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Abstract. We present a calculation of electron capture rates to a single quantum 
weii (ow) taking iuii account of the quasibound 2D siaies, which are iocaiized in 
the vicinity of a QW at energies above the barrier. To find the net capture rates we 
calculate the rates of capture, escape and carrier relaxation within the bound 2D 
states, assisted by both emission and absorption of optical phonons by an electron 
with arbitrary positive initial energy, as well as (quasi)elastic impurity and acoustic 
phonon scattering. The dependences of the capture rates of the non-degenerate 
electrons on the weli width and temperature are discussed. 

1. Introduction 

The mechanism for carrier capture to a quantum 
well (QW) is of fundamental importance to the 
understanding of ,the vertical transport and luminescence 
in semiconductor smctures with quantum confinement. 
inc cdpiuic 01 oictiiruns piays a. KCY iuic 111 uciinmg iuc 
ultimate performance of many modem QW devices, in 
particular QW lasers [ l ]  and infrared photodetectors [2]. 

In the first works the processes of carrier capture to 
QW were treated semiclassically 131 as carrier diffusion 
in a separate confinement region. Later Brum and 
Bastard [4] performed quantum mechanical calculations 
for LO phonon-assisted electron capture to a single QW 
and predicted the oscillation of capture time versus 
width of the well due to resonances associated with 
the appearance of new states in the QW. Their results 
were extended in subsequent works by consideration of 
graded-index separate confinement heterostructures [5], 
interaction with the quantized optical phonon modes in 
superlattices [6], indirect capture via bound states of the 

screening [8], capture of holes to QW with allowance for 
a complex structure of the valence band 191, Coulomb 
attraction between captured electron and holes [IO], 
spatial decay of the electron wavefunction due to a strong 
scattering [i i j  and caicuiations of electron capture rates 
to quantum wires and dots [12]. 

Until recently the observed capture times seemed to 
contradict the predictions of the quantum mechanical 
model. Picosecond time-resolved [13] and continuous- 
wave [ i4j photoiuminescence measurements gave 
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capture rates which did not agree with the theoretical 
GrllLUla.llUIIS allu IIU iosulrdill wc11 WlUUl ucpclluorice was 
observed. However, in the latest subpicosecond pump 
and probe photoluminescence experiments, the resonant 
capture of an electron to a QW has been observed 
and predictions of the quantum mechanical model were 
---G...--A c,.- -..Fc-:~-.I.. +I.:- I ~ 9nn A \  11- rqc I L ?  
LVLlllllllLiU I", >ulub'cuuy 11IlL1 {% JUU fi, Wcl'a LiJ, ,U,. 

The observation of the resonant features of the capture 
process became possible in  part due to special techniques 
which enhance the quantum mechanical reflectivity of 
the electron (use of thin tunnel bariers on both sides 
of the well) and eliminate the relaxation processes that 
obscure the observation of capture (resonant excitation 
of carriers to the bottom of the barrier). 

Since the pioneering paper by Brum and Bastard 
141 the majority of works have treated electron capture 
as the transition from unbound three-dimensional (3D) 
states to the truly bound two-dimensional (2D) states in 
a well with energy below the barrier, E c 0. Thus, at 
low electron concentration, only electrons with energies 
in the range 0 < E < h% can be captured after the 
nminr;nn nf .,.. nnr;n.l~ -hnnn- plp..llll z ,.,. n-i., 
W I " I U . " L I  " I  'L" "p"- y""".2,. "1 CL,.-,&J "Uq. ","J a 
few publications [16-20] have considered an alternative 
capture mechanism via quasibound 2D states having total 
energies above the barrier, because of the large in-plane 
kinetic energy. 

Tknt a ~ d  Po:& [!8j ha-ve ana$& the Eatrix 
elements for the electron escape rates from the QW and 
suggested that a different dependence on the transfemed 
momentum q under certain conditions can lead to 
suppression of scattering by polar optical phonons 

scattering. On the other hand, in [16] the results of 
femtosecond time-resolved luminescence measurements 
of carrier capture to multi-quantum well structures were 
interpreted in terms of the competing influence of LO 
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Electron capture to a quantum well 

vicinity of the well, or by quantum numbers k, and p 
for unbound states in the parity representation: 

*K,i.n(r) = s"' expCkllrli)$nn(z) (1) 

* k l , , k z , p ( r )  = s-'/* expC&llrll)ll/k..p(z). (2) 

Here S is a normalization area; n = 0,1,. . . numbers 
the quantum subbands in the well and p is the the parity 
of unbound state ( p  = 0 for a symmetric state and p = 1 
for the antisymmetric one). In the parity representation 
the wavevector k,  can be chosen to be positive, k, > 0. 

Corresponding eigenenergies are given by 

phonon scattering and impurity scattering. Calculation 
of capture rates due to interface impurity scattering has 
shown that the latter can dominate when the LO phonon 
scattering reveals resonant minima. Recently Weber and 
Paula [ZO] showed that the partial excitation of electrons 
to the quasibound states during the luminescence 
experiments could result in faster relaxation and capture. 

In this paper we present an analysis of the electron 
capture to a QW with the participation of the quasibound 
2D states, which are localized in the vicinity of a QW 
at energies above the barrier. We caicuiate the rates 
of capture assisted by both emission and absorption of 
optical phonons by an electron with arbitrary positive 
initial energy, as well as (quasi)elastic impurity and 
acoustic phonon scattering. 

The rest of the paper is organized as follows. In 
section 2 we formulate the model and write the basic 
equations. In section 3 we present expressions for the 
rates of all possible transitions of electrons (capture, 
escape and intersubband transitions) due to inelastic and 
elastic scattering. Section 4 contains the results of 
numerical calculations and discussion. The expressions 
for the form factors of the transitions are presented in 
the appendix. 

2. Model and basic equations 

xxr -  LuLLu;di; ^^_^. 
the potential V(r)  = -Vo for - u / 2  < z < a/2  and 
V ( r )  = 0 otherwise (see figure 1). We assume the 
difference between the effective masses in the well and 
barriers to be small and set the effective mass m to be 
constant over the whole space. 

The electron wavefunctions Y(r) are characterized, 
in addition to the wavevector kll in the xy plane, by the 
discrete quantum number n for the states localized in the 

a sitigle mtaiigdzi qiiantiiii we:! with 

2D states E 30 states 

Figure 1. Geometry of the system-finite rectangular 
quantum well of width a and depth V,. Two-dimensional 
(confined) states and three-dimensional (extended) states 
are shown schematically. 

Thus, E ,  = hKi/2m is the ionization energy of the nth 
subband; the variables K~~ and k,, (the subscript w 
stands for 'well') are defined by the right-hand sides 
of equations (3) and (4). The eigenvalues for the 
bound states are found from the following transcendental 
equation: 

With the help of the notation 

P-- -. 
L", ="Gill n I ^^^ I 

L.UJ 1 
CS"(X) = 

sinx for odd n 

the transverse wavefunctions of bound states can be 
written as 

where the normalization constant is 

x cs,(Kwna/2). 

For unbound states we have 
%T L 

.I,. I..\ - I- 
VC Y&,P\ ' l  - 

where the phase qp is found from the equation 

tanq, = (k,,/k,)'-2Ptan(kw,u/2) 

and C is a normalization length in the z-direction. 
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The net electron capture rate to a quantum well 
is specified by the combination of capture, escape, 
relaxation through the confined 2D states, and radiative 
recombination with the holes at the bottom of the 
QW. Below we consider the case of a small electron 
concentration and we will neglect the influence of 
electron-electron scattering. Moreover, we assume that 
the recombination is fast enough to prevent filling of the 
confined states. 

In this case, the net capture rate is equal to the rate 
of transition from the 3D to 2D states multiplied by the 
probability of a recently captured electron relaxing down 
through the confined states instead of being re-emitted 
to the 3D states. Therefore, in addition to the capture 
rate, the rates of relaxation within 2D states and escape 
should be calculated. 

Since even at positive energies there exist 2D-like 
‘quasibound‘ states with a large kinetic energy of the 
in-plane motion, the capture to QW is not limited by 
emission of an LO phonon by an electron with an initial 
energy below hwo. Electrons with any energy can emit 
or absorb the phonon, or be scattered elastically to 
quasibound states with the energies above the barrier. 
In the second stage such ‘pseudocaptured’ electrons can 
relax effectively to the bottom of QW due to emission of 
LO phonons. 

In the following we consider the electron transitions 
due to scattering by LO and DA phonons as well 
as impurities localized at the interfaces. Transition 
probabilities can be written in the form 

w:!.)~ = I(qi(r) Iv(r)l *,(r))l’s(E, - E ,  izfio,) 

(7) 
where i and f are initial and final electron states: for 
electron capture i (k,,, kz, p )  and f 5 (ki, n!; for 
escape i = (&I,, n )  and f (ki, k,, p ) ;  for transitions 
within U )  states i = (kll, n )  and f = (&I, n’). In the 
case of phonon scattering q is a phonon wavevector, the 
upper sign corresponds to the emission, and the lower 
sign to the absorption of a phonon. 

To calculate the rates due to polar optical phonon 
scattering we use equation (7) with os = 00 and 

2x 

vm(r) = [ 2 n e 2 f i w o ~ * ( W b ) / ~ * q 2 ~ ~ ] ” 2  exp(iqr). (8) 

Here N*(w,) = [exp@,/T) - 11-‘ + 1/2 f 1/2 is a 
phonon occupahon factor and T is a lattice temperature; 
1 / ~ *  1 / ~ -  - I / E ~ ,  where EO and E, are static and 
high-frequency dielectric susceptibilities of the crystal. 

For deformation acoustic phonon scattering we have 
or = sq, and is given by equation (8) after 
changing 2re2/&*qZ to hDZq/2ps, where s, D and p 
are the sound velocity, deformation potential constant 
and crystal density respectively. Below we use the 
quasielastic approximation, setting o, + 0 and 

for bath emission and absorption of an acoustic phonon. 
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In the case of elastic scattering by uncorrelated 
impurities with a sheet concentration ni located at the 
interface (z = a/2) we use equation (7) with o, = 0 
and 

On the basis of expression (7) for the transition 
probability between given microscopic initial and final 
states, we define three transition rates corresponding to 
a less detailed description of the scattering processes. 

The scattering rate from the given microscopic initial 
state i is equal to 

where for impurity scattering the summation over q 
should be ignored. 

We also define the averaged transition probability per 
unit initial energy, 

Finally, the total transition rate can be obtained from 
equation (11) or (12), 

w = 2 C f ( ~ i ) 1 1  - f ( ~ i  ~ f i w q ) ~ ~ i  

where f(E) is a distribution function of the electron gas. 

3. Transition rates 

In this section we calculate the capture rates from a 
microscopic initial state W,, iransition rates per unit 
energy aW/aE,  and total transition rates W, for LO and 
DA phonon and impurity scattering. 

3.1. Capture rates from a given initial state 

For LO phonon scattering, we find from equations (7), 
(8) and (1 1) the following capture rate: 

(14) 

where ki,, = Zmct@t. The prime over the sum 
means that summation is performed only over subbands 
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Here the superscripts e and a stand for 'emission' and 
'absorption'. For the (quasi)elastic impurity and DA 
phonon-mediated processes the capture and escape rates 
are equal. 

In order to estimate the probability for a captured 
electron to relax via 2D states to the bottom of the 
QW instead of being emitted to delocalized states, we 
calculate the rate of LO phonon-assisted transitions 
between the confined states. Substituting equations (7) 
and (8) in (12) we obtain 

satisfying the condition E + c,, =. i h w ~ .  The form 
factors 

(15)  
are given by equation (AI) of the appendix. 

In the elastic approximation the capture rates due to 
the absorption and emission of DA phonons are equal 
and given by 

where 
m 

is calculated in the appendix. 
The capture rate due to scattering by interface 

impurities with a sheet concentration ni is obtained from 
equations (7), (10) and (11) and is equal to 

where fc* = , / k t  + k: + K,' i kli and the form factors 

1 - - 1  

are calculated in the appendix (see equation (A3)). 

3.2. Energy-dependent rates 

Comparison of equations (7), ( 1 1 )  and (12)  gives the 
following expression for the averaged capture rate per 
unit energy, aW/aE, in terms of the rate wk,,.ka,p: 

where k' = 2mE/Ei. 
The escape rates due to the interaction with LO 

phonons are related to the corresponding capture rates 
(given by equations (14) and (20)) by the detailed 
balance relation, 

IML"I2 c' / ( A b 2  I w 2  - " 2  - "2\2 f An2(w2 I bZ\' ..*,* \"ph I 'n 'n' Y z I  -91 \'n I I 

(22) 
The summation in equation (22)  is performed over the 
available initial and final states n and n', i.e. -6" c E 
and -e,:, + kwC c E .  The matrix elements -Mz:-n can 
be obtained from M&+n by changing in equation (15) 
the quantum numbers (kz, p )  to n' and the length C to 
a. The explicit form of q;+" is given by equation (A2) 
of the appendix. 

3.3. Total transition rates 
To find the total capture rate one must specify the 
canier distribution function. Below we assume non- 
degenerate statistics for the unconfined 3D caniers and 
small occupancy numbers of 2D states near the top of 
the well to neglect the Pauli factors. 'The normalized 
distribution function f (k)  for the non-degenerate 3D 
electrons has the form 

where k: = 2mT/h2 is the thermal wavevector of the 
electrons. 

Substitutingequations (13) and (18) in (12) we obtain 
the following expression for the capture rates due to the 
emission (upper sign) and absorption (lower sign) of an 
LO phonon: 
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Here r(;, U )  = L-exp(-u) & / , h i s  a complementary 
incomplete gamma function. 

The total rates of capture due to the quasielastic 
emission and absorption of DA phonons are equal and 
given by 

DA mD2T 
2fik3krps2C w3n-20 = 

For the impurity scattering induced capture we find 
from equations (12). (17) and (21): 

4. Numerical results and discussion 

We perform numerical calculations for the AIGaAs/ 
GaAs/AIGaAs single quantum well of depth Vo = 300 
meV, corresponding to an aluminium content in the 
barrier equal to x = 0.33. We neglect the difference 
between the other parameters of the well and the barriers 
and use the material constants of GaAs. 

The results of the numerical calculation of the 
capture rates from the given initial state, W,, are 
presented in figures 2-4. We choose the width of the well 
to be a = 100 A and the lattice temperature T = 300 K. 
For convenience, we performed the summation over the 
parities p of the initial state, and plotted the dependence 
of the capture rates on the total kinetic energy E = 
fi2(ki + k:)/2m and angle 8 = arctan(kll/k,) of the 3D 
electron, w(E1 e) = rp W~l; ,~z .p .  

Since the wavefunctions of the 3D states are 
normalized to the distance C (cf equation (6)). the 
probability of finding the electron in the vicinity of the 
quantum well is proportional to a/& and, as a result, 
the capture probabilities given by equations (14)-[19) 
are inversely proportional to C. In order to eliminate 
the dependence of the final results on the unphysical 
normalization distance, we plot the 'interface velocity' 
CW(E,  0 )  with dimensions of cms-' [ll]. 

In figure 2 we plot the capture rate W!E, 0) for 
emission (full curves) and absorption (broken curves) 
of LO phonons obtained from equation (14). Electrons 
with energy less than approximately 6 meV cannot be 
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Figure 2. Capture rates, L:W(E, e), versus initial electron 
energy E due  to emission (thick culves) and absorption 
(thin c u m )  of polar opticalphonons. Full curves 
correspond to electron motion perpendicular (e = 0) to QW 
and the broken curve to B = 1x14. Partial contributions are 
shown for electron capture from continuum states to the 
confined states with quantum numbers n = 0.1 and 2 (for 
phonon emission and 8 = 0) or n = 2 (otherwise). Width of 
the well a = 100 A, lattice temperature T = 300 K. 

captured to the highest subband (n  = 2) due to emission 
of the phonon, because of the energy conservation law. 

The relative strength of transition channels is 
specified by the magnitude of the electron-LO-phonon 
coupling (8). which is proportional to l / q2 ,  and the 
dependence of the overlap integral (15) on kz. Thus, 
the transitions to the highest subband (n = 2), which 
for the width a = 100 A lies close to the continuum, 
give the dominant connibution to tne capture rates 
because of small momentum q transferred i n  the 
process. Transitions to the lower subbands (n = 0 , l )  
involve larger phonon momenta and the electron-phonon 
coupling is much weaker. Note that if the width of the 

ievei = I I , ~ ~ ~ ~  ' oecOmeS 
unbound, then there will be no capture to the n = 2 
subband, while the contributions from the deeply lying 
levels n = 0, 1 are practically unchanged. That leads to 
the appearance of the set of resonances in the dependence 

Calculations show that the rate W ( E ,  0 )  initially 
increases with energy due to the growth of the overlap 
integral (E), but then drops because of the increase 
of the effective transferred momentum q. The rapid 
r lmrrprQp ,,e +he A.IPr~lln intpnrsli fnr U + n nor ti.^^.. 

due to the pushing of the 3D wavefunction out of the 
well, which has the following classical interpretation. 
For a low kinetic energy E the carrier velocity in the 
barrier is small, but above the well the velocity increases 

the well in a relatively short time. 
The dependence of the rates W(E, 8 )  on the angle 

8 is also specified by the dependence of the overlap 

well U is $ii@iY inere=& md 

A$ +ha +-+-I --+an -~ &!-- ..,:-l*L /-f c l ? \  
"I LllC L " L U  baprmr l a l Z D  "U L U G  WlULl ,  U \CL L-r,,. 
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n= 1 - _ _ _ _ _ _ _ _ _ _  
q=0 

0 50 100 150 

E (mevj 
Figure 3. Capture rates, LW(E,  e) ,  versus initial 

at both interfaces (z = ka/2) with a sheet density 
n,,, = 10'O cm-* at each interface. Other notations are as  
for figure 2. 

integral (15) on the transverse wavevector k,. For 

capture rates W ( E ,  0)  + 0, because the electrons do not 
cross the well, and the probability of finding the electron 
in the vicinity of the well is proportional to Q/L + 0. 

Figure 3 depicts the capture rates W ( E . 0 )  due 
to scattering by impurities (full curves). The results 
have been obtained by assuming the sheet impurity 
concentration ni = 1O'O cm-* at each interface. The 
Coulomb interaction between 3D electron and impurity 
has the same l/q2 dependence on the transferred 
momentum as that for LO phonons, which results in a 
similar rate dependence on energy as in figure 2. Two 
essential differences with LO phonon-assisted capture are 
that the impurity scattering is elastic and that the strength 
of this mechanism (except the resonant condition where 
a new bound state enters the well) is almost an order of 
magnitude smaller. 

The DA phonon-induced capture rates, W ( E ,  e), 
were calculated with the use of equation (16); note that 
in the elastic approximation the emission and absorption 
of the phonon give equal contributions. It is seen from 
figure 4 that acoustic phonon-mediated capture rates 
increase much faster with initial electron energy, because 
the energy of electron interaction with the deformation 
potential of an acoustic phonon (9), proportional to 
4, increases with the transferred momentum 1181. 
Eowever, in contrast to the suggestion in ii8j, the 
contribution of acoustic phonons to capture is small for 
the thermal electrons with energy of order T because of 
a relatively small coupling constant D. 

In order to calculate the net capture rate it is 

(pseudo)captured electron to relax to the bottom of the 
well and eventually recombine, rather than to be re- 
emitted from the well. To answer this question we have 

,.I,...* ".." c A,,.. I.. "....+I-":"" I-., &.."..*:+:..~Î ^ ,̂̂ rl 
Gl r r l lV lL  rllrlyy L U"= L" aC.a'Lr,,lLy u y  ,,,,pu,,L,r~ IYc-Lru 

ala.-+-,v.- -A.,:*- -0-011-1 +A t h m  : ~ t - r F n ~ e  0 1 - I? rhn 
G l r r l l U l l D  "'YY'L'E, y'ULLuc1 tu L L l C  I I L I I I I I a b G ,  Y 7 ,L,&, L U G  

iiiiFii&2t *a byow t$i piobabi!iQ for an &ea&J' 
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Figure 4. Capture rates, LW(E.  e) ,  versus initial electron 

phonons. Other notations are a s  for figure 2. 
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Figure 5. Probabilities per unit energy of transitions within 
2D states, ( l i s p  W2D-2D/aE (upper pad of the figure), 
and escape probabilities, (i/s)a W2D+m/aE (lower part of 
the figure), versus initial electron energy E. Full curves 
correspond to emission and broken curves to absorption of 
polar opticalphonons. Width of the well a = 100 A, lattice 
temperature T = 300 K. 

calculated the rates of LO phonon-assisted transitions 
U C L W G G L ,  L L l L  LY ULaL=o( " ..-ZD,"L1, E , L " C L A  V J  GyU'lrAuv 

(22). and the rates of escape, aWZD+3D/aE, given by 
equations (21) and (14). 

As seen from figure 5, the probability of electron 
relaxation via 2D confined states due to cascade emission 
of LO phonoEs is. &noat tx~~o orders of zzgzitcde 
higher than that of escape outside of the well (the 
assumption of non-degenerate statistics and effective 
electron recombination at the bottom of the well is 
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essential here). Such a lage difference is due to the 
different density of states for 2D and 3D caniers [19]. 
The density of states for electrons at a given 2D subband 
i's constant, while for the 3D states it is proportional to 

and becomes comparable to that for 2D states at 
energies much larger than the electron thermal energy. 
Thus we may conclude that if the canier is captured 
to the well it will not escape, but rather relax to the 
bottom of the well, and the net capture rates are given 
by equations (14x19). 

We plotted the results for the dependence of the 
captcre rates (ve!~ft;es) LWSE+->, $yen by q a e ~ f i s  
(24-(26), on the width of the well a in figures M. 

To analyse qualitatively the behaviour of the LO 
phonon-mediated capture rates with respect to the width 
of the well a we discuss the case of low temperature, 

below hoo % 450 K. Following Bmm and Bastard 
[4], we have calculated the partial contributions for 
capture to different subbands, n = 0, 1 ,2 ,3  from the 
symmetric initial states with parity p = 0 (figure 6(a)) 
and antisymmetric states with parity p = 1 (figure 6(b)). 
Only transitions due to emission of phonons are 
taken into account, because the contribution of phonon 
absorption is negligible at low temperature. 

As we see, there exist two different sets of 
resonances in the U'@) dependence. The first set occurs 
when the nth level is at anenergy hwo below the barrier, 
i.e. the ionization energy E" = hwo. In this situation the 
3D electrons with energy E - T << hu,, can emit an 
LO phonon from the bottom of the 3D conduction band 
to the bottom of the nth subband. Since the transition 
occurs between states with small wavevectors k, the 
transferred momentum q is small and the capture rates 
increase resonantly due to the l/qz factor in equation 
(8). The enhancement of the transition rates owing to 
the l / q 2  singularity in (8) appears to be stronger than 
the opposite effect caused by a decrease of the overlap 
integral (15). 

The second set of resonant maxima occurs when, 
with the decrease of the width a, the nth bound state 
leaves the well [4] (the case n = 0 is excluded). 
Because of the term csp(k,,a/2) in the denominator 
of equation (6) for the 3D wavefunction, the confined 
state becomes a virtual resonant continuous state with 
a greatly enhanced probability of observing the particle 
within the well. Thus, for E .  % 0 most of 3D electrons 
occupy the resonant state, and the drastic increase in 
the capture rates occurs because of enhancement of the 
overlap integral (15). 

It is important to note that the resonant virtual state 
'inherits' the symmetry of the corresponding bound state 

u,z p,vuav,r,ry V I  L " ' y L L 1 ~  U L G  y 'uLLL.rG w1111111 

the well will be enhanced for the state @kx.p(z) with 
parity equal to that of the state @"(z). The reason 
is that the minima corresponding to n = 2,4  appear 
only in figure 6(a) (symmetric 3D states, p = O), and 
the m i h a  fer ,E = !, 3 zppear an!y in figcre 6(b) 
(antisymmetric initial states, p = 1). The probabilities 
are enhanced for the transitions to all lower-lying 
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T = 20 K; where all the electrons are at energies we!! 

[4j, +ha ---h..h:I:+.. -$ G-d;-.- +he ---+:-I- ... :&:- 

T = 20K LO phonon emission, p=l 

Well  width (A) 

Figure 6. Partial contributions to the total capture rates, 

phonons for different electron final states versus the width 
of the well a. (a) The symmetric initial 3D state (p = 0), 
(6) capture from an antisymmetric initial state (p = 1). 
Full, broken, chain and dotted curves correspond to final 
electron states with subband numbers n = 0.1,2 and 3. 
Lattice and electron temperature T = 20 K. 

confined states, and not just a single one, like in the 
first set of the resonances. 

In figure 7 we have plotted the total capture rates 
W,,,,, due to the emission and absorption of Lo 
phonons for three different temperatures, T = 20, 77 
and 300 K. Both sets of resonances in the well width 
dependences are very sharp for T = 20 K they become 
more smeared at T = 17 K, and at room temperature 
only the first set of resonances (at E ,  % hoo) produces 

smeared out. 
One can point out that the strength of the first set 

of resonances (E" ~3 Ru,,) hardly changes when the 
temperature is decreased from 77 K to 20 K. This is 
bxause ,&en me ce:&r;on E w T (( is packed, 
practically all electrons have the same probabilities of 
emitting a phonon and relaxing to the bottom of the 

r M f L  -- /in rme-11 A m  tn tho amkcinn nf n n l ~ ~ r n n f i r d  I..~"^LY ~ . .  "...I ,, ""I .- ... 1 1....11.-.. I. -.-. "~.,"" 
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Figure 7. Total electron capture rate &w3D+2D (in cms-') 
due to the emission and absorption of polar optical 
phonons versus the width of the well a. Full, broken 
and chain curves correspond to the lattice and electron 
temperature T = 300, 77 and 20 K. 

nth subband. On the other hand, the magnitudes of the 
second set of peaks continue to drop, since at low energy 
the width of the resonant level is still comparable to 
the temperature, and the saturation has not yet occurred. 
Our calculations agee  with results reported by Kuhn and 
Mahler [ l l ]  at T = 10 K under the assumption of full 
phase coherence. 

Note that in the paper by Brum and Bastard [4], 
instead of the second set of resonances corresponding 
to the appearance of a new bound state in the well 

U,, l.=suLIa.L'L;cs VI d"ULllC1 Lypc til= p,G"'Lcu, 

where the resonant state is at the optical phonon energy 
above the conduction band edge ( E ,  % 4%). This 
is because the authors assumed a degenerate electron 
distribution with a large Fermi energy (electrons exist at 
all energies below hw) and considered only the 'true' 
capture processes with the electron final state below the 
barrier. 

Finally, in figure 8 we show the capture rates due 
to (quasi)elastic scattering by the interface impurities 
(thick curvesj and deiomaiion acoustic phonons (thin 
curves). Both dependences have the set of resonant 
peaks corresponding to the entrance of new levels into 
the well (E,, = 0), due both to addition of the new final 
2D states when the nth level is bound (to the right of the 
resonance) and to an enhancement of the probability of 
finding the particle in the initial 3D state when the level 
is virtual (to the left of the resonance). 

Similar to the case of the first set of resonances 
for the LO phonon-assisted capture (E, hm,,), the 
transferred momentum q is small. That leads to 
an additional enhancement of impurity scattering and 
suppression of the acoustic phonon-assisted capture 
in the vicinity of the resonance. With a decrease 
of temperature the effective transferred momentum q 

( E ,  % n\ "--~_----- -c *--.L-- I --- - - - A : - ~ - A  

50 100 150 

Well width (A) 

Figure 8. Total capture rate Cw3D-tZD (in cm s-l) due to 
scattering by impurities (thick curves) and deformation 
acoustic phonons (lhin curves) versus the width of the well 
a. Impurities are located at both interfaces (z = fa/2)  
with a sheet density nimp = loTo at each interface. 
Full, broken and chain curves correspond to the lattice and 
electron temperature J = 300, 77 and 20 K. 

becomes smaller, the l / q z  and q-like dependence of 
electron coupling to impurities and DA phonons (see 
equations (9) and (10)) becoming stronger. This effect 
and the proportionality of the DA phonon occupation 
number to T govem the temperature dependence of these 
two capture mechanisms. 

Comparison of figures 7 and 8 shows that Lo 
phonon-assisted capture dominates at all widths, except 

vicinity of the well widths defined by this condition, 
impurity-assisted capture can dominate. Acoustic 
phonons give a negligible contribution to the capture 
rates for all parameter ranges. 

It should be noted that, because of the domination of 
the processes with small effective momentum transfer 
q ,  the contribution to resonant capture can be given 
by remote impurities with q < I / &  where e is their 
distance from the well. On the other hand, at finite 
e;ei.*uon concenira~~ons and smaii he rates wiii 
be suppressed by a factor of the order of (1 + qS/q)* ,  
where qs = 2neZn/&oT is the Debye screening length of 
the two-dimensional electron gas. 

Evidence for an enhanced impurity-scattering- 
assisted capture to the multi-quantum well (MQW) 
structures was obtained in recent femtosecond time- 
resolved luminescence measurements [16]. However, 
the accompanying theoretical calculations of Lo phonon- 
mediated capture differ significantly from the original 
works on MQW [6, 11, 211. 

In summary, we have calculated the rates of capture, 
escape and carrier relaxation within the 2D bound states 
taking full account of quasibound electron states at 
positive energies due to LO phonon, DA phonon and 

267 

where the COE&";O- % 0 i: C-!fi!!ed. 1; thz nhycw 



D Bradt et a/ 

impurity scattering. The contribution of the strongly 
inelastic LO phonon scattering dominates except for 
well widths a corresponding to the entrance of a new 
bound state into the quantum well, where the impurity 
scattering mechanism with small transferred momentum 
q dominates. 
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Appendix 

The form factor for the phonon-assisted transition 
between the 3D and 2D states (see equation (14)) is 
equal to 

where 9* = (k ,k fwn)a /2  and q = (-l)"tPexp(-~a). 
The function dkz,p+n,  defined by equation (16). is 

equal to 
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