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The Lagrangian of an isotropic continuous medium and Lagrangian formalism are used to consistently
derive acoustic cigenmodes, to normalize them, and to determine the acoustic phonons (confined
acoustic phonons) in a free-standing quantum well. These phonons may be classified as shear,
dilatational, and flexural phonons in accordance with the acoustic terminology for eigenmodes. The
Hamiltonians describing interactions of the confined acoustic phonons with electrons in the approxima-
tions of the deformation potential and the piezoelectric scattering potential are obtained and analyzed.

1. Introduction

Many new quantum semiconductor structures have been proposed during the last several
years; free-standing quantum wells (FSQWs) and wires (FSQWIs) [1] are among such
structures. FSQWs and FSQWIs include thin semiconductor slabs and rods which are
connected to a semiconductor substrate by the side of the smallest cross-section. Such exotic
structures may be manufactured by diverse etching techniques [1]. Ideal FSQWs and
FSQWIs represent waveguides for electron waves which have features substantially different
from more conventional quantum structures. First of all, such waveguides may have very
high potential energy barriers for electrons, so new effects related to hot but quantized
electrons are possible. This phonon subsystem will also undergo substantial modification
and quantization of the acoustic phonon spectrum should occur. The quantization of the
phonon spectrum has an effect on the electron transport properties and was observed
recently [2, 3] in experiments with AuPd quantum wells and quantum wires. To describe
quantitatively electron transport peculiarities and predict transport coefficients it is necessary
to know all acoustic phonon modes, their spectrum, and their interaction with electrons.
The detailed understanding of the confined acoustic phonons in a FSQW and their spectrum
may be also significant for some of the nondestructive methods of diagnostic of micro-
structures where propagation of the acoustic phonouns is employed [4 to 6].

While there is an extensive literature on acoustic modes in acoustic waveguides, resonators,
and related structures [7, 8], there are relatively few works considering this problem in a
context of nanoscale structures [9 to 19]. In [10 to 12, 14, 15] acoustic modes in systems
with two interfaces are investigated and attention is drawn primarily to the modes localized
between the interfaces. The peculiarities of acoustic phonon modes due to a planar defect
have also been considered [18, 19]. It is swhon that a few monolayers of different material
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[19] or even a built-in electron sheet, interacting with phonons through the deformation
potential [18] may result in the localization of some acoustic modes on the planar defect.
Papers [16, 17] are devoted to one-dimensional acoustic phonons in cylindrical quantum
wires.

In this paper we will consider acoustic modes in FSQWs. This problem may be solved
exactly if we neglect the distortion of acoustic vibrations resulting from the contact with
the semiconductor substrate. This imposes restrictions on the in-plane wavelength, which
should be shorter than a characteristic in-plane size of the semiconductor slab. Then we
will introduce acoustic phonons for a FSQW and derive the phonon Hamiltonian as well
as the Hamiltonian of the electron--phonon interactions. Finally, we discuss the peculiarities
of electron scattering from confined acoustic phonons.

2. Formulation of the Problem

Small elastic vibrations of a semiconductor slab can be described by a vector of relative
displacement # = u(r, t). The Lagrangian L of an isotropic continuous medium can be
expressed in terms of vibrations as (see, for example, [20])

L =3 {[oi* — Au}; — 2uu? ] dr, (1)

where ¢ is the density of the semiconductor, A, i are the Lamé constants, u; ; is the strain

tensor,
1 (Bu; Ou;
W=\ 1T
2 \or; ar,

I

and a dot over u denotes differentiation with respect to time. The sum is assumed to be
taken over repeated Roman subscripts. The equations of motion of elastic continua described
by (1) follow from the principle of the least action and have the form

*u, 0o, ;

0
ot? or

where ¢, ; is the stress tensor

0,5 = Ay O; ; + 2u;

9; ; ist the Kronecker delta. Equation (2) can be rewritten in a vector form as

o%u . , , )
Pyl seViu + (sf — sf) grad div e, 3)

where s, = (4 + 2u)/p and s, = /¢ are the velocities of longitudinal and transverse acoustic
waves in bulk semiconductors. The boundary conditions on the free surface of the slab
imply that the components of the stress tensor corresponding to the normal direction to
the surface vanish. If we specify the coordinate system (which we will use throughout this
paper) in such a way that the z-axis is perpendicular to the semiconductor slab and the
surfaces of the slab have coordinates z = 4 (a/2), where a is the width of the slab, the
boundary conditions take the form ¢, , = ¢, . = 0. . = 0 at z = +(a/2); accordingly in
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terms of the components of the displacement vector, it follows that

<6uV au->
0., = U =+ —) =0,
' Oz Ox

Ou,  Ou,
gy.: = U <Ll‘ -+ U_> = O s (4)
Oz Oy
L ou.
6,,=Adive +2u — =0
' Oz

at z = 4 (a/2). Our goal is to find the eigenmodes of the acoustic vibrations defined by (3)
and (4). We will look for solutions in the following form:

_ o dg
u("a t) = Z un(qHz Z) €Xp (qurH - la)nt) HZ » (5)

" (2m)
where ry is the coordinate vector in the (x, y) plane, w, is the set of frequencies of vibrations.
From (3) we can obtain the set of equations for eigenmodes, u,(q, z), and eigenfrequencies,
w,. This may be conveniently done if we direct the x-axis of the coordinate system along

the vector ¢, so that ¢, = (q,, 0). Then the eigenvalue problem takes the form
gun(q{[?Z) = _a)r?”n(qﬂnz)a (6)
where & is the matrix differential operator,
— d2 dx*
2 2,2 "2 AN
517‘51% 0 (s7 _b[)MIx@
2 dz 2.2
g = 0 S; i Stqs 0 . (7)
oo d? ,
o =Dy 0 P N
The boundary conditions (4) become
du, du du st — 2s?
= —ig.u., =0, = g, Ty 8
dz 1tz dz dz 7 52 ’ ®

at z = 4 (a/2). It can be proved straightforwardly that the operator & of the eigenvalue
problem (6) to (8) is Hermitian, thus the eigenfunctions, u,(q, z), corresponding to
nondegenerate eigenfrequencies, ,, arc orthogonal. We can also orthogonalize the
eigenfunctions corresponding to equal eigenfrequencies using the Schmidt orthogonalization
procedure. We will use w instead of u to denote the orthonormal set of eigenvectors, w,(q ., z),
of the problem (6) to (8) for which

j‘ wll (qH’ Z) wm(‘lH’ Z) dz = (Sn,m . (9)

3. Confined Eigenmodes

The eigenvalue problem (6), (7) can be solved through the introduction of vector and scalar
mechanical potentials which define the vector of the relative displacement [7, 8]. In this
section we will identify such modes employing the conventional terminology of acoustics
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[7, 8]. The major feature of the confined modes is their quantization in the z-direction.
Roughly speaking, the z-components of the confined mode wave vectors, g,, take only some
discrete set of values at each particular in-plane wave vector, ¢,. There are three different
types of confined acoustic modes: shear waves, dilatational waves, and flexural waves. They
are characterized by their distinctive symmetries.

3.1 Shear waves

These waves have only nonzero component which is perpendicular to the direction of wave
propagation and lies in the plane of the quantum well: u,(q, 2) = (0, u,, 0), where

cnZ), A n=10,2,4,.,
uv:{cos(q_, zy, if n (10)

sin (q. ,z), if n=173,5._;
q. , = (mn/a). The dispersion relation for shear waves is

(Un = Sl l/qgn + q% N

These modes are similar to the transverse modes in bulk semiconductors and their
quantization is based on the simple rule stating that an integer number of half wavelengths
fits in a semiconductor slab of width a.

3.2 Dilatational waves

These waves are also called symmetric waves (in respect to the midplane) and have two
nonzero components: #,(qy, z) = (u,, 0, u,), where

a a
u, = iq, |:(q§ — ¢?)sin % cos g,z + 244, sin % cos qlz} , (11)

.oqa 5 . a .
u, = q |:— (g% — g}) sin % sin g,z + 24 sin % sin q‘z} . (12)

The parameters gq,, ¢, are determined from the system of two algebraic equations

tan (¢/2) _ fqiq.q; N (13)
tan (¢q,a/2) (g5 — qi)
st(g2 + af) = stz + 4. (14)

Equations (13) and (14) have many solutions for ¢, and g, at each particular ¢, [7] and we
number them by an additional index #n:¢,, ¢,, These solutions are either real or
pure imaginary depending on ¢, and n. Thus, the quantization rule for dilatational
waves prescribed by (13) and (14) is nontrivial because these modes represent linear
combinations of z-coordinate dependent harmonics. The frequencies of the dilatational
waves are given by

O, =SV @+ aF=51/a2 + G- (13
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3.3 Flexural waves

The last type of waves in quantum wells are flexural or antisymmetric waves. Flexural
waves have two nonzero components u,(q, z) = (u,, 0, u.);

a qa .
u, = iq, [(qi — g?) cos % sin g,z + 2,4, cos % sin qlz} , (16)
qa qa
u, = q [(qi — g?) cos % cos q;z — 242 cos % cos qlz] . (17)

where ¢y, q, are determined from the solution of the transcendental equation

tan (qa/2) 44341,

_ (18)
tan (qa/2) (g — a7

and equation (14). The system of algebraic equations (14) and (18) prescribing the
quantization rule for flexural waves also has many solutions for ¢, and ¢, at each particular ¢,
[7] and we again use an additional index n to number them: ¢, ,, ¢, ,. Solutions ¢, and ¢,
may be either real numbers or pure imaginary numbers for the given set ¢, and n. The
dispersion relation for flexural waves coincides with the relation for dilatational waves (15)
(this does not result in the coincidence of frequencies because the solutions for g, , and g, , are
different for dilatational and flexural modes).

Now we introduce the normalization constants F, ,, Fy ,, and F¢ ,, such that w, = F_ u,
for shear waves, w, = Fy u, for dilatational waves, and w, = F, u, for flexural waves. The
functions u, are determined by (10) for shear waves, by (11) and (12) for dilatational waves,
and by (16) and (17) for flexural waves. The functions w, satisty the orthonormality condition
(9). The normalization constants F, ,, F, ,, and F; , may be determined straightforwardly,
however, explicit expressions for these normalization constants are quite cumbersome and,
accordingly, we give them in the Appendix.

4. Quantization of Confined Vibrations

The Lagrangian formalism is now used to quantize acoustic phonons. The starting point
for the quantization of acoustic vibrations is the commutator

I, (r, 1), ug(r', )] = —ihd, , 3(r — ¥}, (19)

where I1(r, 1) = 6L/ou(r, t) = gu(r, 1) is the canonical momentum conjugate to the velocity
u(r,t), and « and f represent the x, y, z components of appropriate vectors. Now we
introduce the Fourier transforms of the relative displacement, u(r, t) and velocity, #(r, 1),
in accordance with the formulae

d
u(r, 1) = fu(q, z, t) exp (iqry) Zi%’

dgy

ur, t) = Jﬂu(q“, z, )y exp (igr ) (2n)? .
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The first term of the Lagrangian (1) corresponding to the kinetic energy may be rewritten as

dg)
(2n)*

i .
K = 5 JQ’IT(qllz z, [) ”(qH7 Z, l) dZ

The canonical momentum P{q, z, f) conjugate to the velocity #(q, z, 1), is defined as

oL oK o .
CAUATES t).

Plg,zt) = — = — =
! Su(gy,z 0 Oulgpzr) (1)

The vectors P(q |, z, t) and u(q, z, 1) should be treated as operators whose commutational
relations may be derived from (19) and have the following form:

(Polg s 2, 1), ug(qy, 2. 0] = —ihd, ; 8(z — 2) S(gqy — q)) - (20)

The Fourier transform, u(q,, z, t), of the relative displacement vector is a function and an
operator which acts on phonon states. We may expand u{q, z, t) as a function of z in a
series of w,(q), z), which forms a complete set in the space of functions of possible dis-
placements depending on the (x, y) coordinates through the functional form exp (ikr),

ulqy, z 1) = Z [B.(q). 1) + Bi(—‘lua Dlw,iq,2) . (21)

The coefficient preceding w,(qy, z) has been chosen in such a form that the symmetry
condition, u(qy, z, t) = u'(—gqy. z, t), for the Fourier transform of the relative displacement
is ensured. The basis functions, w(q, z), satisfy the same symmetry condition, w(q, z)
= w'(—gq,2), as implied by (6) and (7). The operators B,(g,.!) depend on time as
exp (—iw,t), so the momentum, P(q, z, t), may be written as

Plq,z,t) = > iwn[BZ(qH’ 1) — B,(—q,1)] WI(QH, ). (22)

%
(27'5)2 n

The operators B,(qy, t) and Bf(gy, t) are expressed in terms of u(g, z, 1) and P(q),z, 1) as

1, i (2n)?
Bn(qHa t) == wn(qHa Z) ”(‘I;p Z, [) + — P(iq\b 2y l) dz 5 (23)

2 w, 0

i i Q)
Bl(q\\a[) = 7J”,r1(q!]az) |:”(_qaz7 [) - wi T P(([H,Z, [):| dZ' (24)

The commutation relations for B,(q, ) and Bl (g, 1) follow from (23), (24), and (20),

. 2n*h ,

[Bn(qg,’ [)’ Br‘n(q\h l)] D —— bn.m 6(‘1“ — (11() .

Q / (}anm

Now we introduce new operators b, (¢, t) and bf(g;, 1) in accordance with the definitions

hA
Bn(qHs [) = 200 bn(qH: l) ’ (25)

; ha
Bi(q, 1) = 200 hig,t). (26)
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The operators b,(q, t) and b} (g, t) obey the commutational relations

[bn(qﬂ7 t): br}n(qua t)] = (511,1115{1“.qu: > (27)

in which the variable ¢ was redefined in (25) and (26) as a discrete variable. The factor 4
in (25) and (26) denotes the area of the slab in the (x, y) plane. From the commutator (27)
we conclude that b, (g, r) and b} (g, 1) correspond to the creation and annihilation operators
for the confined acoustic phonons, respectively. The phonon Hamiltonian

H, = j Plgy, z, t)u(gy, z. t)dg dz — L
takes the canonical form,

th = Z ha)n(qH) [bj,(qH, t) bn(qH’ t) -+ %] ’ (28)

if we replace P(q, z, t), u{qy, z, t), and u(qy, z, t) using (21) and (22) and take into account
(25) and (26). All operators considered in this section are time dependent as they are in
the Heisenberg representation. We will use ¢,(¢), cf(q)) to denote creation and annihilation
operators in the Schrodinger representation. The Hamiltonian (28) is invariant in respect
to the transition between these two representations.

5. Hamiltonian for Electron—Phonon Interactions

The operator for the relative displacement, #(r), in the Schrodinger representation in terms
of ¢,(q)) and cf(q)) follows from (21), (25), and (26) and has the form

) = —— e (- Z)eldnrn
u(r) q%n TAgwn(q)) lealg)) + cH(—q ) walq, 2) e (29)

5.1 Deformation potential interaction

At first, we will consider the approximation of the deformation potential for the derivation
of the Hamiltonian of the electron—phonon interaction (see, for example, [21]),

Hy, = E,divu(), (30
where E, is a deformation potential coupling constant. From (29) and (30) it follows that

Hye = 2 €70 Iiqym2) [e,(qy) + cf(—q))]. (31

qi-n

hEZ oW, (g, Z))
I'ig,nz) = |/—2— {igyw,(qy,z) + ——"1. 32
{q, ) 2gon(a) <‘1n (qy. 2) 5 (32)

It is obvious for shear waves that I'(¢q,, n) = 0. Hence, shear waves do not interact with
electrons; this is in line with the fact that transverse phonons in a bulk isotropic solid do
not interact with electrons through the deformation potential. On the contrary, both
dilatational and flexural waves contribute to the Hamiltonian for electron—acoustic phonon
scattering. Accordingly, the functions I'y and T, describing the intensity of the electron

where

[§]
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interactions with dilatational and flexural waves are given by

ChEZ aq,
Fd(q[i’ n, Z) = Fd,n ‘I/i/‘l i |:(q2n - C]%) (qlzn + q%) Sin <ﬂ cos (q1,nz) 5
2400,(q)) | 2

(33)
}I;EZ—;¥ 2 2 2 aq .
Ff(qH’ n, Z) - F{'.n ]/Maw(q) |:(q12)1 - []:) (‘1{11 + q“;) Cos <2l> S (ql.nz):| .
AL\ |
(34)

From (33) and (34) we may see-an interesting feature of the functions I'y and I; they
depend on the z-coordinate as functions cos (¢,z) and sin (g,z) (obtained from displacements
associated with “longitudinal” vibrations), although the eigenmodes (11), (12), (16), (17)
also have cos (g,z) and sin (g,z) terms which may be associated with “transverse” vibrations;
these “transverse” terms were cancelled in the calculation of functions I" and do not appear
in the final results.

Another important property of the functions I'y and I'; is their opposite symmetry. The
function I', is symmetric, but the function I'; is antisymmetric. This results in substantially
different contributions to electron scattering from dilatational and flexural phonons. If the
electron potential energy in the FSQW is a symmetric function of z-coordinate, the electron
states may be classified by the symmetry of the electron wave function into symmetric and
antisymmetric states. Dilatational phonons will interact only with electrons scattered
between two states of the same symmetry while the scattering by flexural phonons will
result in the electron transition between two states of opposite symmetry.

5.2 Piezoelectric potential interaction

Now we will consider the interaction of acoustic phonons with electrons through the
piezoelectric potential. This mechanism of electron—phonon scattering is inherent to crystals
without an inversion center, for example, zincblende polar semiconductors. The appropriate
Hamiltonian has the form

H,, = —eqr), 35)

pz

where ¢(r)is an electric potential, associated with acoustic waves in the piezoelectric medium.
An arbitrary deformation of the piezoclectric semiconductors is accompanied by a
polarization vector 2 which is related to the strain tensor u;; as

P
P, = /))v,ijuij’

where f3, ;; is a polarization tensor [8]. The clectric potential ¢ may be determined from
Poisson’s equation, div D = 0, where
0

Di(r) = —g; . + 4nP;

F

and ¢; is a low frequency dielectric permittivity tensor. For zincblende semiconductors
&; = &0, and the piezoelectric tensor has only one independent component f, . = f, ..
=B, =B By =0, il v=1i orv=j or i =jin the Cartesian coordinate system
assoclated with the axes of symmetry of the crystal.
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If we adopt the above-mentioned simplifications, Poisson’s equation takes the form

8 %u, G 2u,
V2 = iﬁ( te O, O ”> (36)
¢ \Oydz 0zOx  OxO0y

where the right-hand side is determined by (29). Using the solutions of (36) we may represent
the Hamiltonian of the piezoelectric scattering (35) in the following form:

sz = Z ei‘IH"H V(‘IH& f, Z) [Cn(qli) + C)t(_q\\)] » (37)

qi-n

where the function V(g , n, z) is a solution of the ordinary differential equation

0 Vig, n, z) 2
— " — gqiV(gy,nz
o2 qii (‘Iu )
; _ Ownlgy,z) . Ow,lqy,2)
= _%n(q[[) <lqy 4@21— + 1qx ___5:“1 - qquwyn:(qHs Z) 5 (38)

8nef h

B,(q)) = '
(q)) 240m,(q,)

Unlike the deformation potential Hamiltonian of (31) and (32), the Hamiltonian of the
piezoelectric scattering, defined by (37) and (38) couples electrons with all three types of
acoustic phonons in the semiconductor slab — shear waves, dilatational waves, and flexural
waves. Moreover, H,, is anisotropic due to the anisotropy of the polarization tensor f, ;;.
The coupling functions for shear phonons, ¥,(g,, n, z), dilatational phonons, V,(q, 1, z) and
flexural phonons, V(g , n, z), obtained by solving (38) have the following forms:

nnz )
5 5 —sin{— 1, if n=0,2,4,...,
(Qx - qy) (7'[}’!/&) a

Vs(qHa n, Z) = lFs,n‘%’n(qH) PR
(g7 + (nja)’) q cos <7mz>7 if n=135..,

a

Vd(‘]“» n, Z) = Fd,n'@n(qH) qquql

g% — g2 2Aq? — 2¢? ,
x [__“_(qz‘ qz‘) sin <q‘a> sin (q,2) — 7(613 4 Gin (q“'> sin (qtz):l, (40)
q) + 4 2 qj + 47 2

I/f(qHa n, Z) = _Ff,n%n(q”) qquql

3 2 2 2 2 2 2
X |:(q2q;) cos <%ﬁ> cos (q,z) — M cos <q—1ﬁ> cos (q,z)} . (41)
qi + 4 2 q) + q; 2

The functions ¥, and V; have opposite symmetry; the function V, is antisymmetric and the
function V; is symmetric. The symmetry of the functions ¥V, and 1 is opposite to the
symmetry of the coupling functions I’y and [I'; for deformation potential interaction.
Accordingly, if the electron potential energy is symmetric, the dilatational phonons will
interact through the piezoelectric potential only with electrons scattered between two states
of opposite symmetry and flexural phonons — with electrons scattered between two states
of the same symmetry. Another difference between the deformation potential coupling
functions I'y and I'; and the piezoelectric potential coupling functions ¥, and V; is that the
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piezoelectric potential coupling functions include terms sin (g,z) and cos (¢,z) which were
absent in the deformation potential coupling functions. The electron—shear phonon coupling
function V, is symmetric for odd modes and antisymmetric for even modes, thus the electron
scattering by shear phonons may result in electron transitions between two states of any
symmetry.

It is interesting to note that there is a significant similarity between the Hamiltonian for
electron interactions with confined acoustic phonons and interactions with confined and
interface optical phonons (see, for example, [22]). In both cases electrons interact with many
phonon modes and the spatial dependence of the Hamiltonian in the z-direction is a linear
combination of either sin and cos functions or sinh and cosh functions (in the case of optical
phonons this corresponds to either confined or interface phonons). However, the acoustic
phonon energy is a strong function of the quantum number, corresponding to motion
transverse to the slab whereas the optical phonon energy dependence on the value of the
similar quantum number is weak.

6. Conclusions

We have determined the conflined acoustic phonons in a FSQW, corresponding to the
shear, dilatational, and flexural acoustic waves in a solid slab. In addition, we have obtained
the expression for the relative displacement vector in terms of acoustic phonon amplitudes.
The Hamiltonians of the electron—confined phonon interactions through the deformation
potential, H 4, and the piezoelectric potential, H ,, arc derived. It is shown that H,,, couples
electrons only with dilatational and flexural acoustic waves, while H ,, is responsible for
electron interactions with all three types of phonons.
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Appendix

In this appendix we present formulae for the normalization constants F ,, I, ,, and F; ,
for shear waves, dilatational waves, and flexural waves. To make the formulae more concise,
we omit the index n when specifying ¢, , and g, ,, because this will not cause confusion.
These formulae have the following forms:

Fo,=1a if n=0, F,,=1}2a if n>0.

If ¢, and ¢, both are real, or if ¢, and ¢, are pure imaginary (g, = ip,, g, = ip,, where p,
and p, are real numbers), then

Fi? = 8;% Ragiq? + 4ag?qlq: + 2aq¢iq; + 10aqiqqy — 4aqqqs + 2041442
— 8agPq,qi(ql + q3) cos (aq) — 2aqq (g’ — 43)? (¢f + q3) cos (aq)
+ 29(—qt + @) (gPq? + Tatqz — qlqi + q¥) sin (aqy)
+ 8q7 g (g0 — qo)sin (aq) + (¢fq) + 447 g7 9 + 647 ¢ q:
— q}q} — 4qPq? — Tatqgt + 2q097 — q4?) sin (alg; — q)
+ (gfq? — 4qPatar + 6a7q’ql — ¢t + daiqr — Tatads

+2¢0q5 — .49 sin (a(gy + 4))],
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B 1
Fe? = ™ Raglq} + 4agiqiat + 2aqq’q} + 10agPq.qt — 4aqiq’qr + 2aq9.42
14t

+ 8agdqq(q? + ¢2) cos (aq) + 2aqq.(q? — ¢2)* (qF + ¢2) cos (agq,)

+ 2404 — ¢2) (@747 + Taiqx — aiai + q3) sin (aq)

+ 8¢iqi(—qi + g sin (aq) + (g7a] + dqiqlaz + 6qialq:

— q7qr — 44iqs — Tatads + 24qx — 492 sin (algr — q,)

+ (afa) — 4qPaiqr + 64iadar — qlai + 4aial — Taiq4s

+ 2¢0q% — q4?) sin (alg + )] .-
If g, is a pure imaginary number (g, = ip,, where p, is a real number) and g, is a real number,
then

_ 1 )
Fg?= -~ [—apiq; — 2apPa’q? + apaiat — Sapiqqs — 2apaiqt + apgq®
141t

+ 4apiqqi(q? + q7) cosh (apy) + apq(p? — ¢3) (g7 — 42)* cos (aq,)
+ (pPg + 6piqial + alqx — Tpiady — 24747 + 4.2 sinh (apy)

+ 4pPad(ar — i) sin (aq) — 4pPqi(q3 — ¢f) cosh (apy) sin (aq,)

+ (=piq; — 6pigiay — afgx + Tpiads + 2404y — 442

x sinh (ap,) cos (aq,)] ,

lapPa? + 2apPqlql — apaglar + Sapiqqy + 2apglad — apqql

F2=
4pq,

+ dapPqqigl + q3) cosh (ap) + apq.(pi — 43) (g7 — ¢3)* cos (ag)
+ (plad + 6piglal + adai — Triqdt — 2¢7q + q.q%) sinh (apy)

+ 4piqi(gx — qi)sin (aq) + 4piaz(gi — gf) cosh (apy) sin (ag,)

+ (pfad + 6piaiai + ¢lat — Triads — 2474% + 4.4

x sinh (ap,) cos (aq,)] .
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