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Abstract. We present a calculation of electron capture rates to a single guantum
well (ow) taking full account of the quasibound 2D states, which are localized in
the vicinity of a aw at energies above the barrier. To find the net capture rates we
calculate the rates of capture, escape and carrier relaxation within the bound 2D
states, agsisted by both emission and absorption of optical phoneons by an electron
with arbitrary positive initial energy, as well as (quasi}elastic impurity and acoustic
phonon scattering. The dependences of the capture rates of the non-degenerate

glectrons on the well width and temperature are discussed.

1. Introduction

The mechanism for carrier capture to a guantum
well (QW) is of fundamental importance to the
understanding of the vertical transport and Juminescence
in semiconductor structures with quantum confinement.
The capiure of elecirons pla_yS a J{Ey ole in ueuﬁiﬁg the
ultimate performance of many modem QW devices, in
particular QW lasers [1] and infrared photodetectors [2].

In the first works the processes of carrier capture to
QW were treated semiclassically [3] as carrier diffusion
in a separate confinement region. Later Brum and
Bastard [4] performed quantum mechanical calcniations
for LO phonon-assisted electron capture to a single QW
and predicted the oscillation of capture time versus
width of the well due to resonances associated with
the appearance of new states in the QW. Their results
were extended in subsequent works by consideration of
graded-index separate confinement heterostructures [5],
interaction with the quantized optical phonon modes in
superlattices [6], indirect capture via bound states of the
barrier impurities {7], electron—eleciron Inieraciion and
screening [8], capture of holes to QW with allowance for
a complex structure of the valence band [9], Coulomb
attraction between captured electron and holes [10],
spatial decay of the electron wavefunction due to a strong
scattering [11] and calculations of electron capture rates
to quantum wires and dots [12].

Until recently the observed capture times seemed to
contradict the predictions of the quantum mechanical
model. Picosecond time-resolved [13] and continuous-
wave [i4] phoiojuminescence measuremenis gave
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capture rates which did not agree with the theoretical
calculations and no resonant well width uepenuence was
observed. However, in the latest subpicosecond pump
and probe photoluminescence experiments, the resonant
capture of an electron to a QW has been observed
and predictions of the quantum mechanical model were
confirmed for sufficiently thin (< 300 A) wells [15, 16].
The observation of the resonant features of the capture
process became possible in part due to special techniques
which enhance the quantum mechanical reflectivity of
the electron (use of thin tunnel barriers on both sides
of the well) and eliminate the relaxation processes that
obscure the observation of capture (resonant excitation
of carriers to the bottom of the barrier).

Since the pioneering paper by Brum and Bastard
[4] the majority of works have treated electron capture
as the transition from unbound three-dimensional (3D)
states to the truly bound two-dimensional (2D) states in
a well with energy below the barrier, £ < 0. Thus, at
low electron concentration, only electrons with energies
in the range 0 <« E < hwp can be captured after the
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few publications [16-20] have considered an alternative
capture mechanism via quasibound 2D states having total
energies above the barrier, because of the large in-plane
kinetic energy.
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elements for the electron escape rates from the QW and
suggested that a different dependence on the transferred
momentum ¢ under certain conditions can lead to
suppression of scattering by polar optical phonons
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scattering. On the other hand, in [16] the results of
femtosecond time-resolved luminescence measurements
of carrier capture to multi-quantum well structures were
Interpreted in terms of the competing influence of LO



phonon scattering and impurity scattering. Calculation
of capture rates due to interface impurity scattering has
shown that the latter can dominate when the LO phonon
scattering reveals resonant minima. Recently Weber and
Paula [20] showed that the partial excitation of electrons
to the quasibound states during the luminescence
experiments could result in faster relaxation and capture.

In this paper we present an analysis of the electron
capture to a QW with the participation of the quasibound
2D states, which are localized in the vicinity of a QW
at energics above the barrier. We calculate the rates
of capture assisted by both emission and absorption of
optical phonons by an electron with arbitrary positive
initial energy, as well as (quasi)elastic impurity and
acoustic phonon scattering.

The rest of the paper is organized as follows. In
section 2 we formulate the model and write the basic
equations. In section 3 we present expressions for the
rates of all possible transitions of electrons (capture,
escape and intersubband transitions) due to inelastic and
elastic scattering. Section 4 contains the results of
numerical calculations and discussion. The expressions
for the form factors of the transitions are presented in
the appendix.

2. Model and basic equations
We consider a single rectangular quan um well with
the potential V{r) = —V; for —a/2 < af2 and
V(r) = 0 otherwise (see figure I). Wc assume the
difference between the effective masses in the well and
barriers to be small and set the effective mass m to be
constant over the whole space.

The electron wavefunctions W(r) are characterized,
in addition to the wavevector k| in the xy plane, by the
discrete guantum number r for the states localized in the

2D states E 3D states
—-a/2 a/2 zk
R4
-V

Figure 1. Geometry of the system—finite rectangular
quantum well of width a and depth V. Two-dimensional
{confined) states and three-dimensional {extended} states
are shown schematically.

Electron capture to a guantum well

vicinity of the well, or by quantum numbers &, and p
for unbound states in the parity representation:

Wi n(r) = S~ explikyry)¥a(z) (D
Wi ke,p () = SV explikyry W, p(2). (2)

Here S is a normalization area; » = 0, 1, ... numbers
the quantum subbands in the well and p is the the parity
of unbound state (p = 0 for a symmetric state and p = 1
for the antisymmetric one). In the parity representation
the wavevector &, can be chosen to be positive, &, > 0.
Corresponding eigenenergies are given by

TIZ 2
Eyn =5~ (- —x +k>——< LEY-V (3)

.‘Fz
Buybop = 50z +Hj) = m(kiﬁkﬁ)—vo. 4)

Thus, €, = hx2/2m is the ionization energy of the nth
subband; the variables kg, and k., (the subscript w
stands for ‘well’) are defined by the right-hand sides
of equations (3) and (4). The eigenvalues for the
bound states are found from the following transcendental

equation:
QKgn + TH
tan —"‘—2——— = \/2mVy /R, — 1.
With the help of the notation
csy(x) = i

the transverse wavefunctions of bound states can be
written as

¥a(2) =C

{ (sgnz)" expli,(a/2 — |z])] for |z{ > a/2
CSy (kwn2 )} fCSn (Kuna /2) for |z] < a/2.
(5)

where the normalization constant is

csi(rwna/2 -2
+ o lewna/ ))

2Ky K,

Sin(kwnt)

a f
Cp = ('2“ + (-1}
X €8y (Kunt/2).

For unbound states we have

Yk.p )= .V z
csplk;(1z] — a/2) + @] for |z] > a/2
Xy (@) ©
ooy U3 7 Fe?) for |z] < a/2

where the phase g, is found from the equation
tang, = (sz/kz)luzp tan(sza/Z)
and £ is a normalization length in the z-direction.
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The net electron capture rate to a quantum well
is specified by the combination of capture, escape,
relaxation through the confined 2D states, and radiative
recombination with the holes at the bottom of the
QW. Below we consider the case of a small electron
concentration and we will neglect the influence of
electron—electron scattering. Moreover, we assume that
the recombination is fast enough to prevent filling of the
confined states.

In this case, the net capture rate is equal to the rate
of transition from the 3D to 2D states multiplied by the
probability of a recently captured electron relaxing down
through the confined states instead of being re-emitted
to the 3D states. Therefore, in addition to the capture
rate, the rates of relaxation within 2D states and escape
should be calculated,

Since even at positive energies there exist 2D-like
‘quasibound’ states with a large kinetic energy of the
in-plane motion, the capture to QW is not limited by
emission of an LO phonon by an electron with an initial
energy below fwp. Electrons with any energy can emit
ot absorb the phonon, or be scattered elastically to
quasibound states with the energies above the barrier.
In the second stage such ‘pseudocaptured’ electrons can
relax effectively to the bottom of QW due to emission of
LO phonons.

In the following we consider the electron transitions
due to scattering by LO and DA phonons as well
as Impurities localized at the interfaces. Transition
probabilities can be written in the form

2
W, = @) [V % 00) 8(E; — i )
¢

where [ and f are initial and final electron states: for
electron capture i = (kj, k;, p) and f = (&}, n); for
escape | = (k),n) and f = (k|, k. p); for transitions
within 2D states i = (ky,n) and f = (ky,n"). In the
case of phonon scattering ¢ is a phonon wavevector, the
upper sign corresponds to the emission, and the lower
sign to the absorption of a phonon.

To calculate the rates due to polar optical phonon
scattering we use equation (7) with w; = wp and

Vio(r) = [2mehanN*(wo)/e*q*SL]"” expligr). (8)

Here N¥(w,) = [exp(hw,/T) — 117" +1/2+1/2is a
phonon occupation factor and T is a lattice temperature;
1/e* = 1/60 — 1/8y, Where g and g, are static and
high-frequency dielectric susceptibilities of the crystal.
For deformation acoustic phonon scattering we have
w, = sq, and Vps is given by equation (8) after
changing 2me?/e*q? to hD?q/2ps, where s, D and p
are the sound velocity, deformation potential constant
and crystal density respectively. Below we use the
quasielastic approximation, setting w; — 0 and

Voar) = « D?T /2ps2 LS exp(igr) 9)
for both emission and absorption of an acoustic phonon,
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In the case of elastic scattering by uncorrelated
impurities with a sheet concentration »; located at the
interface (z = a/2) we use equation (7) with w, = 0
and

Vip(r} = VmS et feo/x2 + y2 + (z — a/2)2.  (10)

On the basis of expression (7) for the transition
probability between given microscopic initial and final
states, we define three transition rates corresponding to
a less detailed description of the scattering processes.

The scattering rate from the given microscopic initial
state i is equal to

q

where for impurity scattering the summation over g
should be ignored.

We also define the averaged transition probability per
unit initial energy,

%%’. =3y (Z) WO S(E-E).  (12)
i f g

Finally, the total transition rate can be obtained from
equation (11) or (12),

W= 22 FCEDIL = f(E: F heo,) W,

) (13)
=2ff(E)[1 - f(E ZFhwq)]ﬁdE

where f(E) is a distribution function of the electron gas.

3. Transition rates

In this section we calculate the capture rates from a
microscopic initial state W;, transition rates per unit
energy dW/9E, and total iransition rates W, for LO and
DA phonon and impurity scattering.

3.1. Capture rates from a given initial state
For LO phonon scattering, we find from equations (7),
(8) and (11) the following capture rate:

10 demayy .
(Whye.p Yapos ap = ey N=(eo)

X0

X quzzr |

S wp (R — k2 — g2 — kD)2 + (2g,K))?
(14)

M‘h

|2
ke, prn

where k%, = 2mao/h. The prime over the sum
means that summation is performed only over subbands



satisfying the condition E + ¢, > Zhwy. The form

factors

k, p=en ‘/7f dZ wkz P(Z)(COS sz + Sln%z)‘/fn(z)

(15)
are given by equation (Al} of the appendix.
In the elastic approximation the capture rates due to
the absorption and emission of DA phonons are equal
and given by

DA m.U"'
(Wkil ka, P)3D—&2D 2ps2h3 Z -Akz P (16)

where
s =24 ME P
ky p—n = T 7 ke p—n
0
iy f a2 1, @ P10 (17

is calculated in the appendix.

The capture rate due to scaftering by interface
impurities with a sheet concentration #; is obtained from
equations (7), (10) and (11) and is equal to

16T me'n;
(Wkn.k;.P);TDiZD = -_gghT—Er
% de T pon
N EE=T TS

el RO

where kg = ,/kj + k2 + k2 &£ ky and the form factors

"E 00
L pon = \/5 - dz Y, p(2) exp{—x|z — W/2))¥.(2)

(19)
are calculated in the appendix (see equation {A3)).

3.2. Energy-dependent rates

Comparison of equations (7), (11) and (12) gives the
following expression for the averaged capture rate per
unit energy, W/ E, in terms of the rate Wy, 4, ,:

(BW) _
OE /3p..a0

where k* = 2mE/h*,

The escape rates due to the interaction with LO
phonons are related to the corresponding capture rates
(given by equations (14) and (20)) by the detailed
balance relation,

(awf.o/0E)|
= exp(hian/T) (2 w_,fg_,m/aE)[qu. @1)

mSL
(hh)zfd'k ky=a/P R ke p (20)

Electron caplure to a quantum well

Here the superscripts e and a stand for ‘emission’ and
“absorption’. For the (quasi)elastic impurity and DA
phonon-mediated processes the capture and escape rates
are equal.

In order to estimate the probability for a captured
electron to relax via 2D states to the bottom of the
QW instead of being emitted to delocalized states, we
calculate the rate of LO phonon-assisied transitions
between the confined states. Substituting equations (7)
and (8) in (12) we obtain

RPN |

dW iy ze m wob +

— = ——F—N (wo) dq

AE “ahleta ¢
2Dwr2D mhe'a

q
% Zf Ian-yn]

bt 0122 ok e — gV A2 (i 4 B2
2, v\-&-.r\.ph (i Ky z/ TG ARy TR

(22)

The summation in equation (22) is performed over the
available initial and final states » and #', ie. —¢;, < E
and —e,y +hawy < E. The matrix elements Mq* _,, can
be obtained from M,C pn DY chancmg in equatxon (15)
the quantum numbers (k;, p) to n’ and the length £ to
a. The explicit form of M is given by equation (A2)

of the appendix.

3.3. Total transition rates

To find the total capture rate one must specify the
carrier distribution function. Below we assume non-
degenerate statistics for the unconfined 3D carriers and
small occupancy numbers of 2D states near the top of
the well to neglect the Pauli factors. The normalized
distribution function f(k) for the non-degenerate 3D
electrons has the form

. G G R .
K)= ex _—— L3
fo= a5z -2 ) (23)

where k3 = 2mT/h” is the thermal wavevector of the
electrons.

Substituting equations (13) and (18) in (12) we obtain
the following expression for the capture rates due to the
emission (upper sign) and absorption (lower sign) of an
LO phonon:

2mewyNE (wp)

1'_'-*1*212!‘
WaE" K.T.l.c

WD—)-ZD -

[ (k% — k2 -« —ql)* "’
1 + 4¢2 max(0, k2, ~ k%)
% 1—1 -, “ > pPas
Iﬁ (2q.kr)
(24)
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Here I'(§, u) = [ exp(—u) du/./u is a2 complementary
incomplete gamma function.

The total rates of capture due to the quasielastic
emission and absorption of DA phonons are equal and
given by

oA mD?T
= g Santkr sl
o0
kz
x fcmcz exp (—k—;) > A porn- (25)
‘b £3 T; ﬁ'p

For the impurity scattering induced capture we find
from equations (12), (17) and (21);

i Sxme“n, K2
Wsnizn o?f’k% 7 f dk, cxp( —L)

4. Numerical results and discussion

We perform numerical calculations for the AlGaAs/
GaAs/AlGaAs single quantum well of depth V; = 300
meV, corresponding to an alumipium content in the
barrier equal to x = 0.33. We neglect the difference
between the other parameters of the well and the barriers
and use the material constants of GaAs.

The results of the numerical calculation of the
capture rates from the given initial state, W,, are
presented in figures 2-4. We choose the width of the well
to be @ = 100 A and the lattice temperature T = 300 K.
For convenience, we performed the summation over the
parities p of the initial state, and plotted the dependence
of the capture rates on the total kinetic energy E =
n*(k} + k2)/2m and angle 8 = arctan(k, /%) of the 3D
electron, W(E,8) =3, Wy, ,.r

Since the wavefunctions of the 3D states are
normalized to the distance L (cf equation (6)), the
probability of finding the electron in the vicinity of the
quantum well is proportional to a/L and, as a result,
the capture probabilities given by equations (14)-(19)
are inversely proportional to L. In order to eliminate
the dependence of the final results on the unphysical
normalization distance, we plot the ‘interface velocity’
LW(E, 8) with dimensions of cms™! [11].

In figure 2 we plot the capture rate W(E, &) for
emission (full curves) and absorption (broken curves)
of LO phonons obtained from equation (14). Electrons
with energy less than approximately 6 meV cannot be
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Figure 2. Capture rates, LW{(E, @), versus initial electron
energy £ due to emission (thick curves) and absorption

(thin curve) of polar oprrcaf phonons. Full curves
comrespond to electron motion perpendicular (6 = 0} to ow
and the broken curve to 8 = /4. Partial contributions are
shown for electron capture from continuum states to the
confined states with quantum numbers n =0, 1 and 2 (for
phonon emission and 8 = 0) or n = 2 (otherwise). Width of
the well a = 100 A, lattice temperature T = 300 K.

captured to the highest subband (n» = 2) due to emission
of the phonon, because of the energy conservation law.

The relative strength of transition channels is
specified by the magnitude of the electron-LO-phonon
coupling (8), which is proportional to 1/4* and the
dependence of the overlap integral {(15) on k,. Thus,
the transitions to the highest subband (# = 2), which
for the width @ = 100 A lies close to the continuum,
give the dominant contribution to the capture rates
because of small momentum ¢ transferred in the
process, Transitions to the lower subbands (n = 0, 1)
involve larger phonon momenta and the electron—phonon
coupling is much weaker. Note that if the width of the
well a is slightly increased and the level n = 2 becomes
unbound, then there will be no capture to the 1 = 2
subband, while the contributions from the deeply lying
levels n =0, 1 are practically unchanged. That leads to
the appearance of the set of resonances in the dependence
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Calculations show that the rate W(E,8) initially
increases with energy due to the growth of the overlap
integral (15), but then drops because of the increase
of the effective transferred momentum g. The rapid
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due to the pushing of the 3D wavefunction out of the
well, which has the following classical interpretation.
For a low kinetic energy E the carrier velocity in the
barrier is small, but above the well the velocity increases
in proportion to /(Vo + E)/E, and the carrier traverses
the well in a relatively short time.

The dependence of the rates W(E, 8) on the angle
¢ is also specified by the dependence of the overlap
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Figure 3. Capture rates, LW(E, 8), versus initial
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at both interfaces (z = +a/2) with a sheet density

nmp = 10'° cm~2 at each interface. Other notations are as

for figure 2,

integral (15) on the transverse wavevector k,. For
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capture rates W (E, 8) — (, because the electrons do not
cross the well, and the probability of finding the electron
in the vicinity of the well is proportional to a/L — 0.

Figure 3 depicts the capture rates W(E,§) due
to scattering by impurities (full curves). The results
have been obtained by assuming the sheet impurity
concentration n; = 10!1® ¢m™2 at each interface. The
Coulomb interaction between 3D electron and impurity
has the same 1/g> dependence on the transferred
momentum as that for LO phonons, which results in a
similar rate dependence on energy as in figure 2. Two
essential differences with LO phonon-assisted capture are
that the impurity scattering is elastic and that the strength
of this mechanism (except the resonant condition where
a new bound state enters the well} is almost an order of
magnitide smaller.

The DA phonon-induced capture rates, W(E, @),
were calculated with the use of equation (16); note that
in the elastic approximation the emission and absorption
of the phonon give equal comtributions. It is seen from
fisure 4 that acoustic phonon-medjated capture rates
increase much faster with initial electron energy, because
the energy of electron interaction with the deformation
potential of an acoustic phonon (9), proportional to
g, increases with the transferred momentum [18].
However, in contrast to the suggestion in [18], the
contribution of acoustic phonons to capture is small for
the thermal electrons with energy of order T because of
a relatively small coupling constant D.

In order to calculate the net capture rate it is
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(pseudo)captured electron to relax to the bottom of the
well and eventually recombine, rather than to be re-
emitted from the well. To answer this question we have

Electron capture to a guantum well
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Figure 4. Capture rates, CW(E, 8), versus initial electron
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phonons. Other notations are as for figure 2.
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Figure 5. Probabilities per unit energy of transitions within
2D states, (1/8)0Wap..20/3E (upper part of the figure),
and escape probabilities, (1/5)8 Wap_,an/dE (lower part of
the figure), versus initial electron energy E. Full curves
correspond to emission and broken curves to absorption of
polar optical phonons. Width of the well a = 100 A, lattice
temperature T = 300 K.

calcolated the rates of LO phonon assisted transitions

hafizaan tha 2T gtatac 31X a5 aniatin
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(22), and the rates of escape, dWap ,3p/9E, given by
equations (21) and (14).

As seen from figure 5, the probability of electron
relaxation via 2D confined states due to cascade emission

nf 1N mhannne de almnet twn Ardere Af maonimnde
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higher than that of escape outside of the well (the
assumption of non-degenerate statistics and effective
electron recombination at the bottom of the well is
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essential here}). Such a large difference is due to the
different density of states for 2D and 3D carriers [19].
The density of states for electrons at a given 2D subband
is constant, while for the 3D states it is proportional to
VE and becomes comparable to that for 2D states at
eneigies much larger than the electron thermal energy.
Thus we may conclude that if the carrier is captured
to the well it will not escape, but rather relax to the
bottom of the well, and the net capture rates are given
by equations (14)-(19).

We plotted the results for the dependence of the

cantire ratec (\mlnr--rhpe\ LWero  am oiven hv aanatinne
gapture rates (verQoilies) L Wipoon. SIVen by equalions

(24)—(26), on the width of the well # in ﬁgures 6-8.

To analyse qualitatively the behaviour of the LO
phonon-mediated capture rates with respect to the width
of the well & we discuss the case of low temperature,
T = 20 K, where all the electrons are at energies well
below hwy = 450 K. Following Brum and Bastard
[4], we have calculated the partial contributions for
capture to different subbands, n = 0,1, 2,3 from the
symmetric initial states with parity p = 0 (figure 6(a))
and antisymmetric states with parity p = 1 (figure 6(b)}.
Only transitions due to emission of phonons are
taken into account, because the contribution of phonon
absorption is negligible at low temperature.

As we see, there exist two different sets of
resonances in the W (a) dependence. The first set occurs
when the nth level is at an energy %y below the barrier,
i.e. the ionization energy €, = hwq. In this situation the
3D electrons with energy E ~ T <€ hewp can emit an
LO phonon from the bottom of the 3D conduction band
to the bottom of the nth subband. Since the transition
occurs between states with small wavevectors k, the
transferred momentum ¢ is small and the capture rates
increase resonantly due to the 1/¢* factor in equation
(8). The enhancement of the transition rates owing to
the 1/¢? singularity in (8) appears to be stronger than
the opposite effect caused by a decrease of the overlap
integral (15).

The second set of resonant maxima occurs when,
with the decrease of the width @, the nth bound state
leaves the well [4] (the case » = 0 is excluded).
Because of the term ¢s,(ky;a/2) in the denominator
of equation (6) for the 3D wavefunction, the confined
state becomes a virtual resonant continuous state with
a greatly enhanced probability of observing the particle
within the well. Thus, for €, &~ 0 most of 3D electrons
occupy the resonant siate, and the drasiic increase in
the capture rates occurs because of enhancement of the
overlap integral (15).

It is important to note that the resonant virtual state
‘inherits’ the symmetry of the corresponding bound state

tha menhohkility AF Geding tha maetiala writhicn
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the well will be enhanced for the state 1y, ,(z) with
parity equal to that of the state ¥,(z). The reason
is that the minima corresponding to n = 2,4 appear
only in figure 6(a) (symmetric 3D states, p = 0}, and

tha minima for # — 1 3 annear onlv in fionre 60
wi I W R = a4, 0 qppldl ULy i apuil W)

(antisymmetric initial states, p = 1). The probabilities
are enhanced for the transitions to all lower-lying
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Figure 6. Partial contributions to the total capture rates,
LWip_op (incme™"), due to the emission of polar optical
phonons for different electron final states versus the width
of the well a. {a) The symmetric initial 3D state (p = 0),
(b) capture from an antisymmetric initia! state (p = 1).
Full, broken, chain and dotted curves correspond to final
electron states with subband numbers n = 0,1, 2 and 3.
Lattice and electron temperature T = 20 K.

confined states, and not just a single one, like in the
first set of the resonances.

In figure 7 we have plotted the total capture rates
Wspo,zp due to the emission and absorption of LO
phonons for three different temperatures, T = 20, 77
and 300 K. Both sets of resonances in the well width
dependences are very sharp for T = 20 K;; they become
more smeared at T = 77 K, and at room temperature
onIy the first set of resonances (at e,, A2 Fm)o) produces
maxima, while the second one ( t €y
smeared out.

One can point out that the strength of the first set
of resonances (€, =~ hwp) hardly changes when the
temperature is decreased from 77 K to 20 K. This is

hacange when the condition £ ~ T & By I8 reached
oA Guale Waabll wiv LUHIGIUVL B £ SN LU S rhdiuaiiiig,

practically all electrons have the same probabilities of
emifting a phonon and relaxing to the bottom of the
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Figure 7. Total electron capture rate £Wip_.zp (in cms™)
due to the emission and absorption of polar optical
phonons versus the width of the well a. Fuil, broken

and chain curves correspond to the lattice and electron
temperaiure T = 300, 77 and 20 K.

nth subband. On the other hand, the magnitudes of the
second set of peaks continue to drop, since at low energy
the width of the resonant level is still comparable to
the temperature, and the saturation has not yet occurred.
Our calculations agree with results reported by Kuhn and
Mahler [11] at T = 10 K under the assumption of full
phase coherence.

Note that in the paper by Brum and Bastard [4],
instead of the second set of resonances corresponding
to the appearance of a new bound state in the well
(e, = U}, resonances of another type are pwulut:u,
where the resonant state is at the optical phonon energy
above the conduction band edge (¢, &= —hay). This
is because the authors assumed a degenerate electron
distribution with a large Fermi energy (electrons exist at
all energies below %) and considered only the ‘true’
capture processes with the electron final state below the
barrier.

Finally, in figure 8 we show the capture rates due
to (quasi)elastic scattering by the interface impurities
{(thick curves) and deformation acoustic phonons (thin
curves). Both dependences have the set of resonant
peaks corresponding to the entrance of pew levels into
the well (e, = 0}, due both to addition of the new final
2D states when the nth level is bound (to the right of the
resonance) and to an enhancement of the probability of
finding the particle in the initial 3D state when the level
is virtual (to the left of the resonance).

Similar to the case of the first set of resonances
for the LO phonop-assisted capture (¢, =~ hawg), the
transferred momentum g is small.  That jeads to
an additional enhancement of impurity scattering and
suppression of the acoustic phonon-assisted capture
in the vicinity of the resonance. With a decrease
of temperature the effective transferred momentum g

Electron caplture 1o g quantum wel!

Capture rate ( cm/s )

Well width (A)

Figure 8, Total capture rate £LWap.2p (in cms™") due to
scattering by impurities (thick curves) and deformation
acoustic phonons (thin curves) versus the width of the well
a. Impurities are located at both interfaces (z = +a/2)
with a sheet density M, = 10" cm™2 at each interface.
Full, broken and chain curves correspond ta the lattice and
electron temperature T = 300, 77 and 20 K.

becomes smaller, the 1/4% and g-like dependence of
electron coupling to impurities and DA phonons (see
equations (9) and (10)) becoming stronger. This effect
and the proportionality of the DA phonon occupation
number to T govern the temperature dependence of these
two capture mechanisms.

Comparison of figures 7 and 8 shows that LO
phonon-assisted capture dominates at all widths, except

s
where the condition ¢, ~ 0 is fulfiled. In the narrow

vicinity of the well widths defined by this condition,
impurity-assisted capture can dominate.  Acoustic
phonons give a negligible contribution to the capture
rates for all parameter ranges.

It should be noted that, because of the domination of
the processes with small effective momentum transfer
g, the contribution to resonant capture can be given
by remote impurities with ¢ < 1/£, where £ is their
distance from the well. On the other hand, at finite
electron concenirations and smali g ihe Capiure raies wii
be suppressed by a factor of the order of (1 + g./g9)%
where g, = 2me®n/eyT is the Debye screening length of
the two-dimensional electron gas.

Evidence for an enhanced impurity-scattering-
assisted capture to the multi-quantum well (MQW)
structures was obtained in recent femtosecond time-
resolved luminescence measurements [16]. However,
the accompanying theoretical calculations of LO phonon-
mediated capture differ significantly from the original
works on MQW [6, 11, 21].

In summary, we have calculated the raies of capture,
escape and carrier relaxation within the 2D bound states
taking full account of quasibound electron states at
positive energies due to LO phonon, DA phonon and

2567



D Bradt ef al

impurity scattering. The contribution of the strongly
inelastic LO phonon scattering dominates except for
well widths a corresponding to the entrance of a new
bound state into the quantum well, where the impurity
scattering mechanism with small transferred momentum
g dominates.
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Appendix

The form factor for the phonon-assisted transition
between the 3D and 2D states (see equation (14)) is
equal to

Mkz pn = Cﬂ((ml)P

5 ED™kncsa(p + @) — (ke +42)681 (9 + 0p)
k24 (k, + q,)°
n {(—1)"Prncsp{p — ¢p) + (k; — )CSn1 (0 — @)
2 + (kz - q‘z)z
(—1)"Pacs,(¢,)
dcsp (Kuna f2)esp(kwza/2)
X [(—‘I)n+pA(Kwn + sz + Qz)
+ A(Kwn + sz - QI) + (—l)nA(KWn

— Ky, +q;)

+ (= 1)" Alieyen — Fowz — 9‘:)]) (AD)

where A(k) = sin(ka/2)/(ka/2) an

The form factor for the transi f

states is given by

a
q: —
M, = CiCo [

y ( (n + om)CSnm (@) + (= D)™ 41C8, ms1 ()
(kn + & )? + g2
(=1)"a
808n (Kwa@/2)CSp (Kuma [2)
x [('_l)n+mA(Kwn + Kwm + 4z}
+ Alkun + Kum — q2) + (— 1) Alkun

— Kum -+ gz)
+ (D" Alkyn — Kwm — q:)])- (A2)

The form factor for the impurity scattering, defined
by equation (18), is equal to

e Y P RS
bop=n TR ] B2 4 (e, + )2

— (= 1)Pk,csp5 ((0_::)] +

{1 Py

L& ~\me A
fepp T A JIpA\YR)

(—1)"esp{p)
2cs, (ana/z)csp (kw.a/2)
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9 (lccsn+p(§0+) + (=1)"P (K + Kwu)csn+p+1(§9+)
K2+ (kyy + Kun)?
x(n+1)
+ KCSpy p{p-) + (=1)tPp (fwz — ’Cwn)csn+p+1(§9-)
K2+ (kwz — Kun)?

AT

% (n — 1)” (A3)

where ¢: = (ko Zryp)a/2 and i = (—1)"*? exp(—«a).
The function Ay pn. defined by equation (16}, is
equal to

|
-Ak,,,prm = cf (};_ + (_I)P

aClest(p,)
desi(kwma /23083 (kuza /2)
X III + ("‘I)'DA(kaz) + (_ 1)HA(2KWH)

+ (= D™ P{ALR Ky + )] + ALK, ~ a)]}/ 21
(Ad)

(¥

K, €08 20, — k, sin 200,
k2 4 k2
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