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We have employed a Monte Carlo technique for the simulation of electron transport and noise 
(diffusion) in GaAs rectangular quasi-one-dimensional quantum wire structures at low 
temperatures. It is demonstrated that with the heating of electron gas the efficiency of acoustic 
phonon scattering decreases and the mobility increases. The increase of electron mobility 
appears as a superlinear region on velocity-field dependence. It is shown that electron noise 
increases in the superlinear region. The transition from superlinear transport to the regime close 
to electron streaming with a further increase of electric fields is reflected on the 
diffusivity-frequency dependence by the appearance of a separate peak at the streaming 
frequency. The electron streaming regime which takes place at higher fields causes the collapse 
of the diffusion coefficient (noise spectral density) to the streaming frequency. 

1. lNTRODUCTlON 

Low-dimensional semiconductor structures and partic- 
ularly quasi-one-dimensional (1D) structures of quantum 
wires (QWI) have recently attracted much attention due 
to the possibilities of achieving very high electron 
mobilities’ and low-noise performance at low temperatures 
with possible technological applications. In spite of the fact 
that electric noise is a crucial device characteristic because 
it sets lower limits to the accuracy of any measurement, 
there are almost no studies on electron noise in QWIs at 
low temperatures. The reason is that electron transport 
and noise in quantum wires at low and intermediate tem- 
peratures, and at intermediate electric fields are primarily 
controlled by acoustic-phonon scattering. It is common 
practice to treat acoustic-phonon scattering within elastic 
or quasi-elastic approximations (see, e.g., Refs. 2-5) as in 
bulk materials. However, it has been shown earlier6 that 
acoustic-phonon scattering in low-dimensional structures 
and particularly in QWIs is essentially inelastic and is far 
more important for electron energy and momentum relax- 
ation than in bulk materials. Correct treatment of acoustic- 
phonon scattering in low-dimensional structures requires 
full consideration of uncertainty of momentum conserva- 
tion (quasi-conservation ) .6 

Due to peculiarities of acoustic-phonon scattering in 
QWIs, electron kinetic and noise parameters may be con- 
siderably different from those in bulk materials. This is due 
to the dependence of the 1D density of states on electron 
energy whereby the acoustiophonon scattering rate de- 
creases with an increase in electron energy, excluding the 
region close to the subband bottom.6 As a result, the effi- 
ciency of electron scattering by acoustic phonons should 
decrease with the electron heating by electric fields. At 
rather low electric fields, where electrons are still below the 
optical-phonon energy, it is expected that the decrease in 
the efficiency of acoustic-phonon scattering might lead to 
an increase in electron mobility.’ In real structures, how- 

ever, acoustic-phonon scattering may be either too weak, 
resulting in an electron runaway towards the optical- 
phonon energy, or too strong so that electrons cannot be 
heated at all up to very high electric fields. It seems, how- 
ever, that there should be optimum structure parameters 
for which an increase in electron mobility can be quite 
pronounced. 

The aim of the present paper is to get an insight into 
electron transport and noise in rectangular QWIs at low 
temperatures for a wide range of electric fields through the 
study of velocity-field and energy-field characteristics as 
well as electron noise spectral density. We developed a 
Monte Carlo code which efficiently includes electron scat- 
tering by acoustic as well as by optical phonons and allows 
simulation of electron transport and noise in 1D structures. 

II. MODEL AND METHOD 

We consider rectangular GaAs QWIs with several dif- 
ferent cross sections embedded into AlAs material. We 
assume that the electron gas is nondegenerate with electron 
concentration of the order of lo5 cm-’ or less. Electron 
scattering by confined longitudinal optical (LO) phonons 
and localized surface (interface) optical (SO) phonons’ as 
well as by bulklike acoustic phonon8 has been taken into 
account. Ionized impurities are assumed to be located suf- 
ficiently far from the QWI so that their influence on the 
electron motion inside the wire is negligible. Our program 
incorporates all subbands occupied by electrons, but for 
the present structure parameters only the first two or three 
subbands are relevant to the electron transport at low tem- 
peratures. The transition probabilities are given by 

W W :,q) =f DWc,k;,q) I2 

xS[e(k;) --E(k,.J -AE&o~] . (1) 
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Here, M(k,,kJ.,q) represents the matrix element for a 
transition from the initial k, state to the llnal ki state me- 
diated by a phonon with wave vector q, and AE is the 
intersubband separation energy. The f sign in the energy- 
conserving S function accounts for the emission ( + ) and 
absorption ( - ) of phonons. The total scattering rate from 
an initial state with energy E is then given by 

WJ =&; J^ & W(k,k:d 7 

x 

where the summation over the final ki states takes into 
account all the possible intrasubband and intersubband 
transitions. 

The 1D electron scattering by LO and SO phonons is 
described in more detail in Ref. 8. Electron scattering by 
acoustic phonons is usually treated as an elastic mecha- 
nism, which is not true for low-dimensional structures. Let 
us take a closer look at electron interaction with acoustic 
phonons in a rectangular QWI. The acoustic-phonon scat- 
tering rate is given by6 

EikBT m* 
“(E)=$-gjp y- 

&y dqz G(q,d 
J-L e+iuqT-Ae ’ (3) 

where E, is the acoustic deformation potential, p is a ma- 
terial density, u is a sound velocity in the material, and 
qT= dF& is a transverse component of the phonon 
wave vector. The function G( q,, ,qJ is a form factor which 
represents the uncertainty of momentum conservation in 
low-dimensional structures. The above equation as ob- 
tained in Ref. 6 assumes that qx(qr and iiuq,N kBT. If the 
phonon energy under the delta function is neglected5 one 
gets the elastic approximation: 

(4) 
where indices j and I denote the initial subband, j’ and I’ 
denote the final subband, and L,, and L, are transverse 
dimensions of the QWI. One can see that the elastic ap- 
proximation of Eq. (4) yields two unphysical divergencies 
of the scattering rate: (i) when the electron energy goes to 
zero after scattering and (ii) when spatial dimensions of a 
QWI approach zero. Both these divergencies disappear 
within the inelastic approach of Eq. (3) .6 

In order to demonstrate the differences between the 
elastic and inelastic models we have plotted the scattering 
rate versus electron energy for the two different models in 
Fig. 1. Note that within the elastic approximation the ab- 
sorption and emission rates are equal. One can see the 
elastic approximation highly overestimates the scattering 
rate in the low-energy region. 

Cornputationally, the main differences between 1D 
simulations and 2D and bulk models is that phase space 
reduction lifts some of the complexities associated with 
computation of angular scattering. For instance, due to the 
limited number of final scattering states, the total rates can 
be stored in the memory, thereby eliminating lengthy com- 
putations during free-flight loops and final state selection.’ 

--0-- inelastic absorption 
e inelastic emission 
- elastic 

ENERGY (eV) 

FIG. 1. Acoustic-phonon scattering rate vs electron energy for elastic and 
inelastic models of electron-phonon interaction. The emission and absorp- 
tion rates are equal within the elastic approximation. The temperature 
and cross section are indicated on the figure. 

We have developed a novel and very efficient proce- 
dure for random selection of acoustic-phonon energy in- 
volved in scattering. The essence of this procedure is that 
we first numerically perform a von Neumann prpcedure for 
a set of random numbers and tabulate the phonon energy 
as a function of a random number. Actually, we have 
solved the following equation: 

s 
QTWS 

r da- F(qT> = 
s 

” dqrF(qr) t (5) 
qT& qTdtl 

with respect to the unknown upper integration limit q? for 
a set of 100 random values of r ranging from 0 to 1. Here 
the function F( qT) is an intergrand of Eq. (3) and repre- 
sents the scattering probability dependence on the trans- 
verse components of the phonon wave vector. For a set of 
uniform random numbers (rl,r2,...,r100) we obtain the set 
of solutions of Eq. (5) (q$, ,q~2,...,q~1J (which are trans- 
verse components of the phonon wave vector) distributed 
according to the probability P(qT) of electron scattering 
by the acoustic phonon with a given transverse component 
qr. Since the transverse component of the phonon wave 
vector is directly related to the phonon energy within this 
approach,” one can find the desired phonon energy for 
each value of r. The tables of such values have been sepa- 
rately calculated for a set of electron energies for the emis- 
sion and absorption of the acoustic phonon. Hence, the 
random choice of energy of the phonon involved in a scat- 
tering event in the Monte Carlo procedure is just the gen- 
eration of the random number r and the selection of the 
corresponding phonon energy value from the appropriate 
table. This procedure essentially speeds up the Monte 
Carlo simulation. 

As the transient process under near-streaming condi- 
tions lasts a very long time and electrons have to undergo 
a great number of scattering events before reaching the 
stationary regime, the conventional ensemble Monte Carlo 
simulation becomes essentially inefficient. We have devel- 
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FIG. 2. Electron drift velocity as a function of applied electric field for 
three different cross sections of the quantum wire. Dashed lines show the 
drift velocity estimated from the low-field mobility. Wire cross sections 
and lattice temperatures are indicated on the figure. 

oped an ensemble Monte Carlo technique” which permits 
a quick relaxation to steady state in the presence of long- 
lasting transient processes. The essence of this technique 
lies in the choice of the initial electronic state. We choose 
every next electron randomly from the trajectory of the 
previous electron so that we approach the stationary initial 
distribution function in three to four iterations. This tech- 
nique has been used for velocity autocorrelation function 
calculations. All stationary characteristics have been cal- 
culated by the single-particle Monte Carlo technique, av- 
eraging over one electron trajectory.i2 

III. RESULTS AND DISCUSSION 

The results presented here are obtained for T=30 K. 
Similar results have been obtained for temperatures T=20 
and 77 K, and the characteristics are qualitatively the same 
as at 30 K. 

Figure 2 shows the electron drift velocity as a function 
of applied electric field. For thick QWIs the superlinear 
region appears on the velocity-field dependence at an elec- 
tric field of the order of 10 V/cm. With a decrease in the 
thickness of the QWI, the superlinear region shifts towards 
higher electric fields. The superlinear dependence disap- 
pears for the QWI with a cross section of 40x 40 A2. As we 
have already pointed out in Sec. I, the superlinear depen- 
dence is a purely 1D effect caused by the reduction of the 
efficiency of acoustic-phonon scattering as the electron gas 
is heated. Figure 3 shows the mean electron energy plotted 
versus the electric field for the same QWIs. In 1D struc- 
tures the thermal equilibrium electron energy correspond- 
ing to one degree of freedom is equal to kBT/2, which at 
T- 30 K is 1.3 meV. This equilibrium energy establishes 
well in our simulations, indicating that acoustic-phonon 
scattering is treated correctly. One can clearly see that 
electron heating starts at higher electric fields in thin 
QWIs. This is due to the fact that the rate of electron 
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FIG. 3. Mean electron energy as a function of applied electric field for the 
same quantum wires as in Fig. 2. 

scattering by acoustic phonons increases when the thick- 
ness of a quantum wire decreases [within the elastic ap- 
proximation (4) the rate of scattering is inversely propor- 
tional to the cross section of a QWI]. 

In thick QWIs electrons with the energy of the order of 
or higher than kBT easily escape from acoustic-phonon 
scattering and run away up to the-optical phonon emission 
threshold. A further increase in electric field leads to a near 
saturation of the drift velocity at a streaming value v, 
= ,/-=2.2x lo7 cm/s, where ti is the LO phonon 
energy.” This behavior is related to the electron transition 
from the superlinear to streaming regime. Under streaming 
conditions, acoustic-phonon scattering can no longer hold 
back low-energy electrons from reaching the optical- 
phonon scattering threshold to emit a phonon, in which 
case the electrons travel to the subband bottom, repeating 
this process again and again.13 In the case of ideal stream- 
ing (infinitely high electron-optical phonon scattering rate 
and the absence of any other scattering mechanism) elec- 
trons oscillate in k space for an indefinite period of time, 
which leads to permanent oscillations of the electron drift 
velocity and mean energy.14 In real conditions both the 
penetration through the optical-phonon scattering thresh- 
old and the acoustic-phonon scattering randomizes the 
phase of the electron ensemble, and even though each elec- 
tron under certain conditions continues oscillating, the 
mean parameters approach stationary values. This problem 
has been investigated in Refs. 2 and 14. 

To examine the superlinear region in more detail we 
have calculated the electron diffusion coefficient as a func- 
tion of electric field in Fig. 4. The superlinear region is 
reflected on diffusivity-field dependence as a broad maxi- 
mum. The maximum on the diffusivity curve is well pro- 
nounced for thick QWIs and almost disappears for a 
40x40 A2 QWI. Electron scattering by acoustic phonons 
in this thin QWI is so strong that it prevents electron heat- 
ing by the electric field up to very high values where optical 
phonon emission starts to dominate and electrons enter the 
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FIG. 4. Electron diffusion coefficient as a function of electric field for the 
same quantum wires as in Fig. 2. 

streaming regime. The decrease in diffusivity at higher 
electric fields indicates the transition from superlinear elec- 
tron transport to electron streaming. 

The dependence of electron mobility on electric field 
can be easily. -extracted from velocity-field dependence 
(Fig. 2). We have estimated the low-field electron mobility 
for three different QWIs. The low-field mobility values of 
1.5X 104, 7X lo”, and 1.5~ lo5 cm2/V s are obtained for 
QWI cross sections of 40X40, 150X100, and 150X250 
A2, respectively. Almost the same mobility values are de- 
rived from Einstein’s relationship p=eD/k,T, where D is 
the low-field diffusion coefficient (Fig. 4). 

Figure 5 shows the electron distribution functions at 
different electric fields for a 250X 150 A2 QWL One can 
see that the distribution function in the intermediate en- 
ergy region is flattened and extended up- to the optical 
phonon energy. There is no electron penetration beyond 
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FIG. 5. Electron distribution function vs electron energy for three differ- 
ent electric fields. The quantutn wire cross section is 150 X 250 A. 

the optical-phonon energy in the given fields, so that the 
distribution function is cut off at the phonon energy. At 
lower electric fields the cutoff energy in the electron distri- 
bution coincides with the lowest SO phonon energy, which 
is equal to 34.5 meV. At higher electric fields a fraction of 
the electrons penetrate beyond the SO phonon energy. 
However, the electron penetration beyond the LO phonon 
energy is very weak. The point is that electron scattering 
by LO phonons in this thick QWI is much stronger than 
electron scattering by SO phonons.’ The distribution func- 
tion at 20 and 200 V/cm has a steep slope at low energies, 
which can be characterized by a very low temperature 
(lower than the equilibrium temperature). There are not 
enough electrons accumulated at the subband bottom to 
assure the electron cooling effect. It has been shown in Ref. 
11 that a simplified treatment of acoustic-phonon scatter- 
ing leads to the cooling effect due to stronger scattering at 
the low-energy region and thus to the excess accumulation 
of electrons at the subband bottom after they have emitted 
optical phonons. 

In the near-streaming regime, electrons have “a long 
memory” since their trajectory is periodically repeated. A 
powerful technique to recover this memory and to reveal 
the transition from a diffusive to a streaming regime is the 
analysis of the current density autocorrelation function. l4 
Here we deal with a conservative electron ensemble with a 
spatially uniform electron concentration. Therefore, tluc- 
tuations of current density arise merely from the fluctua- 
tions of electron velocity. That is the reason why, instead 
of analyzing the current density autocorrelation function, 
we prefer to consider the velocity autocorrelation function 
given by 

C(T)=@v(t)Sv(t+T)~, (6) 

where the angular brackets stand for an average over time 
t, and &(t) =v(r) - ud is the deviation from the drift ve 
locity vd at time t. The dependence of autocorrelation func- 
tion on delay time T contains information on all charac- 
teristic times of the given conservative electron system. 

Figure 6 shows autocorrelation functions plotted ver- 
sus the delay time and calculated for different electric fields 
corresponding to the ohmic electron transport (zero elec- 
tric field), the superlinear electron transport regime (20 
V/cm), and the near-streaming regime (200 V/cm). The 
characteristic decay time increases as the electric field in- 
creases from 0 to 20 V/cm, reflecting the decrease in 
acoustic-phonon scattering efficiency responsible for a mo- 
bility increase at those fields. The negative autocorrelator 
which appears at 20 V/cm turns to damping oscillations 
when electrons approach the streaming regime (200 
V/cm). The oscillation period coincides with the period of 
electron motion in k space: \ 

ts= ~~/eE+~op, (7) 

where rap is the effective optical-phonon emission time 
above optical-phonon energy. The characteristic oscillation 
decay time is mainly defined by the acoustic-phonon scat- 
tering rate since electron penetration into. the active region 
where they can emit optical phonons is negligible at those 

976 J. Appl. Phys., Vol. 75, No. 2, 15 January 1994 MickeviEius et a/. 

Downloaded 22 Aug 2006 to 128.205.55.97. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



. . . 
150x250 A2 

1.5 . . . . . ..I . . . . . . ..I . . . . . . . I . . . . 

I 150x250 A2 I 

- E = 0 V/cm 
,,,,(,,,,,,,“.,.,,,,~.. E _ 20 V/c,, 

------ E = 200 V/cm 

-0.2 ’ 
0 

I 
20 40 60 60 

DELAY TIME T (psec) 

FIG. 6. Electron velocity autocorrelation function vs delay time at dif- 
ferent electric fields for the same quantum wire as in Fig. 5. 

electric fields. With a further increase of the electric field 
the efficiency of the acoustiophonon scattering rate de- 
creases (since electrons spend less and less time in the 
low-energy region) while their penetration into the active 
regions gets deeper. Therefore, at sufficiently high electric 
Aelds, electron streaming is controlled by penetration 
through the LO phonon emission threshold rather than by 
acoustic-phonon scattering. At very low electric fields, in 
the absence of acoustic-phonon scattering, electron stream- 
ing is controlled by the lowest-energy SO phonons. Even in 
this idealized case the streaming oscillations are slightly 
damped due to the electron penetration beyond the SO 
phonon energy. 

The calculated autocorrelation functions have been 
used to calculate the frequency dependencies of the elec- 
tron diffusion coefficient (velocity noise spectral density) 
related with the autocorrelation function through the 
Wiener-Khintchine theorem: 

D(w)= O” 
I 

dT emimTC( T) . (8) 
0 

The results are presented in Fig. 7. On the vertical 
scale we plotted the normalized diffusion coefficient, which 
in fact is merely the normalized noise power spectral den- 
sity of the conservative electron system. The relationship 
between the spectral density and diffusion coefficient is 
given by” 

S(w) =41)(o) . (9) 

The frequency dependence of the diffusion coetllcient 
at zero field has a Lorentzian shape ( 1 +c#) -l, where 
r is effective scattering time. (Practically the same 
Lorentzian dependence is obtained for 20 V/cm, i.e., at the 
maximum of diffisivity). The critical frequency LB,=T-~ 
increases effectively with the onset of optical-phonon scat- 
tering. The effective time of electron scattering by optical 
phonons is determined primarily by the electric field, i.e., it 
is equal to the streaming time, [the fist term of the time 

- E = 200 V/cm 
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FIG. 7. Electron diffusion coefficient as a function of frequency at various 
electric fields for the same quantum wire as in Fig. 5. 

given by Eq. (7)], because electron penetration into the 
active region is still negligible [the second term in Eq. (7) 
may be neglected]. At higher electric fields when electron 
streaming takes through the electron diffusive motion, the 
peak related to the streaming frequency f,= l/t, separates 
from the Lorentzian diffusivity-frequency dependence (see 
Fig. 7). Additional peaks also appear on frequencies that 
are multiples of the streaming frequency. The appearance 
of these peaks indicates the transition to the streaming 
regime. Note *that critical Lorentzian frequency w, in- 
creases asp electrons enter the streaming regime. With a 
further increase in electric field, the peak related to the 
streaming increases while the plateau of constant diffusiv- 
ity is going down. The simulation of this regime in the 
presence of two very different characteristic times (stream- 
ing period is much less than the acoustic-phonon scattering 
time) is very complicated and does not provide good ac- 
curacy. In order to study pure streaming we have calcu- 
lated the diffusivity-frequency dependence, ignoring 
acoustic-phonon scattering. In that case almost all diffu- 
sivity (noise) collapses to the streaming frequency and fre- 
quencies which are multiples of the streaming frequency. 

IV. CONChUSlONS 

We have simulated the electron transport and noise 
(diffisivity) in rectangular GaAs/AlAs quantum wires at 
low and intermediate electric fields for 7’=30 K by the 
Monte Carlo technique. Due to heating of the electron 
system, the efficiency of electron scattering by acoustic 
phonons decreases and the mobility increases. The de- 
crease of acoustic-phonon scattering efficiency is reflected 
by the velocity autocorrelation function, which has a 
longer decay time in that electric-field region. The increase 
in mobility is also reflected by the velocity-field dependence 
as a superlinear region. The appearance of enhanced mo- 
bility and the corresponding range of electric fields 
strongly depend on the thickness of a QWI. The point is 
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that the rate of electron scattering by acoustic phonons 
increases with a decrease in the cross section of a QWI. 
With a further increase in electric field, acoustic-phonon 
scattering can no longer hold back electrons from being 
heated by electric fields. As a result, electrons start to run 
away even from the subband bottom and the streaming 
regime is realized. The transition from diffusive electron 
transport regime to streaming has been studied by analyz- 
ing the frequency dependencies of the diffusion coefficient 
(noise spectral density). It is demonstrated that this tran- 
sition is reflected on the latter dependence by the appear- 
ance of a separate peak at the streaming frequency. The 
electron thermal noise almost completely collapses to the 
streaming frequency and its higher harmonics in the pure 
streaming regime. Similar results have been obtained for 
temperatures of 20 and 77 K. 
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