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We have studied theoretically the low-field electron transport in a free-standing 
quantum well where the deformation potential scattering of electrons by acoustic 
phonons is the major mechanism of the electron relaxation. The quantization of 
acoustic phonons, their multisubband spectrum, and the exact form of the dilata- 
tional acoustic modes are taken into account. We have numerically solved the kinetic 
equation for electrons in the low electric field limit. At low lattice temperature the 
obtained electron distribution function has several peaks associated with scattering 
by different dilatational phonons. The electron mobility has temperature depen- 
dence similar to that described by the Bloch-Grfineisen formula, however we have 
obtained T -a dependence of mobility in the low temperature region. 
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The effect of acoustic phonon confinement on elec- 
tron properties of free-standing structures, heterostruc- 
tures and thin films is intensively studied both theoret- 
ically [1-5] and experimentally [6, 7]. There are several 
physical effects which are attributed to the quantization 
of the acoustic phonon spectrum. The peaks associat- 
ed with confined acoustic phonons have been observed 
in the conductance of the quantum wires [6], lumines- 
cence spectra of GaAs/AIGaAs quantum wells [7], and 
the Brillouin spectra of unsupported films [8]. 

In this paper we will consider the electron trans- 
port properties of a free-standing quantum well (FSQW) 
where the acoustic phonons are quantized in the nor- 
mal to the surfaces of the quantum well direction. Such 
structures may be fabricated by various etching and 
lithographic techniques or by metal-organic epitaxy [8, 
91 (see additional references in review [10]). We as- 
sume that the electron scatterings by acoustic phonons 
through the deformation potential is the major source 
of electron scatterings. The aCOUStic phonon modes in 
infinite solid slab are known from the field of acoustics 
[11]. There are shear waves, dilatational waves and flex- 
ural waves. We will specify the Cartesian coordinates 
such that axis z is perpendicular to the surfaces of the 
slab, axis m is in the direction of the phonon wave vec- 
tor, axis Y is perpendicular to m and z, and the origin 
is in the center of the slab. The vector of relative dis- 
placement for shear modes has only Y component, thus, 
shear modes are similar to the transverse waves in bulk 

material and they do not interact with electrons through 
the deformation potential. The vectors of relative dis- 
placement for dilatational and flexural modes have both 
m anf z components and these types of modes differ by 
their symmetry. The Hamiltonians for electron interac- 
tions with dilatational and flexural phonons are given in 
Ref. [4]. We will use them to determine the transition 
probabilities for electron scatterings by confined pho- 
nons and to specify the collision integral of the kinetic 
equation for electron distribution function. 

We have solved the kinetic equation numerically 
using the iterative technique in the low electric field limit 
where the electron distribution function may be repre- 
sented as a sum of the equilibrium Fermi function and a 
small antisymmetric part. Though the kinetic equation 
is linear in respect to the applied electric field, it in non- 
linear in respect to the scatterings by different acoustic 
modes and the Matthiessen's rule may not be used to 
determine the electron mobility. We have obtained the 
electron mobility by solving the kinetic equation and 
analyzed its temperature dependence. 

We restrict our consideration by the case where 
only the first electron subband is occupied. Under these 
conditions only the dilatational phonons contribute to 
the electron-phonon scatterings through the deforma- 
tion potential due to the symmetry selection rules [4] (if 
the potential energy for electrons is a symmetric func- 
tion in respect to the mid-plane). The dilatational modes 
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are characterized by the mode number m and the in- 
plane wave vector qll = (q=, 0) ; the corresponding fre- 
quency of the dilatationai phonons axe w,,~(qll ) . At 
qll = 0 the function w,~(qll ) takes values from the 
following two sets 

2nTrs , /a  and (2n + 1 ) , ~ , / a ,  

where n = 0,1,2,... , a is a width of the quantum 
well, and sl and st are velocities of the longitudinal 
and transverse acoustic phonons in bulk material. We 
will nuber the dilatational modes in such a way that 
w,~(qH) < w,~+a(q]l ) , and m = 0,1,2,.... It follows 
from the above equations that only the zeroth mode 
has vanishing frequency at qH = 0 , all other modes 
have finite frequencies in the center of the Brillouin zone. 
The functions w,~(qH) may have quite complex depen- 
dences on qH, particularly may have minima at ql] ¢ 0 
[11]. Such minima result in formally infinite density of 
phonon states at appropriate energy and should have an 
effect on electron-phonon scatterings. 

The electron probability density for the transition 
from initial state k]l to the final state kll due to an in- 
teraction with the dilatational phonon of mode m and 
in-plane wave vector qll may be determined from the 
Fermi golden rule. If we use the Hamiltonian for the 
electron scatterings given in [4] we obtain 

.b _ 7 r E ~  ~ m, qll)X 
N ~ u Ap  

X 6ltll.l.qu,k[l 6($  -4- ~OJm(q[[) - -  ~ ' ) ,  (1 )  

where 

1 
~-{:~} (m, qll) = (nq,,..~ + 1 =F ~)l Fa,, [' w~,'(qtl)X 

x (qt2,,,, _ q=,)2 (qt',,,, + q=') '  s i n ' ( ~ ) ~ ( q o - ) ,  (2) 

nqll,m is the phonon occupation number, qt,,-~ and qt,,~ 
are parameters determined from the solution of the dis- 
persion equations for dilatational modes which denote 
the phonon wave vectors in z direction and take both 
real and pure imaginary values, Fa,,~ is the dilatational 
phonon normalization constant [4]. Throught this paper 
the upper signs correspond to the phonon absorption, 
the lower signs correspond to the phonon emission. The 
overla p integral, ~(q), is given by the formula 

f°/, a(q)  = J-. /~ d~ ¢*(~) ¢(~) cos(q , 

where ¢(z)  is the ground state for the one dimensional 
SchrSdinger equation. If we use the electron wave func- 
tions for a rectangular infinitely deep quantum well, the 
overlap integral takes the form 

32 (1 - cos ~ )  
a ( q ) -  ~-(q2"~-_ ~) 

where (1 = a q/vr , and q is a real or a pure imaginary 
number. 

To analyze the electron transport properties we 
will need scattering rates in the following form 

~ J  ~E ~ G ,  (3) - = Wl~,,__,k~i , 
kll ,m,qll ,/9 

where fl is used to denote either absorption or emis- 
sion, G is some given function which may depend on all 
variables over which we take the sum. We will also use 
(r~b) -1 and ( r ~ )  - t  which are defined in a similar way 
with the only distinction that we sum either only absorp- 
tion terms or only emission terms. There is an obvious 
relation between them: ~ 1  = (~ab)-i + (~ , ) -x .  U we 
employ the formulae for transition probabilities (1) we 
may obtain the following result for the scattering rates 

~G )--  ~ ~ k ~  J0 aql,~- (m, qll) l sin • I' 
(4) 

and the angle • E [0, 7r] is a solutions of the equation 

cos • - mw'~(q[I----------~) :F qll 
h kl] qll 2 kll 

Actually, the angle k~ is the angle between kll and ql[" 
In the transition from Eq. (3) to Eq. (4) we have re- 
placed the summation over a quasidiscrete variable by 
integration. 

We have solved the electron transport problem for 
FSQW in the linear in respect to the drawing electric 
field approximation assuming that the electron scatter- 
ing by confined acoustic phonons through the deforma- 
tion potential is domina~at. The electron distribution 
function ( D F )  f = f (p)  (p  is the electron momen- 
tum) may be represented in the form 

f = fo + ftp____PP, (5) 
P 

where functions fo and flp depend on the absolute value 
of p and do not depend on its direction. The first term 
in the Eq. (5) is the symmetric part of DF and the sec- 
ond term is the antisymmetric part of DF.  Because we 
are looking for the linear transport properties (formally 
the external force F --* 0 ) the symmetric part of DF 
is the equilibrium Fermi function. DF satisfies the ki- 
netic equation with electron - confined acoustic phonon 
collision integral. We multiply the kinetic equation for 
DF defined by Eq. (5) by factor p /p  and average it over 
the polar angle ¢ (vector p has components (p, ~b) in 
the polar coordinate system an the polar axis is parallel 
to the applied field F ). In the end we get the following 
equation for the antisymmetric part of DF 

-~POf° v [jof~._~, 1 - fP°' f t P ] l  - fo F = ~ Wp._,p, fw' cos ~o , 

(6) 
where F is the external force, Wp-,p, is the  electron 
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transition probability density defined by Eq. (1), ~ is 
the angle between p and p ' .  We are looking for the 
solution of Eq. (6) in the following form 

flp = --rl(p) F o f °  (7) 
Op" 

Eq. (7) redefines the unknown function flp through the 
function rx(p). It will be shown below that rl(p) may be 
interpreted as the electron momentum relaxation time. 
From Eqs. (6), (7) we may obtain the following integral 
equation for the function ri(p) 

p' cos T r,(p') ] 1 - g  ° 
n(p)-' = ~ wp~p, i 

p ri(P) J 1-Jp° i x  

(8) 

To transform the sum in Eq. (8) to the integral 
and to include the explicit expression for the electron 
transition probability density due to scattering by con- 
fined acoustic phonons we use the result expressed by the 
fo~mul~ (3) and (4). We have solved Eq. (8) numerical- 
ly using an iterative technique. The unknown function 
from the previous iteration has been used in the right 
hand side to obtain the updated function. The electron 
momentum relaxation time obtained in the test particle 
approximation has been used as an initial guess. The 
criteria for convergency was taken to be equal to 0.1% 
in the relative error. The iterative method converges 
fast in the case of a nondegenerate electron gas and in 
the case of a degenerate electron gas and high lattice 
temperatures (T  > 10 K ,  what corresponds to the en- 
ergy of the acoustic phonon quantization). It took much 
more iterations (on the average, about 100) to obtain 
the convergence of the solution if the electron gas is de- 
generate and the lattice temperature is low ( T < 5 K ). 
The numerical analysis was done for GaAs  FSQW of 
width a = 100~ We took into account five of the lowest 
phonon modes; modes of the higher order make unno- 
ticeable contribution to the scattering rate. 

We will discuss here only the most interesting re- 
sults of the numerical analysis related to the degenerate 
electron gas at low temperature. The Fermi energy is 
taken to be equal to ~m = 50 m e V ,  what correspond- 
s to the electron concentration 1.4 × 10 i2 era -2 . The 
energy dependencies of f l  for five lattice temperatures 
from 3 K to 20 K are displayed in Fig. 1. 

The approximate symmetry of fi  in respect to 
the Fermi energy eF = 50 m e V  follows from the prin- 
ciple of the detailed balance. The electron in a quantum 
state k[i emits the phonon in a quantum state qll and 
acquires a final state kll with exactly the same prob- 
ability as probability of the opposite process: electron 
in a quantum state kll absorbs the phonon in a quan- 
tum state qll and acquires a final state kil. The local 
minima on the plots of Fig. 1 corresponding to the lat- 
tice temperatures T = 3K and T = 4.2K are related 
to the confined acoustic phonon scatterings. The min- 
imum on the right of the Fermi energy is due to the 
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Figure 1: Function fl for five lattice temperatures dis- 
played on the graph. GaAs  FSQW of width 100.~, 
eF = 50meV.  

phonon emission and on the left of the Fermi energy 
is due to the phonon absorption. The maximum wave 
vector of the acoustic phonons participating in the scat- 
terings is approximately equal to doubled kF and in 
our case constitutes 6 x l0 s cm - i  . If we restrict the 
length of the wave vector by this maximum value, the 
energies of the zeroth throgh the fourth mode acoustic 
phonons lies in the ranges 0 - 1.3meV, 1.1 - 2.2meV, 
1 .3-  2.5meV, 2 .4 -  3 . 2 m e V ,  3.5 - 4 . 0 m e V  [12]. These 
ranges overlap each other and minima of f i  may not be 
associated with some particular mode; phonons of all 
five modes contribute to the electron scattering. The 
first mode make the main contribution, the scatterings 
by the zeroth and the second modes are also important, 
the influence of the third and higher modes is small [12]. 
The zeroth mode scatters electrons substantially weak- 
er than the first mode because it has a surface bound 
character. It follows from the Eq. (8) that the electron 
scattering by different modes may not be calculated sep- 
arately (as assumed by the Matthiessen's rule) and all 
the modes should he taken into account simultaneously. 

The electron mobility, /z, is expressed by the for- 
mula # = e~'t/m, where rt is the transport relaxation 
time obtained by averaging ri : 

%~ de ( t iT)  n ( O  fo (1 - fo) 
r, = J'y de fo (9) 

We took integral (9) for series of temperatures and ob- 
tained temperature dependences of electron mobility. 
The temperature dependence of/z is shown in the Fig. 2. 
This result is very similar to the temperature depen- 
dence of # of the 2DEG in GaAs  - Al=Gai_=As het- 
erostructure observed in Ref. [13]. At high lattice tem- 
peratures the phonon population is much larger than 
unity and proportional to the lattice temperature. There- 
fore the rate of the electron scattering by phonons and 
the electrical resistivity are proportional to the lattice 
temperature. At low lattice temperatures the phonons 
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Figure 2: The electron low field mobility as a function 
of the lattice temperature/The dashed line corresponds 
to T -a dependence, the dash-dotted line corresponds 
to T -1 dependence; GaAs FSQW of width 100~, SF = 
50meV. 

with high energy will cease to be thermally exited, in 
our case the fourth mode will disappear at first, then the 
third mode and so on. The contribution of the frozen 
out phonons to the electron scattering is significantly 
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reduced. In the case of metals this results in T -5 de- 
pendence of the electron mobility (Bloch-Gr/ineisen for- 
mula [14]). The same power dependence has been ob- 
served for 2DEG semiconductor quantum well [13]. We 
have obtained a smaller negative power (T -a ) for the 
temperature region (3 K < T < 8 K) .  For lattice 
temperatures T < 3 K the negative power becomes 
larger (see Fig. 2), however we did not proceed with 
our calculations below T < 2 K because the conver- 
gence of our computational algorithm deteriorates when 
temperature decreases and our model loose accuracy at 
very low temperatures since the piezoelectric potential 
scatterings become important. 

It is interesting to note that though the momen- 
tum relaxation rate r1-1 has peaks near the Fermi en- 
ergy, the transport relaxation time, rt,  and the electron 
mobility, #,  do not have peaks associated with quan- 
tized acoustic phonons. Such peaks have been observed 
in the conduction variations of the electrically heated 
AuPd FSQWs and FSQWIs [6]. However their origi- 
nation lies in the nonlinear response of the electron - 
phonon system on the heating electric field. 
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