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Abstract. The present study deals with electron intersubband scattering in real quantum
wire structures. Both the muiti-subband structure and confined phonon modes are
considered together. The rates of scattering by confined longitudinal-optical (L) phonons
and by surface-optical {S0) phonons are calculated taking into account all possible Lo
phonon modes as well as all possible electron intersubband transitions. The estimations of
transition rates for GaAs/AlAs awis have shown that intrasubband electron scattering and
mosi intersubband transitions are due primarily to scattering by confined LO phoncns, but
in resonant intersubband transitions the contribution of 50 phonons may be dominant
when the phonon energy is close to the intersubband energy separation. Moreover,
electron-so-phonon scattering might play an important part in low-temperature electron
transport because the GaAs-like S0 mode is shifted towards lower frequencies compared
with that of Lo phonons. The energy dependence of the total scaltering rate in an
ideal quantum wire exhibits multiple sharp peaks relatad to each intersubband transition.
These peaks originate from the resonant mature of the density of stales in ideal one-
dimensional systems. It is demonstrated that in real quantum wires with variable thickness
the resonant peaks broaden or even disappear due to variation of subband energies.

1. Introduction

The progress in semiconductor technology has provided the means to fabricate the so-
calied quantum wires (QWIs) with quasi-one-dimensjonal (1D) structures. It has been
suggested that Qwis will exhibit carrier mobilities well above 10° cm? V-1 s~1 [1],
but these high values of the mobility have not yet been observed experimentally. The
expected enhancement of the carrier mobility in Qwis should stem from the restriction
of momentum space to one dimension as well as the resulting reduction of final states
for scattered electrons. This point, however, needs to be clarified. Despite the rapidly
growing number of publications on Qwis, the theoretical investigations of electron
transport controlled by optical phonon scattering are limited either to the case of the
extreme quantum limit (EQL) wherein only one subband is considered [2-4] and/or to
the case of scattering by bulk three-dimensional (3D) phonon modes [5-7]. However,
due to technological limitations the confinement of electrons is relatively weak and
electrons can populate upper subbands at higher temperatures or in the hot-electron
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regime. On the other hand, recent experiments evidently demonstrate the presence
of surface-optical (S0} modes [8] and phonon confinement [9]. The other significant
flaw in theoretical studies of Qwis is that they deal with ideal 1D systems with fixed
subband energies. A unique feature of ideal QWiIs is the well-pronounced resonant
nature of electron scattering as a result of multiple sharp peaks (diverging to infinity)
on energy dependence of the total electron scattering rate. These peaks originate
from the resonant behaviour of the density of states in ideal QWI structures and each
peak is related to a particular intrasubband or intersubband transition to the bottom
of the corresponding subband. Real Qwis, however, always have variable thickness
along the structure. Generally, electron beam or x-ray lithography on a quantum well
surface, with subsequent reactive ion (beam) etching, is used for Qw1 frabrication
[10, 11]. State-of-the-art technology allows the quantum well width to be controlled
down to one monolayer. However, the etching results in QWIS with thicknesses
varying within several percent along the structure. The fractional-layer superlattice
technology used for fabrication of Qwis [12, 13] allows one to obtain structures with
periods as short as 16 nm. However, even improved technologies [14-16] do not
provide abrupt interfaces between the GaAs and AlAs layers; as a result L, and L,
vary with z. Thus, it appears that no current and foreseeable future technologies of
fabricating QWIs can ensure the possibility of creating ideal structures with constant
thickness. The variation of Qw1 thickness results in the variation of subband energies.
Consequently, electron scattering is no longer energetically coherent in different parts
of a Qw1 [17, 18]; this should lead to the broadening or even complete washing-out
of the resonant peaks [19). This effect has not yet been studied extensively.

The aim of the present paper is to investipate both the phonon confinement
and multi-subband structure and to reveal the role of so phonons and confined
longitudinal-optical (LO) phonons in intersubband transitions. Moreover, the reso-
nant scattering peak broadening due to the variation of thickness along the QW1 is
considered in order to calculate scattering rates in real QW! structures. We will con-
sider a rectangular QwlI fabricated of polar semiconductor and embedded in another
polar semiconductor. Firstly, all expressions will be given for an ideal QWi (in sec-
tion 2) and then we will account for variations in Qwi thickness (in section 3). In
section 4 the numerical results for room tcmpcrature will be presented and discussed.
The summary and conclusions are given in section 3.

2. Scattering rates in an ideal QWi

The 1 electron wavefunction in a rectangular Qwt is of well known form

1 2 ik 3Ty 2\'/? lr=
A g ez [ 2 ; 474 = i
lg.. 5,0 = \/L_me (Ly) sm( Ly) (Lz) sm(Lz)

i=12,...,0=12,.... m
The corresponding energy is
where
h?
E (q;) = - | (3)
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is the electron kinetic energy, g, is the electron wavenumber in the x direction, and

2
R | {ir In\?
Bt = g [(z—y) * (L_)] @

is the subband {7,!} energy with respect to the bulk ground level. Here L, and
L, represent QwI dimensions in the y and z directions, respectively. Equation (1)
represents the wavefunction for a carrier in a waveguide supporting standing modes
in the y and z directions and travelling in the z direction of the QWI. The interaction
Hamiltonians for so and confined LO modes are as given in {4]. The form of LO
phonon Hamiltonian reflects the fact that confined LO phonons in a QWI have a
mode structure similar to the electromagnetic modes in a dielectric waveguide. For
the evaluation of electron scattering rates in an ideal QwI, we assume the Fermi golden
rule to be valid. (The validity of this approach is discussed in detail in [2-7, 20-22].)
Note that we are dealing with high temperatures where quanium interference effects
are not important. ‘The transition probability from an initial electron state |q,,j, 1)
to a final one |g., 7', {'} is then as follows

, . 2T . .
Wl® (g, 5,5, ) = | MEPIPS [E(q, 7' V) - B, 5D £ 0] ()

where the superscript ‘¢’ and the upger sign indicates emission, ‘2’ and the lower
sign indjicates absorption, and Mi¢/2} is the matrix element for electron-phonon
interaction

M/l = (gt VN4 1/2F1/2(HP)q 5, N +1/2+1/2). (6)

Summing (5) over ali final states and consiclering the electron wavefunction given by
(1) and the interaction Ham:ltoman given in [2, 4], then the total electron scattering

rate X _{e!a}(qz, 4, 1) by confined LO phonons from the state |q,, j, ) to elsewhere can
be expressed in a form similar to that of [4]

_(e/a}(qs,Jsl) = Z {e/a}(qu, 13 5[') ]

Iil

where the rate of particular intrasubband or intersubband j,{-to-j’, !’ transitions

62 +oe
ie/ }(qz,_y,t i) = = / dk‘a‘.wLO(N-l-I/QiI/Z)ILo(kI,Ly,Lz)
Ty Jooo
X 5[E(Q;:1jrsl’)— E(stj’l)iﬁwLO] éq;,q,:{:k, (8)

is found by integrating (5) over phonon wavenumber k, within one particular final
subband j', . Here,

_f1 1\ (27)2
hotho by 2= (32 L) B
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with
L L . .
I U T AU P O k. W O 1.5 (l-:rz)
Pon */0 dyLy./o‘ dz I sin ( Ly)sm( I, sin .
]
x sin (t;::)sin (g}g;g) sin ("T";f) L (10)

It has been shown [4] that in the EQL the dominant contribution to the sum over
phonon modes is made by the first mode with m = n = 1 and the simple ap-
proximation for the scattering rate has been derived. In multi-subband structures
the higher modes might influence the scattering rates considerably, so generally we
have to take the sum over all modes. The number of subbands considered, however,
limits the number of ‘active’ modes which contribute significantly to the scattering
rates. For instance, from the analogy with the EQL case, the intrasubband scattering
(3 = j,¥ = I) in the upper subbands is dominated primarily by the LO phonon
modes with m = j, n = I. That is why the scattering rate decreases with an increase
of subband indexes j and { due to an increase of the denominator in (9).

The electron transition rate due to SO phonons can be given by 3, 4]

2 £
M ae 3 13" 1) = 55— j dk,wso(N +1/2%1/2)Iso(ke, Ly, L,)
0 v =00
x 6 [E(q’z!j',[,) - E(Q:Hj,[) + ﬁ"“JSO] 6q",q,$k, (11)
where
Iso(ky, Ly, L) = (270G Psg fwgo (12)
where C' is the normalization constant,

_ 1 ./Lyd i/Ll d ".-?._
0= Cosh(aL,/2)cosh(BL,/2) Jy VI, S VT,

x sin (J—Lﬂ-—;”—) sin (J’L‘l:y) sin (Izj) sin (i:riz)
L, L
x cosh [a (y - —5—)] cosh [ﬁ (z - —2"-)] (13)

for symmetric modes, and

1 L-V LJ
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for antisymmetric modes. Parameters o and 3 are defined by the following relations
P+ B -k2=0 15}
and
aL, =8L,. (16)
The so phonon frequency w satisfies the dispersion relation
£y(w)tanh(aL,/2) + ko(w) = 0 (symmetric modes) a7
& (w)coth(aL,/2) + ky(w) =0 (antisymmetric modes)  (18)

Here x, and x, are dielectric functions of the QWi material and the surrounding
material, respectively. In the case of the EQL, the integration of (14) vields zero,
ie. electron-SO-phonon intrasubband scattering is due to symmetric modes alone.
Electron intersubband transitions are, however, due to scattering by both symmetric
and antisymmetric SO modes. The selection rules for these transitions follow directly
from (13) and (14). From symmetry it is evident that intersubband transitions due to
symmetric modes are allowed when both subband indexes change by even numbers,
while transitions duve to antisyrametric modes are allowed when both indexes change
by odd numbers. The intersubband transitions due to SO phonons where one index
changes by an even number and another index by an odd number are forbidden by
selection rules for both symmetric and antisymmetric SO modes. Due to the identical
formulation of (8) and (11} the general expression for the total electron scattering
rate from the state |g,,7,f{} to elsewhere due to either LO or SO phonons can be
written by taking into consideration equation (7) and the similar equation for sQ
phonons. Noting that only forward and backward electron scatterings are possible,
the integral over phonon wavenumber can be changed by the sum over two paossibie
phonon wavenumbers

. e? m*\ /2
x(e/a}(%:bl) = m (7)

Xy > W(N+1/2+ 1/2)1(@,,%,@)-& (19)

IR g P hete)

where E; = E_ + E;; — E;q % hw is the electron kinetic energy after scattering,
and phonon wavenumbers k&, are

ki = g, + /2m* BL /& (20)
B = —q, + /2Zm EL /h. @1

Note that the plus and minus signs in (20) and (21) correspond to forward and back-
ward electron scattering, respectively, for absorption, and to backward and forward
scattering, respectively, for emission, if the electron initial wavenumber is positive,
and vice versa if the initial wavenumber is negative. The divergence in (19) resides
in the square root of the final electron energy in the denominator, which represents
the density of final states in the (D system. The rest of (19) depends smoothly on
electron energy through the phonon wavenumber k.
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3. Scattering rates in a real Qw1

In the previous section we have considered an ideal QW1 with a constant cross section
along the structure, A unique feature of ideal ID electron systems is the divergent
nature of the density of states at zero kinetic energy appearing through the square
root in the denominator of (19). That is why the multiple sharp (diverging) peaks
on the energy dependences of the scattering rates are observed. Real Qwis always
have a variable thickness, as we have already discussed in the introduction. Now,
let us consider a real QW1 with variable thickness. It is evident from (2)-(4) that
the variation of a structure thickness causes the variation in subband energy, E ().
Since the total electron energy does not depend on the QWi thickness, the variation
of E;; with z results in the variation of electron kinetic energy E_. For the sake of
simpfic:'ty in the analytical considerations, we assume L, = L, = d(«) in this section,
where d(z) = d, + éd(x) with the condition §d(z) <« d;, for all z. Note that our
model implies that the variation is a smooth function of = and the characteristic
length of the fluctuations i much greater than the de Broglie wavelength. Since the
total electron scattering rate given by (19) is expressed by the sum over all possible
final states, we can analyse one separate term of the sum in (19) representing the
rate of some particular electron transition regardless of the phonon mode (SO or LO)
assisting that transition. For the sake of convenience we will use the same notation
A for this particular transition rate, but now as a function of electron kinetic energy.
(Indeed each term in (19) depends on the QW1 thickness through the function 7 (9),
(12), and the dependence on E_ appears through E} and the phonon wavenumber
k..) The transition rate averaged over the Qw1 length is given by

1

L
MEq.dp) = 7 [ deA[E.(2),d(2)] @2)

where £, = Ey6 E{(z), E, = E—(E};) is the electron kinetic energy corresponding
to a given total energy E and average subband position (E;;), and § E(x) is the
electron kinetic energy variation (opposite to the variation of subband position) due
to the variation of QwI thickness. The total electron energy given by (2) remains
constant while the increment in the electron kinetic energy due to an increment in
the thickness dd can be expressed in the linear approximation éd(z)} < d, as

6E = (W j2m*) [(m/do)? + (Ix/do)?) 26d]dy = (E;)26d/d, (23)
or
§E/(E,)) = 26d/d,. (24)

In other words, the increment in the electron kinetic energy is proportional to the
increment in the thickness, and the proportionality constant depends on the subband
indexes. It is seen from (23) that for the same fluctuation in thickness the fluctuation
in electron kinetic energy is larger in higher subbands. Note that the averaging over
the structure length in (22) yields significant changes in the electron scattering rate
only in the regions where A E_,d) is strongly dependent on E, (i.e. close to the
divergence points). The changes due to the direct dependence of the scattering rate
on structure thickness d are relatively small because w and [ in (19) are both smooth
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functions of d and the limits of variation of & are narrow (éd < d,). Consequently,
the averaging over structure length can be approximated, with sufficient accuracy, by
the averaging over electron kinetic energy alone:

Ep+AE
M Eq, dp) = [3 B X(E,.d)F(E,) 25)
.

where AE = max |6 E(x)|, and F(E,) is the probability density for an electron of
baving kinetic energy E, from the interval (E, — AE, E, + AE) at a given total
electron cnergy F,

Eo+AE
f dE_ F(E_ )=1. (26)
Eoq~AE

The physical requirement for the integration limits is A £ < E, which is also implied
by the condition éd < d,;. It is convenient to express the scattering rate for each
possible transition by separating the diverging part from the rest of (19):

ME,,dy) = P(E,,dg)O(E)(EL)H? 27

where P(E_,d;) represents the non-diverging part of (19), © is the step function
which cuts off the scattering rate below zero electron final energy E7.. For the purpose
of making qualitative estimations, we consider the simplest case of a uniform energy
distribution, ie. completely random fluctuations of QW1 thickness. Then by assuming
that the smooth function P(E_, d)} depends weakly on E_ within the narrow interval
of energy variation and that the scattering rate given by (27) is a function of electron
final energy alone, we can easily integrate {22) over the final energy variation and
obtain:

A Eq,do) = (P(Eqy,dy)/AE)[O(Ey + AE Y Ej+ AE')/?

- ©(E,— AE(Ey— AE"Y?. (28)
If we put Ej =0 in (28) we get:

ACE, dy) = P(E,dg}[VAE (29)

ie. the scattering rate is no longer divergent. Ej = E' — (E;,) is the average final
electron kinetic energy corresponding to the final total electron energy B/ = E & huw;
AE' = max |§ E'(z)] is the amplitude of electron final energy variation in the finai
subband j’,¥; and E, is the threshold initial electron kinetic energy corresponding
to the zero final electron energy.

The form of (27) suggests a compact and convenient way of storing the scattering
rates in a Monte Carlo program. If we tabulate the scattering rates, then we must use
a rather small or variable energy step in order to keep all the peculiarities of the sharp
peaks. For multi-subband structures this method requires a lot of computer memory
and calculation of the scattering rates for each scattering event is time consuming.
However, we can store the tabulated P(E,,d) part of (27) alone and combine it
with the calculated square root. This method should require a little more execution
time but, noting that P(E_,d) is a smooth function of E,, one can use a much
larger energy step and save a lot of computer memory.
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4. Results and discussion

We present here the results of numerical calculations performed for a GaAs Qw1 of
dimensions L, = 150 Aand L, =250 A embedded in AlAs. We have considered
11 subbands. The summation in (9) has been performed over phonon modes from
m,n =1t m,n = 11, The calculated energy dependence of the total electron-L0O-
phonon scattering rate from the first subband to elsewhere, including itself (i.e. both
intrasubband and intersubband transitions), is presented in figure 1 for the case of an
ideal Qw1. Figure 2 shows the same dependence for electron-so-phonon scattering.
Forward and backward scattering are plotted as separate scattering mechanisms in
order to reveal the polar character of electron interaction with LO and 50 modes.
Indeed, electron forward scattering is dominant both for LO and SO phonons. The
multiple sharp peaks on the ‘backward’ curves of figure 2 are almost unnoticeable on
the ‘forward’ curves. This is because, in the ‘forward’ curve due to the 50 modes,
the relatively low intersubband scattering rates (from the first subband) are plotted
against the background of strong intrasubband scattering. For backward scattering,
the strength of intrasubband scattering is reduced by more than three orders of
magnitude. As a result, intersubband transition peaks are well pronounced. Note
that peaks on figures 1 and 2 are finite due to finite energy steps of integration. The
maxima tend to infirity as the energy step tends to zero, as is evident from (19) (note
that forward and backward scattering rates are equal at energies infinitely close to the
point of divergence). This is why, for the sake of mathematical accuracy, we should
also mark infinitely high and narrow peaks on ‘forward’ curves of figure 2 However,
these peaks are not realistic physically for real Qwi structures. Comparing figures 1
and 2, one can see that some peaks seen in figure 1 disappear in figure 2 as a resuit
of forbidden transitions due to sO phonons related to those peaks (see the discussion
in section 2). On the other hand, all peaks related to allowed intersubband transitions
are doubled in figure 2, This is due to the fact that SO phonon modes in GaAs/AlAs
QW1 split into two branches; one is related to GaAs and the other to AlAs. Their
frequencies are considerably different; the GaAs-like mode is shifted towards lower
frequencies than those of LO phonons [4].

To reveal the pecularities of electron intersubband scattering by SO phonons, we
have plotted the rates of particular intersubband transitions in figures 3 and 4. The
obvious tendency is a decrease in the rate of intersubband transitions as the intersub-
band energy separation (i.e. {E;; — E;.;[) increases. This tendency, however, does
not always occur, When the intersubband energy separation is close to the SO phonon
(GaAs- or AlAs-like) energy, the phonon wavenumber &, is close to zero. This is
the so-called resonant intersubband electron—-sO-phonon scattering condition [7}. The
electron-s0-phonon scattering rate is inversely proportional to the fourth power of
the phonon wavenumber %_ (this proportionality appears through the parameters o
and B when integrating (13) [4]) and tends to infinity for any electron energy when
the intersubband energy separation approaches the so phonon energy! Either an
increase or a decrease in the intersubband energy separation causes & reduction in
the scattering rate. In our particular structure, the energy separations between the
2nd and 3rd, the 5th and 7th, and the 10th and 11th subbands are close to the AlAs-
like sO phonon energy. Therefore, we should observe resonant electron-so-phonon
scattering between these subbands. However, transitions between these subbands are
forbidden by selection rules. Nevertheless, it is possible to create QwIs with subbands
in resonance where resonant intersubband transitions are allowed. In order to verify
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this statement we have also considered a model structure with allowed transitions
between subbands in resonance. The transition rates between these subbands ex-
ceed all other scattering rates by SO phonons and are comparable to, or even higher
than, electron-LO-phonon scattering rates (numerical results are not presented here).
Note that here we deal with the resonance with respect to the intersubband energy
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separation, but not with respect to the electron energy. Electron—confined-Lo-phonon
scattering is not influenced significantly by the resonant intersubband scattering con-
dition because, in the denominator of (9), there is the total phonon wavenumber
with non.vanishing transverse components at finite L, and L,. However, in the
3D limit when L, and L, tend to infinity, the ransverse oomponents tend to zero
and the electron—Lo-phonon scattering becomes sensitive to the resonant conditions.
That is why Briggs er a/ [7] have observed resonant intersubband electron scattering
by 3D LO phonons. The intrasubband electron scattering rate due to SO phonons
depends weakly on subband number, whereas the intrasubband scattering rate due to
confined LO phonons decreases slightly due to the increase of the number of ‘active’
phonon modes and the denominator in {9). This fact has been anticipated when
analysing scattering rates. Thus, the results presented clearly demonstrate that intra-
subband ejectron scattering in such structures is dominated primarily by confined LO
modes, but in some particular (resonant} intersubband transitions the same or even
the dominant role may be played by so phonons.
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over the length of the Qwl with variable thick-
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Figure 6. Electron-s0-phonon scaltering rates
inffrom the Ist subband when the surface rough-
ness is included. The effect of surface roughness is
considered, as described in figure 5. The notation
is the same as in figure L

ness given by Ly = Lyo + 6Ly cos(Kx) and
L: = Lo+ 6L;cos(2Kz) with §L, /Ly =
8L; /L = 0.05. The notation is the same as in
figure 1.

The calculations of the scattering rates in real Qwis have been performed with
the same model of scattering processes as in ideal Qwis, but with variable thick-
nesses L, and L,. We have assumed that the thickness varies with the harmonic
law. The amplitudes of variation, L, and &L, have been chosen to be a frac-
tion 0.01 to 0.1 of the corresponding thlcknesse.s L,and L,. It is evident that the
results of averaging do not depend on the period of the vanatlon, but they might
depend on the mutual phases of the variation of L, and L,. Therefore we have
considered three cases: L, = L,,+ 6L, cos(K=z), L, = Lzo + 6L, sin{ K«), and
L,=L,y+8L,cos(2K =), with L, = L+ 6L cos(I{:x:) in all cases. It has been
found that the results do not show a sigm‘ﬁcant d;ﬁg’erence between these models, Fig-
ures 5 and 6 demonstrate the typical results obtained for a reasonable 5% variation
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amplitude (6L, /L, = 6L,/ L, = 0.05). Compared to figures 1 and 2 (calculated
for the corresponding ideal Qwi), one can see that such variations in thickness yield
considerable broadening and reduction of the very first scattering peaks and the com-
plete disappearance of the peaks at higher energies. Similar curves with a different
degree of broadening are obtained for other variation amplitudes. Even a variation
amplitude as small as 1% leads to the disappearance of the divergence at the res-
onant energies and essential smearing out of the peak-like structure on the curves
discussed. Similar results are provided by the simplified model of equation (28).

5. Conclusion

In this paper, we have demonstrated that intrasubband electron scattering in
GaAs/AlAs Qwis is dominated primarily by confined Lo phonons, while electron in-
tersubband transitions under certain conditions are strongly affected by so phonons.
A unique feature of the electron-so-phonen scattering in QWIs is its resonant de-
pendence on the intersubband energy separation. When the intersubband energy
separation approaches the SO phonon energy, the electron-SO-phonon scattering rate
. tends to infinity at any electron energy. The scattering rates in the Qwis with variable
thickness exhibit no divergence at the resonant energies as a result of the variation
of subband energies. The peak-like structure smears out even for a very small wire
thickness fluctuation. The peak-like dependence disappears for 5% fluctuations of
QwI thickness. It is very important to stress here that the influence of the QWi cross
section fluctuation on the scattering rate seems at first glance to be similar to the
influence of impurity scattering [23]. In spite of this similarity, the effects of broaden-
ing on electron transport in QWIs are completely different [19]. The broadening due
to scattering [23] is homogeneous along a QWI, and in fact introduces new channels
for the current so that the calculated conductivity is an average conductivity of these
paraliel channels. The channels with the largest conductivity give the major contri-
bution to the average conductivity. That is why such broadening practically does not
change the resistivity if only one quantum level is filled. In our case the conductivity
fluctuates along the Qw1; the system is analogous to the series connections of resistors
and the major contribution to the resistivity comes from the high-resistance parts of
the ow1, Hence the narrowest part of the QWI defines its conductivity. More rigorous
results on transport phenomena in real QWIs will be discussed elsewhere.
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