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Abstract

We consider the capture and ionization of an electron in quantum wells and wires by a shallow donor impurity due to
the interaction with acoustical phonons. In the case of phonon wavelengths much smaller than the width of wells or wires,
L, the transition rates are proportional to ¢ 3 (n, + 1/2 + 1/2) L~ °, where ¢ is the transferred energy and n, is the phonon

occupation number.

The processes of carrier trapping by impurities
are known to play an important role in transport
and noise properties of semiconductor structures
[1]. Two approaches exist for the description of
capture by a shallow attractive center in bulk
semiconductors. The first [2] treats the capture of
a carrier as a classical descent through the
quasicontinuous spectrum of highly excited bound
states due to cascade emission of low-energy acous-
tical phonons and is applicable to low temperatures
and materials with large effective Rydberg energies
(see also [3] for the two-dimensional case).

At room temperature in GaAs the case opposite
to that of the first model is realized (i.e. only a few
states participate). Therefore, we will consider only
the processes with the participation of the ground
and several low-excited states (cf. [4] for bulk and
[5] for quantum wells). In this paper we study the
processes of trapping and detrapping of the elec-
tron in quantum wells and wires by a shallow
donor impurity placed either inside or outside the
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well or wire due to the interaction with longitudinal
DA phonons.

We consider the system of the infinite square
quantum well (QW) at —L./2<z< L,/2 and
a shallow donor impurity at (0, 0, z;). In the effect-
ive-mass approximation the unperturbed Hamil-
tonian of the system is given by
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where m* is the effective mass of the electron, ¢ is
a lattice dielectric constant, R = [x? + y* +
(z — z;)*]"/? is the distance from the impurity and
term V.o 18 the quantum well potential.

Hamiltonian (1) also describes the system of
a rectangular guantum wire (QWR) of infinite depth
and shallow Coulombic impurity located at (x;, y;, 0).
In this case the distance from the impurity is given
by R = [(x — x;)* + (y — y;)* + z*]"/?, and confin-
ing potential V,,;=0 for |x]<L,/2 and
[yl < L,/2; otherwise V.o = 0.

For the ground and several low-excited states of
Hamiltonian 5 of the QW we use the hydrogen-
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like trial wave functions ,,, containing variational
parameters A,,:

Now 1 R
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Here m =0, +1, £2, ... i1s a magnetic quantum
number due to the cylindrical symmetry of the
Hamiltonian; n = {m| + 1,|m| + 2, ... is the main
quantum number; y(z) is the transverse wave func-
tion of the lowest subband; dimensionless factors
N,.. are chosen to normalize the wave functions to
unity; functions #,,,(u) are polynomials of the order
n — |m| — 1 with the coefficients chosen to provide
orthogonality of the wave functions ,,, with the
different quantum numbers. In fact, the trial func-
tions {2), being a modification of Bastard’s varia-
tional function [6], are equal to the product of the
transverse wave function y(z) of a free electron in
the QW and hydrogen-like functions correspond-
ing to orbital quantum number [ = |m| (states with
other [ are not bound for a sufficiently thin well).

For the bound states of an impurity in the QWR
we choose the following odd and even trial func-
tions containing variational lengths 4,

) = 228 (2 ) 20 (15 ) e x v
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Here p is a parity of the wave function with respect
to coordinate z (p = 0 for even states and p = 1 for
odd states), n=p+ 1,p+ 2, ..., factors N,, and
the coefficients of the polynomial &, ,(u) of order
n — p — 1 are chosen to provide orthonormality of
the set (3). Wave functions (3) are equal to the
product of the transverse wave function X(x) Y(y)
of a free electron in the QWR and hydrogen-like
functions corresponding to m = 0 and [ = p.

A standard variational procedure gives the
bound states ,,,¥,, and ionization energies
&um» Enp Measured from the bottom of the lowest
subband. Fig. 1 plots the ionization energies of
several lowest states in 100 A wide QW and two
lowest states in 100 x 100 A QWR versus the impu-
rity position.

The wave functions and ionization energies ob-
tained are used to calculate the rates of transitions
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Fig. 1. lonization energies of impurity bound states (K) versus
impurity position (/u\) in QW and QWR. Thin lines: ¢,, versus
z; in the gquantum well of width L, = 100A. Main quantum
number # is indicated near the lines; solid, dashed, and dotted
lines correspond to m = 0,1, and 2. Thick lines: ¢,, versus x; in
the quantum wire, y; = 0, L, = L, = 100 A. Solid line corresponds
to ground 10 (1s) state, dashed line to 21 (2p) first excited state.

involving bound and free states of an electron. We
start with a consideration of the processes in
a quantum well. The transitions are assisted by
emission and absorption of the longitudinal DA
phonons with dispersion w,. The transferred en-
ergy ¢ is equal to &, — &l for interlevel
transitions and ¢ =¢,, + E for trapping/detrap-
ping, where E = i%k?/2m* is the energy of a free
electron state. The required phonon wave vector
0, is specified by the energy conservation law,
hwy = e. For calculation of the transition rates we
use the Fermi golden rule and perform the summa-
tion over phonon wave vector Q.

In the following we restrict ourselves to the cases
of such energies of transition, ¢, that the phonon
wave vector @, is (much) greater than other values
of the same dimensionality, in particular Q,L, >
2n. In GaAs this is a realistic approximation for
characteristic lengths of the order of 100 A orlarger
and & = 2nhs/L ~ 10-20 K (here s is the sound
velocity). In this case, due to the rapidly oscillating
factor exp(1Qr) in the matrix elements of transition,
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the trapping and detrapping rates decrease rapidly
with an increase of Q. Analysis shows that the main
contribution to the transition rates is given by the
“transverse” phonons with 0 = 0.>0,,0,, k.

In the limit of a phonon wavelength much
smaller than the width of the well we find the
following results for the transition rates (probabilit-
ies of processes per unit time): trapping rate

D* (n, + 1) Fm

Wk — nm) = 2n)* niZ), s e0tLe 4)
detrapping rate
dWw k * D2 0, Fom
=8 _ oy 2 2 2T, 5
d(h*k* 2m*) wh* pys, QL
and the rate of interlevel transitions
2
Wnm— n'm') = 2mn)*
PLSe
(ne + 12+ 1/2) Fpsmy
(6)
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Here n, is the phonon occupation number; the
value s, = dwg/dQ for small Q tends to the sound
velocity s; D is a deformation potential constant;
pv is the crystal density; n3) is the sheet concentra-
tion of impurities at z = z;; F - wm are form fac-
tors given by

= erlmNr%’m’
X(&2(|ms+|m’|+1//13’|nm|+l )vr%’}::::k+1)
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where 2= Apnldwm/2(Aum + Apvw) and  zy =
|z; &+ L,/2{/A; functions
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are polynomials. Expressions for form factors
Z.m can be obtained from that for &, .., by
taking the limit A,, > A., and setting N2, =
A [ Anm and m’ = 0,

We have also calculated the transition rates for
electrons in rectangular quantum wires in the pres-
ence of an impurity. In the case of comparatively
large transition energies, Q, max(L,, L,) = 2x, the

rates of trapping, detrapping, and interlevel
transitions can be obtained from Egs. (4)—(6) after
the following modifications: quantum numbers
nm, k, sheet impurity concentration n{2),, and den-
sity of states m*/mh®> must be changed to
np, k., ni3)/ Anp, and m* /nh?k, A, correspondingly;
F/L¢ must be replaced by F&/L + FW/LS.
Form factors are given by
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can be expressed in terms of the Bessel functions of
the second kind. Form factors #,, can be derived
from that for #,,., - by taking the limit 4, , > 4,,
and setting N, , =1 and p’ = 0. Expressions for
F Y are obtained from & ® by interchanging x and y.

From Egs. (4)—(6) one can obtain the following
dependence of the transition rates on the transfer-
red energy and the width of the well
Wcoce S(n,+ 1/2 + 1/2) L7 °, for the rectangu-
lar quantum wire L, ® should be changed to
L;%+ L;°. Thus, the capture (ionization) of the
carriers occurs mainly from (to) the free states near
the bottom of the lowest subband.

Following [2] we introduce the inverse electron
capture time 1/}, (or 1/7}),) which gives the prob-
ability (per unit time) for an “average” electron in
the lowest subband to be trapped to the level np (or
np) of any impurity at the z = z plane (or at line
x—xl, y=yih 1/th={¢ f(E)W(k > nm)dE/
fo f(E)dE. In the case of (0<<T it follows that
l/r‘r oce W ° from Eq. (4).

The results of numerical calculations of 1/1" ver-
sus the impurity position are presented in Fig. 2.
Parameters corresponding to GaAs are chosen,
electron and phonon temperatures 7. = T,, =
300 K, and the electrons are assumed to be non-
degenerate. Thin and thick lines show the capture
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Fig. 2. Inverse capture times 1/1};, and 1/z;, to impurity bound
states versus impurity position in QW and QWR. Impurity
concentrations n{Z, = 10'°/cm? in QW and n{}), = 10°/cm in
QWR. Other parameters and notations are as in Fig, 1.

rates to the bound states of impurity in 100 A wide
QW and 100 x 100 A QWR, correspondingly. One
can see that the dependence of 1/t,, on the impurity
position for different states has a form analogous to
that in Fig. 1, i.e. for a given cross-section of QW or
QWR the behavior of trapping probabilities is spe-
cified mainly by ionization energies &,,, or &,,. Note
that for comparable ionization energies the capture
probability in QWR is essentially higher than that
in QW. This is partially due to the difference in the
density of states — in QWR there are relatively more

eclectrons near the bottom of the subband, where
the capture rate is higher.

Analysis of Figs. 1 and 2 and results for the
interlevel transition rates (cf. [5]) give the following
qualitative picture of the carrier trapping. For
highly excited states (n = 3 in QW) the energy
separation between levels is small, being only
a fraction of the effective Rydberg energy. Thus, for
temperatures greater than or of the order of 20K,
these states can be treated as constituting
a quasicontinuous spectrum; therefore, the
transitions between the levels are fast and can be
treated in the fashion of Refs. [2,3]. Since the levels
with n = 1 and n = 2 are separated from the others
(cf. Fig. 1), capture to the ground state occurs via
levels with n = 2, and direct trapping from the free
states has much lower probabilities.
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