Y. M. SirenkoO and V. MiTiN: Nonradiative Capturc of Electrons 129

phys. stat. sol. (b) 189, 129 (1995)
Subject classification: 71.55 and 73.40; S7.12

Department of Electrical and Computer Engineering, Wayne State University, Detroit?)

Nonradiative Capture of Electrons
in Quantum Wells and Wires by Shallow Donor Impurities

By

Y. M. SiRenk0?) and V. MITIN

The capture of clectrons in a quantum well or wire by shallow donor impurities due to the interaction
with an acoustic phonon is considercd. Wave functions of several lowest bound states are found by
the variational method. The rates of transitions between the free and bound states as well as between
different bound states are calculated. In the case of well or wire width L less than or of the order of
the effective Bohr radius and greater than the phonon wavelength, the transition rates are proportional
to e 3n_+ 12 + 1/2) L™° whure € s the transferred energy, and n_a phonon occupation number.

1. Introduction

The processes of carrier capture by impurities are known to have a strong influence on
noise and transport in semiconductor structures. In this paper we study the processes of
trapping and detrapping of the electron in a quantum well (QWL) or quantum wire (QWR)
by a shallow donor impurity placed either inside or outside of the well or wire.

From a large number of results pertinent to the defects in the bulk [1 to 3] we mention
two models for capture of an electron by a shallow Coulombic impurity: (i) the cascade
model based on the assumption of a quasicontinuous highly-excited bound states spectrum
and (ii) the direct calculation of transition probabilities between free states and several
low-excited bound states.

In the cascade-capture model, originally introduced by Lax [4] and further elaborated
by the Leningrad group [1], the capture of carriers is treated as classical descent through
the quasicontinuous spectrum of highly-excited bound states due to cascade emission of
low-energy acoustic phonons. A solution of the obtained balance equations for the electron
distribution function can be found analytically in several limiting cases or with the help of
the Monte Carlo simulation [2, 5]. The generalization of this model to the two-dimensional
case was performed by Karpus [6]. Since the cascade-capture model is based on the
assumption of a high density of impurity bound states at negative thermal energy, its
applicability is limited [7] to low temperatures and materials with comparatively large
effective Rydberg energy #.

In GaAs quantum wells the impurity ground state ionization energy is of the order of
100 K (in bulk material # =~ 65 K) and, at room temperature, the case opposite to that of
the first model is realized. Therefore we will consider only the processes with the participation

. of the ground and several Jow-excited states assuming that they give the major contribution
to transport and low-frequency noise. The first quantum-mechanical formulation of the
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problem in bulk materials is due to Ascarelli and Rodriguez [8] who proposed a model,
where the capture takes place through the hydrogen-like states 1s, 2s, 3s, and 4s of the
impurity center. The capture and various transitions arc accompanied by emission and
absorption of one deformational acoustic phonon. Subsequent generalizations of the
calculations [9] included higher values of the main quantum number (n < 7), nonzero
angular momentum, different polarization of the emitted phonons, etc.

Since the pioneering work of Bastard [10] a considerable amount of work dealt with the
theoretical calculation of the binding energies of shallow impurities in quantum wells, wires,
and dots, as well as an experimental observation of the infrared radiative transitions between
the ground and excited levels of an.impurity [11].

In this paper we consider different mechanisms of the relaxation, namely, nonradiative
capture of electrons in quantum wells or wires to the ground and low-excited states. We
have calculated the rates of electron capture, ionization, and transitions between different
bound states of a shallow donor impurity assisted by emission or absorption of a
deformational acoustic phonon (for our preliminary results see [12, 13]).

The results are presented as follows: Section 2 introduces the model and describes the
variational procedures for the calculation of the impurity bound states, in Section 3 the
expressions for the transition rates are obtained, Section 4 contains numerical results and
a discussion.

2. Hamiltonian and Variational Procedure

We consider a system of an infinite square quantum well at —L_/2 <z < L /2 and a
shallow donor mmpurity at (0, 0, z,). In the effective-mass approximation the unperturbed
Hamiltonian of the system is given by
h? e?
H = _4.V24/7+ Vconf? (1)
2m* e R

where m* is the effective mass of the electron, ¢, the lattice dielectric constant,
R = m the distance from the impurity, ¢* = x> + y%, V.., is the quantum
well potential.
The Hamiltonian (1) describes also the system of a rectangular quantum wire of infinite depth
and shallow Coulombic impurity located at (x;, y;, 0). In this case the distance from the
impurity is given by R = [(x — x)* + (y — y)* + z%]** and the confining potential
Vs = 0 for |x] < L,/2 and |y| < L,/2, otherwise V, ;s = 0.

For the ground and several low-excited states of the Hamiltonian # in QWL we use
the hydrogen-like trial wave functions v, containing the variational parameters 4,

N R .
Wunlt) = S 0™ P </T> e Mime™ Z(2). 2

)Iml +1 =
“hm

Herem = 0, +£1, £+2, ... is the magnetic quantum number due to the cylindrical symmetry
of the Hamiltonian, n = {m| + 1, |m| + 2, ... the main quantum number, Z(z) the transverse
wave function of a lowest subband,

Z() = VLZ cos%i e <§ - |z|> , (3)
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where @ (x) is the step function, the dimensionless factors N, normalize the wave functions
to unity. The functions Z,,(u) are polynomials of the order n — |m| — 1 with coefficients
chosen s0 as to provide orthogonality of the wave functions ,,, with the different numbers;
for n = |m| + 1 we take 2,,(u) = 1, for n = |m| + 2 we have 2,,(u) = 1 + a,mu, and for
n=|m| + 3 take #,,u) = 1 + a,,u + b,,u*. Note that the functions (2) do not depend
on the sign of m. Below we consider bound states with the main quantum numbern = 1,2, 3.

The trial functions (2) represent the generalization of Bastard’s trial function [10] and are
equal to the product of the transverse wave function Z(z) of the free electron in the quantum
well and hydrogen-like functions corresponding to orbital quantum number | = |m| (states
with other I are not bound for a sufficiently thin well).

For the bound states of the impurity in a guantum wire we choose the following odd and
even trial functions containing variational lengths -
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Fig. 1. Fig. 2

Fig. 1. Ionization energies of impurity bound states &,,, vs. the width of the well L,. Solid, long-dashed,
and short-dashed lines correspond to states with m = 0, 1, and 2, respectively. Thick lines correspond
to z; = 0, thin lines to z; = L,/2

Fig. 2. lonization energies of impurity bound states vs. impurity position in quantum well and wire.
Thin lines &,,, vs. z; in the quantum well of width L, = 10 am. The main quantum number n is indicated
near the lines; solid, dashed, and dotted lines correspond to m = 0, 1, and 2, respectively. Thick lines
€, V8. x; In the quantum wire, y; = 0, L, = L, = 10 nm. Solid line corresponds to ground 10 (Ls) state,

dashed line to 21 (2p) first excited state
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Here p is the parity of the wave function with respect to coordinate z (p = 0 for even and

= 1 for odd states); n = p + 1,p + 2, ...; the factors N,, and the coefficients of the
polynomial %, (1) of order n — p — 1 are chosen to provide orthonormality of the set (4).
The functions X (x) and Y(y) can be obtained from (3) by changing L, to L, or L,. The
wave functions (4) are equal to the product of the transverse wave function X (x) Y(y) of
the free electron in QWR and hydrogen-like functions correspondingtom = Oand! = p.

A standard variational procedure gives the bound states v,,, ,, and the ionization
energies &, €,, measured from the bottom of the lowest subband.

Fig. 1 presents the dependence of the ionization energies of impurity bound states in
the GaAs QWL on the width of the well L,. As seen from the figure, the trial set of
wave functions (2) reproduces correctly the results of the 3D and 2D [14] Coulomb
problems (e3P = Z#/n?, 23D = nay and €2 = #/(n — 1/2)%, 28P = (n — 1/2) ag, where
A = m*e*2e3h* and ay = e, h*/m*e? are effective Rydberg energy and Bohr radius) for
on-center defects, as well as the result €, = %/(n + 1)* and J,,, = (n + 1) a for on-edge
impurities [15]. In a quantum well of finite width the degeneracy in the magnetic quantum
number m is removed and higher values of m correspond to deeper states.

In Fig. 2 we plot the ionization energies of several lowest states in a 10 nm wide QWL
and the two lowests states in a 10 nm x 10 nm QWR versus the impurity position for the
parameters of GaAs.

3. Transition Rates

We use the Fermi Golden Rule to calculate the transition rates due to the interaction with
the longitudinal DA-phonon modes,

_2n hD?*Q? <

1 1 )
we, =" o + —+— ) < €9 [y S 8 — & + how,). 5
£ h 2QL(UQV 1) x 2> [l Wf>\ (& Q) (5)

2

Here W2, is the probability of a transition between initial (i) and final (f) states per unit
time mediated by DA-phonons with wave vector @, D is the deformation potential constant,
wg specifies the phonon dispersion relationship, ng is the occupancy number of phonons,
¢ and V are crystal density and volume, sign “plus™ corresponds to emission and “minus”
to absorption of a phonon.

Electron free states are taken as unperturbed plane waves with wave vector k corre-
sponding to the lowest subband, where k = (k,, k,) in the case of QWL, and k = k, for
the case of QWR. The approximation of the undistorted electron wave function in the vicinity
of the Coulomb center is good for all energies in the case of a quantum well. In fact, for
L < ag even in the worst case of on-center impurity and extremely low electron energies,
the inaccuracy of the final results will not exceed the 2D Sommerfeld factor [14] Z = 2.
However, in the case of extremely thin quantum wire and #>k*/2m* < 2 the use of the
unperturbed electron wave function will lead to an overestimation of (dejtrapping rates
since the 1D Sommerfeld factor [16] Z — 0 for k — 0.

We consider all possible sorts of transitions: (i) trapping with { = k and f = nm for
QWL (or f =npfor QWR); (ii) detrapping with i = nm (ori = np)and f = k; (iii) interlevel
transitions with i = nm and f =n'm’ (or i = np and [ = n'p). In the case of trapping one
should multiply the left-hand side of (5) by the number of impurities N, in the plane
z = z; or the line (x = x;, y = y;) to obtain the probability for an electron to be trapped
by any impurity.



Nonradiative Capture of Electrons in Quantum Wells and Wires 133

In order to find the overall transition rates W,_; we have to perform the integration
over all possible phonon wave vectors Q,

i-f

= o f deo WL, ©)

The magnitude of Q is specified by the transition energy €,
hog = €, (7

where in the case of QWL € = ¢, + #%k?/2m* or € = |e,,, — €,,, for the QWR case the
subscript m should be replaced by p. Note that for small transition energies corresponding
to the linear part of the w, dependence we have Q_ = €/hs with s being the sound velocity.

In the following we will assume the following conditions satisfied: (1) the width of the
well (or diameter of the wire) is smaller than or of the order of the Bohr radius (in GaAs
ag ~ 10 nm),

L, < ay; (for QWL), max (L, L)) <ag (for QWR), (8)

(ii) large transferred energies e: the phonon wave vector Q_defined by (7) is greater than
other values of the same dimensionality, in particular,

QL. >2n (for QWL), Qmin(L,L)>2r (for QWR). 9)

In GaAs this is a realistic approximation for characteristic lengths of the order of ten nm
and € = 2rnhs/L ~ 10 to 20 K.

Under these assumptions due to the rapidly oscillating factors exp (iQ) in transition
matrix element the trapping and detrapping rates decrease rapidly with the increase of Q.
Analysis of the integral in (6) shows that in case of QWL the main contribution to transition
rates is given by the “transverse” phonons with Q ~ Q. > Q. Q,, k. In the case of QWR,
since the matrix elements decrease more rapidly for the wider limits of integration, the
dominant contribution to the integral in (6) is given by the phonons with 0~0,>»0,0.k,
orQ~Q,> Q. 0.k for the cases L, <L, and L, < L, respectively.

Substituting (5) to (6) and performing the integration over the phonon wave vector 0
we find the following transition probabilities of the electron in the quantum well:
trapping rate,

2 F
Wk — nm) = n2), i *(n; + D T )
ous. €L(Q L./ 2m)*

(10)

detrapping rate,

dW (nm — k) _om* D? n.Z .. (1)
d(hk?2m*)  7h? g5 eL2(Q L.j2n)"’

and the rate of interlevel transitions,

D? 124+ 1/2) i
W(l’lln — nll’}’l/) = (ngﬁ_ / — / ) am—n'm ) (12)
015 EhpmAym L2(0 L_/270)*

Here n_is the phonon occupation number, the value s_= dwg/dQ for small Q tends to the
sound velocity s the factor n{2), is the sheet concentration of impurities in the plane z = z,

imp
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For the quantum wire we obtain:
trapping rate,

nll D n_+ 1| FWO  FW
Wk —np) = Quy* 20— —€ | T W) (13)
Jup O1Se EWE | LS LY
detrapping rate,
dw k * D2 F T
) o i 2t | H TR, 1
d(h°k?2m*) mh kxlnp os. L0t LY Ly
and the rate of interlevel transitions,
D> n.+ 121275  F
Winp = np) = @yt Mo F 2L [ T | (15)
1S, /“npj“n’p’gQ“E. L.(X) L)’

Here nf}), is the one-dimensional impurity concentration at (x = x,, y = ), the form factors

F for (10) to (15) are given in the Appendix. Note that in equilibrium the transition
probabilities (10), (11) and (13), (14) are related by the detailed balance equation.

The transition energies less than or of the order of 100 K involved in our problem
correspond to the phonon wave vector @ in the almost linear part of the o, dependence,
therefore we can use the equation Q.= ¢/his and the value of the deformation potential
constant D at @ = 0. With the help of this relation we obtain from (10) to (15) the following
dependence of the transition rates on the transferred energy and the width of the well or
wire:

Wi, oce Sn_+ 12+ 12)L°°, (16)

where L = L, for QWL and L = min (L, L,) for QWR. Thus, the capture (ionization) of
carriers occurs mainly from (to) the free states near the bottom of the lowest subband. Note
that the transition energy in its turn is specified by the ionization energies &,, and ¢,, which
depend strongly on the impurity position and the transverse dimensions of QWL or QWR
(cf. Fig. 1 and 2).

Following [1] we introduce the integral transition times 1" and 7" which appear in the
balance equations for the carrier concentration. The electron capture time t¥,, specifies the
probability (per unit time) for the “average” electron in the lowest subband of the QWL

to be trapped to the level nm of any impurity in the plane z = z,,

detr

1 Jf(E)W(k—»nm)dE/j]'(E)dE. (17)

tr
Tnm

The electron stay time 1" gives the rate of electron detrapping from the bound state nm

- to any free electron state in the lowest subband,

e = JdE ) [W] (19)
0

Py dE



Nonradiative Capture of Electrons in Quantum Wells and Wires 135

Here E = #%k*/2m*, and f(E) is the distribution function of the electrons on the lowest
subband. In the case of € < T from (10) and (11) follows that 1/7% oc 1/19°" oc €L 75 In
equilibrium the relation ), /n,, = Toa /Neay holds.

After replacement of nm by np, the same relations will be applicable to (de)trapping of
the electron in QWR to (from) an impurity at given line x = x;, y = y;.

4. Numerical Results and Discussion

For the numerical evaluation of the transition rates we use the parameters of GaAs: effective
mass m* = 0.067m,, sound velocity s = 5.24 x 10° cm/s, dielectric constant g = 12.5,
crystal density g, = 5.36 g/cm?, deformation potential constant D = 7.0 eV; both phonon
and electron temperatures are equal to 300 K.

The results of numerical calculations of 1/7" versus the impurity position are presented
in Fig. 3. Thin and thick lines show the capture rates to the bound states of an impurity
in a 10 nm wide QWL and a 10 nm x 10 nm QWR, respectively. One can see that the
dependence of 1/t on the impurity position for different states has the form analogous to

7070

3
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)
S
©
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transition rafe (1/s) ———w—

0 4 4 6 %) 0
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Fig. 3. Fig. 4.

Fig. 3. Inverse capture times 1/7}, and 1/7Y, to impurity bound states vs. impurity position in QWL

nm np

and QWR. Impurity concentrations n{z), = 10'® cm™? in QWL and n{}), = 10°cm ™! in QWR. Other

imp

parameters and notations are as in Fig. 2

Fig. 4. Rates of transitions W(nm — n'm’) in a quantum well between impurity bound states mm and
n'm’ with the emission of acoustic phonons vs. the impurity position z;. Width of the well L = 10 nm.
The quantum number m of the initial state is equal to 1, 2, and 3 for solid, dashed, and dotted lines;
thick and thin lines correspond to on-center and interface impurities, respectively. Lattice temperature
T = 300K
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that in Fig. 2, i.e. for the given cross-section of QWL or QWR the behavior of trapping
probabilities is specified mainly by the ionization energies &, or &,,.

Note that for comparable ionization energies the capture probability in QWR is essentially
higher than that in QWL. This is partially due to the difference in the density of states —
in QWR there are relatively more electrons near the bottom of the subband where the
capture rate is higher. On the other hand, proper inclusion of the quasi-one-dimensional
Sommerfeld factor to the calculation of (de)trapping in QWR would fead to some decrease
in transition rates, especially for free electron energies, hk?/2m*, less than or of the order
of the Rydberg energy # ~ 70 K.

In Fig. 4 the rates of interlevel transitions in QWL calculated with the help of (12) are
plotted versus the impurity position z,, We present only the results for transitions from the
upper to the lower level; the rates for inverse processes differ by the factor exp (—¢,,/T)
which is close to unity at room temperature. For transitions with rates greater than
approximately 10% s~ (9) is not fulfilled and corresponding results are only qualitative.

The analysis of Fig. 1 to 4 gives the following qualitative picture of the carrier trapping
in QWL. For states with n = 3 the energy separation between levels is small, being only
a fraction of effective Rydberg energy, and also due to the lifting of the degeneracy in
quantum number m. Thus, for a temperature higher than or of the order of 10 K the states
with n = 3 can be treated as quasicontinuous spectrum, therefore the transitions between
the levels are fast and can be treated in the fashion of [1, 6].

The levels with n = 1 and n = 2 are separated from the others; this implies the existence
of several distinct groups of transitions in Fig. 1 to 4. The time of capture to the ground
state of the impurity is specified by the transitions from levels with n = 2, direct trapping
from the free states has much lower probability.

Since the distance between the energy levels &,, and &, is much smaller than to other
levels, the transitions between states 20 and 21 are much faster than to any other states.
Therefore it is possible to introduce a combined “level 2”7 and to calculate the effective
transition rates as the individual ones weighted with the degeneracy of the level. Say, for
transitions between “level 2” and the ground state we have

W(10 — 2) = W(10 — 20) + 2W(10 — 21)
and

W2 — 10) = 1 W10 - 20) + 2W(10 - 21).

Note that for the direct capture of electrons to the ground state of an on-center impurity
other mechanisms of trapping can dominate, namely interaction with an optical phonon
or Auger processes.

The effect of carrier trapping in quantum wells on nonequilibrium transport and noise
should be examined by solving the balance equation for the electron distribution function
for the free and impurity bound states with the transition rates given by (10) to (15) and
proper scattering mechanisms included [17].
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Appendix
The form factors of electron transitions in a quantum well (cf. (10) to (12)) are given by

2
N nm

jnm = W [einrSnm(ZJr) + 6"27Smn(27)]7

/"2(|m| +m’| + 1)
T 2 P L
F = NN

7 wm—n'm’ nmt Y n'm’ }2|m| ] /12|mr| 1
“nm n'm’

[e_ZJrSman’rn’(Z%-) + eizisnman’m’(z—)] El

wherez, = |2z, + L|/2,,and Z, = |z; & L/2]/4; we introduced A = A, pm/2(Awm T Anrm)-

The functions

t
S, W) = e f !//fm<5> et (2 — uH)mledr,

) At At .
Snmﬁn’m’(u) = ¢" J yim <}> ‘a}r%'m' < > eil ([2 - M2)1171|+|mf [dt

u

can be reduced to polynomials.
For a quantum wire the form factors in (13) to (15) have the form

Ly/2
44, N2 7T
’g;(nJ;)) = # J dy COS4 l [Snp(x+) + Snp(xf)] 3
L L,
—Ly/2
Ly,/2
8ANZ,NZ Ty
g;z);)ﬂn’p' = —1’2_1’_ dy COS4 5 [Snpﬁn’p'(XwL) + Snpﬁn’p’(Xf)] s
L2 L,
—Ly/2 .
Where ;L = }“np;”n’p’/2(/1np + ;”n’p’)’ and Xy = 2[(xi j: L\'/Q’)Z + (y - yi)z]l/z/)“npz

X, ={(x; + LJ2)* + (y — y)*1"*/4. Functions

¢ it [ A\ s At it
Sppsnp (1) = J dt <i~> <ﬁ> exp (—|/t* + u*) 2}, <> Py < ‘ >
/an /Ln’p’ /an )‘n’p’
0

can be expressed in terms of the Bessel functions of second kind. Expressions for #© are
obtained from #© by interchanging x and y.
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