 

We find from Eqs. (39) and (40) 

(3% 

(41) 

For the ohmic region we obtain from Eq. (12) 

Eigi /si= const. (42) 

Substituting Ei=constX(sJgi) we find, instead of Eq. (41), 

X~x*g;3S~X~c’,,gi 

F= [Z~z,(gt”Si)]2 * (43) 
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For si = (s) this formula coincides with the formula for ex- 
cess noise gain factor derived in Ref. 5, otherwise this equa- 
tion permits us to calculate the factor F for structure with 
geometric noise caused by fluctuations of the recombination 
velocity. In the case of uniform illumination we obtain from 
Eq. (43), by using Eq. (42), 

It follows from Eq. (44) that FC 1. Thus, the geometrical 
fluctuations of recombination velocity lead to the decrease of 
GR noise. In reality, changes of capture velocity caused by 
variations in well width or well depth are accompanied by 
changes of the photoabsorption probability. This makes it 
difficult to separate the influence of the recombination rates 
fluctuation from the nonuniform absorption effects. 

Next we obtain an analytical formula for the excess 
noise coefficient in the framework of the validity of the ana- 
lytical solution (20) for photoconductive gain; then 
(E)IE,%l and bias voltage drops on the last barrier, so that 
EpVIl, and Ei~E, for ifN. Because electric field in 
other barriers is smaller in comparison with E, , the negative 
charge, which normally should be placed on a cathode, will 
be concentrated in the Nth QW. Other QWs are charged with 
sufficiently smaller charge which is distributed among them 
according to Eq. (6). 

A. One pass of infrared radiation 

Using equations for 77 and gN in one-pass geometry of 
radiation input we obtain 

F= 
1-t1-770)N 

vat I- VOW- 1) - 
(45) 

For a multiple QW structure this equation can be presented 
as 

F= 
exp vON- 1 

770 . 

For Nvoel but N~o>(E,I(E))2 we find 

F=N. 

(46) 

(47) 

6. Double pass of infrared radiation 

The formula for the excess noise coefficient F in this 
case is 

(48) 

For a multiple QW structure we obtain 

(49) 

For Nvo*l and Nv~>(E,/(E))~ it follows from Eq. (Al) 
in the Appendix that 

F-N. (50) 

FIG. 1. Voltage dependency of the (1) responsivity and (2) photoconductive 
gain for nonself-consistent approach. Solid line: uniform generation; x and 
circles: nonuniform generation, 7=0.218. 

IV. SELF-CONSISTENT CONSIDERATION OF 
PHOTOCURRENT AND NOISE 

As we indicated earlier the solutions obtained by ne- 
glecting the influence of charge accumulated in wells on the 
photogeneration are of limited usage. Here we consider the 
influence of the accumulated charge on the photogeneration 
rates and find the electric-field distribution by solving Eqs. 
(8) and (16) for electric field and gain simultaneously. In 
addition to calculation of quantum efficiency ‘17 and photo- 
conductive gain G we calculate responsivity R which is de- 
termined by 

Rk=g Gq (51) 

where A is the wavelength of radiation received, h is the 
Planck constant, and c is the light velocity. The detectivity of 
the photodetector in the BLIP is proportional to the ratio 

and is not dependent upon photoconductive gain.12 In what 
follows we calculate the dimensionless value of sN= JrlIF 
which is proportional to the signal-to-noise ratio. 

We choose characteristic saturation field E,T =5 X lo3 
V/cm and electron mobility ,z=2X lo3 cm2/V s. We use the 
value of capture time 7-=5 ps. The calculations are made for 
a structure which consists of N=50 heavy-doped QWs with 
electron filling factor 13=0.4. This corresponds to a single 
QW efficiency of photoabsorption 770=0.02.‘~ In this case 
the parameter N v. is equal to N vo= 1. The distance between 
QWs is assumed to be L=500 A. The quantity of the char- 
acteristic electric field E, corresponding to the chosen pa- 
rameters equals E, =2X IO5 V/cm. We performed all calcu- 
lations for GaAs-AlGaAs QW photodetector with the long- 
wavelength cutoff X= 10 pm. 

The results of the responsivity and photoconductive gain 
calculations are shown in Fig. 1. These calculations are made 
in the framework of a nonself-consistent approach. The solid 
line curve corresponds to the case of uniform photogenera- 
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FIG. 2. Voltage dependency of (1) responsivity, (2) quantum efficiency, and 
(3) photwonductive gain calculated by using tbe self-consistent approach. 

tion with Q,= rJN and gi =ao~. The difference in results The electric-field distributions in barriers are shown in 
corresponding to uniform and nonuniform absorption is at- Fig. 3 for different bias voltages. The distributions corre- 
tributed entirely to the difference in photoconductive gain G. sponding to the self-consistent solution are shown in Figs. 
For bias voltage V&=5 V the photoconductive gain for at- 3(a)-3(c). We choose three bias voltages which are equal to 

tenuated infrared flux is about 15% smaller in comparison 
with gain calculated for the uniform photogeneration. Quan- 
tum efficiency for double pass equals 7=22% and is not 
dependent upon voltage in both cases. 

Figure 2 displays results of R,, G, and 17 calculations 
based on self-consistent consideration. Noteworthy are steps 
in quantum efficiency and photoconductive gain at Vp3.4 
V. They are due to realignment of the electric-field domains 
in the vicinity of the anode. 

This realignment results in changes of the electric-field 
distribution, which induce the steplike increase of quantum 
efficiency due to additional absorption by electrons accumu- 
lated in the QWs adjacent to the anode and steplike decrease 
of photoconductive gain. The steplike decrease of photocon- 
ductive gain stems from sensitivity of the gain to the changes 
of the photogeneration function in the vicinity of the anode. 
Contrary to steplike changes of 77 and G the value of respon- 
sivity, which is proportional to the product vG, remains un- 
changed. 
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FIG. 3. Electric-field distribution for different bias voltages: (a) at threshold V,=3.375 V, 77=0.221, G=0.160; (b) above threshold V,=3.600 V, r]=O.223, 
G=0.158; (c) above threshold VB=5.00 V, 7=0.238, G=0.153; (d) nonself-consistent approach VB=.5.00 V, ~=0.218, G=0.170. 
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FIG. 4. Excess noise gain factor as the function of bias voltage. Solid line: FIG. 5. Voltage dependency of the signal-to-noise ratio. Solid line: nonself- 
nonself-consistent approach; circles: self-consistent calculations. consistent approach; circles: self-consistent calculations. 

(a) the threshold value of bias corresponding to the begin- culated for two above-discussed cases. The decrease in S, at 
ning of realignment V,=3.4 V [Fig. 3(a)], threshold bias is followed by two curves approaching closer 

(b) the value slightly higher than threshold V,=3.6 V [Fig. together. 
W $ l, and Only several strong-field domains determine noise in the 

(c) the value far enough from threshold V,=5.0 V [Fig. region V,>4 V where stabilization occurs for the self- 
3(c)l. consistent solution. The difference between self-consistent 

The distribution corresponding to the nonself-consistent so- 
lution is shown for comparison for bias voltage V,=5 V in 
Fig. 3(d). The electric field in the Nth barrier undergoes the 
abrupt change at the threshold voltage due to negative charge 
accumulation in the Nth Q W  adjacent to the anode. W ith the 
voltage increase above threshold the electric-field distribu- 
tion shown in Fig. 3(a) transforms into a set of the strong 
electric-field domains with comparable strength located near 
the anode. The distribution shown in Fig. 3(b) is typical for 
domains at bias voltages above threshold. The evolution of 
the electric-field domains with the voltage increase [Fig. 
3(b)] produces electric-field distribution with more contrast 
domains near the anode as compared to the nonself- 
consistent solution [Fig. 3(d)]. 

The realignment of electric-field domains results in a 
significant variation of the noise characteristics. The excess 
gain factor F is depicted in Fig. 4 for EC-w (solid line) and 
E, =2X lo5 V/cm (circles). First, it is noteworthy to mention 
the significant increase of F for the nonself-consistent solu- 
tion (solid line) under bias voltage corresponding to the drift 
velocity saturation. Second, the electric-field domain realign- 
ment [Figs. 3(a),3(b)] results in sharp increase of the excess 
noise gain factor F at the threshold. The sharp increase of the 
F factor gives way to its stabilization within several tenths of 
volts after the threshold voltage. For the bias voltage over 
V,=4 V both self-consistent and nonself-consistent F fac- 
tors tend to draw close together. Under bias voltage V,>5.5 
V the electric field in the Nth domain for self-consistent 
solution is so large that tunneling from the ground subband 
of the Nth quantum well can be significant. To be in the 
framework of the exploited model we calculated all quanti- 
ties for bias voltage which do not exceed V,=5.5 V. The 
signal-to-noise ratio which is shown in Fig. 5 has been cal- 

and nonself-consistent solution for electric field tends to di- 
minish as bias voltage recedes far enough from the threshold. 
Simultaneously, this leads to the gap decrease between two F 
factors corresponding to a self-consistent and nonself- 
consistent solution. 

V. CONCLUSIONS 

We applied the existing concept of QWIP and processes 
of electron transport in it to calculations of the photoconduc- 
tive and noise characteristics. Two major features of the 
model widely accepted in the current description of QWIPs6 
has been accounted for in calculations performed in this ar- 
ticle. We  took into account that 

(4 contacts are ohmic, and 
(b) drift velocity saturates under strong electric field. 

The first feature assumes the uniform electric-field distribu- 
tion inside the structure with lack of illumination, and the 
second results in the strong electric-field domain formation 
under bias voltage corresponding to the saturation region of 
the current-voltage characteristic. For the purpose of clarity 
it should be mentioned that ohmic contacts do not guarantee 
uniformity of the electric-field distribution inside a structure. 
The deviation from the charge neutrality in Q W  structures 
and electric-field domain formation in the dark can be pro- 
voked by the bulk mechanisms of the charge transport such 
as the sequential resonant tunneling between two electron 
subbands in the adjacent QWS.~+‘~-‘~ We  assume in our 
model that the width of the barriers is large enough to pre- 
vent the electron tunneling processes. We  also consider tem- 
peratures low enough to maintain BLIP mode of operation 
even in the strong electric fields. In this case the transport of 
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electrons in the illuminated structure is determined by the 
photogenerated charge carriers moving in the three- 
dimensional conduction states over the barriers. We do not 
address in this article the influence of the thermogeneration, 
thermotunneling, or tunneling of electrons on the electric- 
field domains formation in QWIPs. Although important, 
these varieties of the electron transport can be separated from 
the transport of photogenerated electrons by lowering the 
operating temperature of the photodetector. Less obvious is 
the assumption about the ideality of the contacts. The devia- 
tion from the ideal ohmic behavior can result in excess 
charge accumulation (depletion) near the contacts in the 
dark. The model of ideal ohmic contacts is widely accepted 
in the existing descriptions of QWIPs6 The theory we 
present here is aimed at better understanding of QWIPs char- 
acteristics in the framework of this model. 

We also find that formation of domains significantly in- 
fluences noise gain. Basically, the noise gain is larger in 
value than that of the photoconductive gain. The distinction 
between both gains drastically increases if the strong 
electric-field domains occur under influence of attenuation of 
the infrared radiation in the drift velocity saturation region. 
The experimental results based on independent determina- 
tion of both gains do not show significant difference in both 
gains.‘+17 The experimental results do not contradict our 
theory in ohmic region where excess noise gain happens to 
be larger than photoconductive gain as has been observed in 
Ref. 17. However experimental evidence of the photocurrent 
saturation exists which could result in the framework of our 
model with the occurrence of strong electric-field domains 
and in an increase of GR noise. It is unclear, however, if the 
assumption of ideal ohmic contacts is satisfied in real 
QWIPs. If contacts display blocking behavior, the uniform 
electric-field distribution cannot be realized even under uni- 
form generation. In this case the depletion of quantum wells 
in the region adjacent to the cathode is possible in order to 
eject electrons and maintain the continuity of current. This 
depletion can result in the saturation of photocurrent at the 
expense of the quantum efficiency decrease. Thus, our results 
call for a revision of the physical model of QWIP in case the 
photocurrent saturation is not followed by the noise increase. 

In the framework of the exploited model the perfor- 
mance of the QWIP displays a large variation of excess noise 
gain factor F and signal-to-noise ratio as a function of bias 
voltage in the drift velocity saturation region. The attenua- 
tion of the infrared radiation flux induces the electric-field 
domains and charge accumulation in the QW which in turn 
influences the photogeneration rates. The electric-field de- 
pendency of the photogeneration rates is more pronounced in 
the vicinity of the anode where attenuation takes it maxi- 
mum. The feedback between photogeneration and electric- 
field distribution results in a realignment of the electric-field 
domains near the anode at some threshold bias voltage. The 
realignment begins with significant (of the order of 20% of 
its initial value corresponding to the initial filling of the QW) 
charge accumulation in the Nth QW adjacent to the anode 
[Fig. 3(a)]. With the further voltage increase the strong 
electric-field domain which occupies the last barrier decays 
into several domains of comparable strength located near the 

anode [Fig. 3(b)]. Contrary to the photoconductive gain 
which is not influenced considerably by this process, the 
noise characteristics which are sensitive to the electric-field 
distribution display large variations in process of domain re- 
alignment. Before threshold all the characteristics calculated 
self-consistently coincide well with those calculated beyond 
the self-consistent scheme. The noise gain factor increases 
drastically at the threshold bias voltage corresponding to the 
onset of the domain structure realignment. The noise charac- 
teristics above the threshold tend to draw together to nonself- 
consistent solution. 

On the other hand the noise characteristic calculated in 
framework of the nonself-consistent approach with attenua- 
tion of the radiation flux taken into account is very different 
from characteristics specific for uniform photogeneration. 
We estimated a full range variation of the excess noise gain 
factor F from F = 1 up to F = N, depending upon bias voltage 
applied to the structure. Thus, we get the conclusion that 
QWIPs’ noise characteristics under high bias voltage may be 
very sensitive to the nonuniformity of illumination, depend- 
ing upon the sublinearity of the electric-field dependency of 
the drift velocity. From this point of view the quantum-well 
structures that feature the largest values of characteristic 
saturation electric field E, offer advantages for reduced noise 
performance under high bias voltage as compared to struc- 
tures with smaller E, even if the low-field mobility of the 
latter structures is superior to those with larger characteristic 
electric field E, . 

APPENDIX 

In order to check a validity of solution (20) we estimate 
the ratio of sum of the remaining terms of Eq. (16) (i.e., 
E,.&E,) to the last term (i.e., E,/E,). 

For one-pass geometry of radiation input we obtain 

g;=g;//( 1 - qp-). (Al) 
Substituting this into formula (15) for electric field in ith 
barrier we obtain 

Ei lE,= 
(I- 770)W-i) 

NJ1 _ (I_ 770)*(N-i). 642) 

Replacing the sum 

with the integral 

I 

x=N E 

.X=1 
dx ;, 

s 

we estimate the sum and compare it to the ratio EN/E,. 
It is convenient to present the function E, as 

E,= 
ewC-x Ml - nJlE, 

Ndexp[ - 2N ln( 1 - ve)] - exp[ -2x ln( 1 - ~a)] ’ 
C-43) 

Taking into account that ~a-@1 we use approximations 

ln(l-~c)=-77a. 
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After substitution, 

y=exp(x770), 

we obtain 

1 
I 

esp(Nno) 
dx E,+ - 

TM I 
dy $-+- 644) 

Finally, we obtain 

Ftr $=I= --& [arcsin[exp(-Nve)] 

-arcsin[exp( -~NY,+J]. 

For NvcBl we obtain 

(A5) 

XEl’Ei E, exp( -Nve) 
-- 

EN -(E) Nqo el’ 

The last inequality can be valid even for (E)IE,= 1. 
For N ~a4 1 we obtain 

Zzl’Ej E, 1 112 
-- 

EN -(E) NWI * l-1 
To obtain Eq. (A7) we used the approximation (x41) 

arcsin( 1 -x)-(*/2)- $G. 

646) 

b47) 

Finally, we conclude that the approximation we used to solve 
Eq. (16) is valid for one pass of infrared radiation for 
N 7cQ 1 if condition N7;lo%-(E,/(E))* is satisfied. For 
N ~,s>l the solution (20) is valid for a wide range of the 
fields ratio (E)IE, , including (E)/E,- 1. 

Analogous estimations made for double-pass geometry 
of the radiation input produce the same conditions imposed 
on the device parameters in order to satisfy solution (20) of 
Eq. (16). 
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