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AbstracL "e present study deals with electron intersubband scattering in real quanlum 
wire slrudures. Both the multi-subband SVUcture and mnfined phonon modes are 
mnsidered together. ' l le  rates of scattering by mnRned longitudinaloptical (W) phonons 
and by surfaceoptieal (so) phonons are calculated lalting into account all possible W 
phonon modes as well as all posible elenmn intersubband lransilions. The estimations of 
Vansition rates for GaAs/ALAs awls have shown that inuasubband electron scattering and 
mmt intersubtend Vansitions are due primarily lo scattering by mn6aed w phonons, but 
in -"ant intenubbaod Lransitions the mntribution of so phonons may be dominant 
when lhe phonon energy is close lo lhe intersubtend energy separation. Moreover, 
electron7so-phonon scattering might play an impartant pan in kwtemperature elenron 
lransport beguse the GaAsIike so mode is shifted towanis lower frequencies mmpared 
with that of U) phonons. ?he energy dependence of the tolal scattering rate in an 
ideal quantum wire ahib i l s  multiple sharp peaks related lo each intersubband Vansition. 
These peaks originate f" the m n a n t  nature of lhe density of slates in ideal one- 
dimensional systems. It is demonstrated lhat in real quantum wires with variable thickness 
the m n a n t  peaks broaden or even disappear due lo variation of subtend energies. 

1. Introduction 

The progress in semiconductor technology has provided the means to fabricate the so- 
called quantum wires (awls) with quasi-onedimensional (ID) structures. It has been 

but these high values.of the mobility have not yet been observed experimentally. The 
expected enhancement of the carrier mobility in QWS should stem from the restriction 
of momentum space to one dimension as well as the resulting reduction of Iinal s t a t e  
for scattered electrons. This point, however, needs to be clarified. Despite the rapidly 
growing number of publications on awls, the theoretical investigations of electron 
transport controlled by optical phonon scattering are limited either to the case of the 
extreme quantum limit (EQL) wherein only one subband is considered [2-4] and/or to 
the case of scattering by bulk three-dimensional ( 3 ~ )  phonon modes [S-71. However, 
due to technological limitations the confinement of electrons is relatively weak and 
electrons can populate upper subbands at higher temperatures or in the hot-electron 

suggested that QWIs will exhibit carrier mobilities well above lo6 cm2 V-I s-l  PI, 
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regime. On the other hand, recent experiments evidently demonstrate the presence 
of surface-optical (so) modes [SI and phonon confinement [9]. The other significant 
flaw in theoretical studies of QWIS is that they deal with ideal 1D systems with fixed 
subband energies A unique feature of ideal QWIs is the well-pronounced resonant 
nature of electron scattering as a result of multiple sharp p k s  (diverging to infinity) 
on energy dependence of the total elecvon scattering rate. These peaks originate 
from the resonant behaviour of the density of states in ideal QWI structures and each 
peak is related m a particular intrasubband or intersubband @ansition to the bottom 
of the corresponding subband. Real QWIS, however, always have variable thickness 
along the structure. Generally, electron beam or x-ray lithography on a quantum well 
surface, with subsequent reactive ion (beam) etching, is used for QWI frabrication 
[IO, 111. Stateaf-the-art technology allows the quantum well width to be controlled 
down to one monolayer. However, the etching results in QWIs with thicknesses 
varying within several percent along the structure. The fractional-layer superlattice 
technology used for fabrication of QWIS [1& 131 allows one to obtain structures with 
periods as short as 16 nm. However, even improved technologies [14-161 do not 
provide abrupt interfaces between the GaAs and AlAs layers; as a result L, and L, 
va~y with I. Thus, it appears that no current and foreseeable future technologies of 
fabricating QWIS can ensure the possibility of creating ideal structures with constant 
thickness. The variation of QWI thickness results in the variation of subband energies. 
Consequently, electron scattering is no longer energetically coherent in different parts 
of a QWI [17, 181; this should lead to the broadening or even complete washing-out 
of the resonant peaks [19]. This effect has not yet been studied extensively. 

The aim of the present paper is to investigate both the phonon confinement 
and multi-subband structure and to reveal the role of SO phonons and confined 
longitudinal-optical (LO) phonons in intersubband transitions. Moreover, the reso- 
nant scattering peak broadening due to the variation of thickness along the QWI is 
considered in order to calculate scattering rates in real QWI structures. We will con- 
sider a rectangular awl fabricated of polar semiconductor and embedded in another 
polar semiconductor. Firstly, all expressions will be given for an ideal QWI (in sec- 
tion 2) and then we will account for variations in QWI thickness (in section 3). In 
section 4 the numerical results for room temperature will be presented and discussed. 
The summary and conclusions are given in section 5. 

2. Scattering rates in an ideal Q W  

The ID electron wavefunction in a rectangular QWI is of well known form 

j = 1 , 2  ,..., l = 1 , 2  ,.... 
The corresponding energy is 

E(qz,j>l) = E,(q,) t Ejr 
where 
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is the electron kinetic energy, q, is the electron wavenumber in the x direction, and 

is the subband { j , l )  energy with respect to the bulk ground level. Here L, and 
L, represent Qwr dimensions in the y and z directions, respectively. Equation (1) 
represents the wavefunction for a carrier in a waveguide supporting standing modes 
in the y and z directions and travelling in the 2' direction of the QWI. The interaction 
Hamiltonians for SO and confined LO modes are as given in 141. The form of LO 
phonon Hamiltonian reflects the fact that confined Lo phonons in a QWI have a 
mode structure similar to the electromagnetic modes in a dielectric waveguide. For 
the evaluation of electron scattering rates in an ideal Owl, HB assume the Fermi golden 
rule to be valid. (The validity of this approach is discussed in detail in 12-7, 20-221.) 
Note that we are dealing with high temperatures where quantum interference effects 
are not important. The transition probability from an initial electron state Ipz, j, 1)  
to a final one In:, j', 1')  is then as follows 

~ ( e / a l ( q = , j , i ; q ~ j ' , l ' )  = - lM(e /a)126[E(q:: , j ' , l ' )  - E(q,,j,l) f Awl 

where the superscript 'e' and the up er sign indicates emission, 'a' and the lower 
sign indicates absorption, and M{e/aT is the matrix element for electron-phonon 
interaction 

(5) 
2T 

A 

M{e/al = ( q ~ , j ' , L ' ; N + 1 / 2 ~ l / 2 ~ H 1 " ~ q , j , l ; N + 1 / 2 f 1 / 2 ) .  (6) 

Summing (5) over all final s t a t e  and considering the eleceon wavefunction given by 
(1) and the interaction Hamiltonian given in 12, 41, then the total electron scattering 
rate A,, ( q z ,  j ,  1 )  by confined LO phonons from the state 1q,,j, 1 )  to elsewhere can 
be expressed in a form similar to that of 141 

++I 

where the rate of particular intrasubband or intersubband j, 140-7, 1' transitions 

x 6 [ E ( d .  j ' ,  l') - E ( q z , j ,  1 )  f ~ L O I  Jq;,q.yk. (8) 

is found by integrating (5) over phonon wavenumber k ,  within one particular final 
subband j ' ,  1'. Here, 
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with 

It has been shown [4] that in the EQL the dominant contribution to the sum over 
phonon modes is made by the first mode with m = n = 1 and the simple ap- 
proximation for the scattering rate has been derived. In multi-subband structures 
the higher modes might influence the scattering rates wnsiderably, so generally we 
have to take the sum over all modes. The number of subbands considered, however, 
limits the number of 'active' modes which contribute significantly to the scattering 
rates. For instance, from the analogy with the EQL case, the intrasubband scattering 
( j '  = j,1' = I )  in the upper subbands is dominated primarily by the U3 phonon 
modes with m = j ,  n = 1. That is why the scattering rate decreases with an increase 
of subband indexes j and 1 due to an increase of the denominator in (9). 

The electron transition rate due to so phonons can be given by [3, 41 

As, tela) c q z , j , k j ' , l  I 1 -L/- - 8n2e, -m dk,wso(N+ 1 /2 f  1/2)Iso(kz, L,,L,) 

x 6 [ E ( q L j ' , 1 ' )  - E(q=,j,O f % 0 l 6 ~ : , ~ ~ ~ k .  

k o ( k z ~ L Y ~ L z )  = ( 2 ~ c ' P s o / w s o Y  (12) 

(1 1) 

where 

where C' is the normalization constant, 

P B -  so - cosh(aL,/2)cos 1 h(PL,/2) i L y d y t i L ' d z $  

x sin ( K )  j X Y  sin ( j ' w  T) sin (F) sin (z) I ' T Z  

x cosh [a (y - $)] cosh [p (2 - %)] 
for symmetric modes, and 

P& = 1 l"' dy lL' d z  $ sinh(aL,,/2) sinh(PL,/2) 

x sin (e) sin ( T) j ' v  sin (F) sin (F) 
x s i n h [ a ( y - + ) ] s i n h [ P ( z - ? ) ]  
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for antisymmetric modes. Parameters a and p are defined by the following relations 

a2 + p2 - k: = 0 (15) 

aL., = pL,. (16) 

nl (w)  t a n h ( a l p / 2 )  + n2(w) = 0 (symmetric modes) (17) 

and 

The so phonon frequency w satisfies the dispersion relation 

nl(w)coth(aLY/2) + n2(w) = 0 (antisymmetric modes) (18) 

Here n1 and n2 are dielectric functions of the O W  material and the surrounding 
material, respectively. In the rase of the EQL, the integration of (14) yields zero, 
Le. electronso-phonon intrasubband scattering is due to symmetric modes alone. 
Electron intersubband transitions are, however, due to scattering by both symmetric 
and antisymmetric so modes. The selection rules for these transitions follow directly 
from (13) and (14). From symmetry it is evident that inteisubband transitions due to 
symmetric modes are allowed when both subband indexer, change by even numbers, 
while transitions due to antisymmetric modes are allowed when both indexes change 
by odd numbers. The intersubband transitions due to so phonons where one index 
changes by an even number and another index by an odd number are forbidden by 
selection rules for both symmetric and antisymmetric So modes. Due to the identical 
formulation of (8) and (11) the general expression for the total electron scattering 
rate from the state [q=,j. l) to elsewhere due to either 1.0 or so phonons can be 
written by taking into consideration equation (7) and the similar equation for SO 
phonons. Noting that only forward and backward electron scatterings are possible, 
the integral over phonon wavenumber can be changed by the sum over two possible 
phonon wavenumbers 

where EL = E, + Ejc  - E j , l ,  
and phonon wavenumbers k, are 

hw is the electron kinetic energy after scattering, 

Note that the plus and minus signs in (20) and (21) correspond to forward and back- 
ward electron scattering, respectively, for absorption, and to backward and forward 
scattering, respectively, for emission, if the electron initial wavenumber is positive, 
and vice versa if the initial wavenumber is negative. The divergence in (19) resides 
in the square root of the h a 1  electron energy in the denominator, which represents 
the density of final states in the ID system. The rest of (19) depends smoothly on 
electron energy through the phonon wavenumber k,. 
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3. Scattering rates in a real QW 

In the previous section we have considered an ideal QWI with a constant cross section 
along the structure. A unique feature of ideal ID electron systems ir: the divergent 
nature of the density of states at zero kinetic energy appearing through the square 
root in the denominator of (19). That is why the multiple sharp (diverging) peakc 
on the energy dependences of the scattering rates are observed. Real QwrS always 
have a variable thichess, as we have already discussed in the introduction. Now, 
let us consider a real QWI with variable thickness. It is evident from (2)-(4) that 
the variation of a structure thickness causes the variation in subband energy, E j l ( z ) .  
Since the total electron energy does not depend on the QWI thickness, the variation 
of E., with I results in the variation of electron kinetic energy E,. For the sake of 
simphity in the analytical considerations, we assume L, = L, = d(+) in this section, 
where d ( r )  = do t 6 4 1 )  with the condition 6d(+) < do for all I .  Note that our 
model implies that the variation is a smooth function of I and the characteristic 
length of the fluctuations is much greater than the de Broglie wavelength. Since the 
total electron scattering rate given by (19) is expressed by the sum over all possible 
final states, we can analyse one separate term of the sum in (19) representing the 
rate of some particular electron transition regardless of the phonon mode (so or Lo) 
assisting that transition. For the sake of convenience we will use the same notation 
X for this particular transition rate. but now as a function of electron kinetic energy. 
(Indeed each term in (19) depends on the QWI thickness through the function I (9), 
(12), and the dependence on E,  appears through E: and the phonon wavenumber 
IC, . )  The transition rate averaged over the QW length is given by 

where E, = Eo+6E(r ) ,  Eo = E-(E j l )  is theelecmn kineticenergy corresponding 
to a given total energy E and average subband position (Ej , ) ,  and 6E(r) is the 
electron kinetic energy variation (opposite to the variation of subband position) due 
to the variation of awl thickness. The total electron energy given by (2) remains 
constant while the increment in the electron kinetic energy due to an increment in 
the thickness 6 d  a n  be expressed in the linear approximation 6d(1) < do as 

6E = ( h z / 2 m ' )  [( jnld,) '  f ( l ~ / d , , ) ~ ]  26d/d, (Ej , )26d/d,  (23) 

or 

6 E / ( E j 1 )  = 26d/d0. (24) 

In other words, the increment in the electron kinetic energy is proportional to the 
increment in the thickness, and the proportionality constant depends on the subband 
indexes. It is seen from (U) that for the same fluctuation in thickness the fluctuation 
in electron kinetic energy is larger in higher subbands. Note that the averaging over 
the structure length in (22) yields significant changes in the electron scattering rate 
only in the regions where X(E,,d) is strongly dependent on E, (i.e. close to the 
divergence points). The changes due to the direct dependence of the scattering rate 
on structure thickness d are relatively small because w and I in (19) are both smooth 
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functions of d and the limits of variation of d are narrow (6d < do) .  Consequently, 
the averaging over structure length can be approximated, with sufficient accuracy, by 
the averaging over electron kinetic energy alone: 

where A E  = max 16E(z)l, and F(E,) is the probability density for an electron of 
having kinetic energy E, from the interval (E,, - AE, .Eo + AE) at a given total 
electron energy E, 

EQ+AE 
dE,F(E,)= 1. J Eo-AE 

The physical requirement for the integration limits is A E < E, which is also implied 
by the condition 6d d,. It is convenient to express the scattering rate for each 
possible transition by separating the diverging part from ?he rest of (19): 

ME,, d o )  = P(Er, do)Q(Ek)(E2)-”2 (27) 

where P(E,,d,) represents the non-diverging part of (19), 0 is the step function 
which cuts off the scattering rate below zero electron mal energy E;. For the purpose 
of making qualitative estimations, we consider the simplest case of a uniform energy 
distribution, i.e. completely random fluctuations of QW thickness. Then by assuming 
that the smwth function P( Er, d )  depends weakly on E, within the narrow interval 
of energy variation and that the scattering rate given by (27) is a function of electron 
final energy alone, we can easily integrate (22) over the final energy variation and 
obtain: 

A( Eo, d o )  = ( P (  E, ,d , ) /AE’) [O(Eh + AE’)(  Eh + A E‘)”’ 
- O( Eh - A E‘)( Eh -  LIE')''^]. 

V E , , d o )  = f ‘ ( E , , d d / m  (29) 

(28) 

If we put EL = 0 in (28) we get: 

i.e. the scattering rate is no longer divergent. E; = E’ - (E,,,,) is the average final 
electron kinetic energy corresponding to the final total electron energy E’ = E f tW; 
AE’ = max l6E’(z)l is the amplitude of electron final energy variation in the final 
subband j ’ , l ’ ;  and E, is the threshold initial electron kinetic energy corresponding 
to the zero final electron energy. 

The form of (27) suggests a compact and convenient way of storing the scattering 
rates in a Monte Carlo program. If we tabulate the scattering rates, then we must use 
a rather small or variable energy step in order to keep all the peculiarities of the sharp 
peaks. For multi-subband structures this method requires a lot of computer memory 
and calculation of the scattering rates for each scattering event is time consuming. 
However, we can store the tabulated P(E,,d) part of (27) alone and combine it 
with the calculated square root. This method should require a little more execution 
time but, noting that P(E,,d) is a smooth function of E=, one can use a much 
larger energy step and save a lot of computer memoty. 
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4 Results and discussion 

We present here the results of numerical calculations performed for a &As QW of 
dimensions L, = 150 8, and L, = 250 8, embedded in AIAs. We have considered 
11 subbands. Tne summation in (9) has been performed over phonon modes from 
m,n = 1 to m, n = 11. The calculated energy dependence of the total electron-Lo- 
phonon scattering rate from the first subband to elsewhere, including itself (i.e. both 
intrasubband and intersubband transitions), is presented in figure 1 for the case of an 
ideal QW. Figure 2 shows the same dependence for electron-so-phonon scattering. 
Forward and backward scattering are plotted as separate scattering mechanisms in 
order to reveal the polar character of electron interaction with LO and so modes. 
Indeed, electron forward scattering is dominant both for LO and so phonons. The 
multiple sharp peaks on the ‘backward’ curves of figure 2 are almost unnoticeable on 
the ‘forward‘ CUN~S. Tnis is because, in the ‘forward‘ curve due to the so modes, 
the relatively low intersubband scattering rates (from the first subband) are plotted 
against the background of strong intrasubband scattering. For backward scattering, 
the strength of intrasubband scattering is reduced by more than three orders of 
magnitude. As a result, intersubband transition peaks are well pronounced. Note 
that peaks on figures 1 and 2 are finite due to finite energy steps of integration. The 
maxima tend to infinity as the energy step tends to zero, as is evident from (19) (note 
that forward and backward scattering rates are equal at energies infinitely close to the 
point of divergence). This is why, for the sake of mathematical accuracy, we should 
also mark infinitely high and narrow peaks on ‘forward’ CUN~S of figure 2 However, 
these peaks are not realistic physically for real Qwl Structures. Comparing figures 1 
and 2, one can see that some peaks seen in figure 1 disappear in figure 2 as a result 
of forbidden transitions due to so phonons related to those peaks (see the discussion 
in section 2). On the other hand, all peaks related to allowed intersubband transitions 
are doubled in figure 2 This is due to the fact that SO phonon modes in GaAs/AIAs 
QWI split into two branches; one is related to GaAs and the other to AI&. Their 
frequencies are considerably different; the GaAs-like mode is shifted towards lower 
frequencies than those of LO phonons [4]. 

?b reveal the pecularities of electron intersubband scattering by so phonons, we 
have plotted the rates of particular intersubband transitions in figures 3 and 4. The 
obvious tendency is a decrease in the rate of intersubband transitions as the intersub- 
band energy separation (i.e. IE,, - Ej,,,I) increases. This tendency, however, does 
not always occur. When the intersubband energy separation is close to the so phonon 
(GaAs- or AIAs-like) energy, the phonon wavenumber k, is close to zero. This is 
the so-called resonant intersubband electron-so-phonon scattering condition 171. The 
electron-so-phonon scattering rate is inversely proportional to the fourth power of 
the phonon wavenumber k, (this proportionality appears through the parameters Q 

and p when integrating (13) [4]) and tends to infinity for any electron energy when 
the intersubband energy separation approaches the so phonon energy! Either an 
increase or a decrease in the intersubband energy separation causes a reduction in 
the scattering rate. In our particular structure, the energy separations between the 
2nd and 3rd, the 5th and 7th, and the 10th and 11th subbands are close to thc AIAs- 
like SO phonon energy. Therefore, we should observe resonant electron-so-phonon 
scattering between these subbands. However, transitions between these subbands are 
forbidden by selection rules. Nevertheless, it is possible to create awls with subbands 
in resonance where resonant intersubband transitions are allowed. In order to wrify 
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I I  
l o  0.0 0. I 0.2 0.3 0.4 

Electron Energy (eV) 

*re L Electron-to-phonon scattering rates 
in/fmm the Is1 subband 0.e. both inuasubband 
and inlenubband uansitions) as a function of elec- 
m n  kinetic enera. Solid CUN~S, emission; dashed 
curvef absorption. Upper curves. forward eleclron 
scattering (wavevetlor direction does not change), 
h e r  "e+ backward seattering (wavevector di- 
rection reverses). Scattering from the 1st subband 
lo all eleven subbands (including rrcattaing into 
the 1st subband ilseifJ is considered. m e  lattice 
temperature is assumed 10 be 300 K; the Owl di- 
mensions are L ,  = 150 A and L ,  = 250 A. 

0.1 0 2  0.3 0.4 
Electron Energy (eV) 

Figure 3. Electmn uansilion rates from the Is1 to 
the 5th subband due lo so phonons as a Function of 
eleetmn Idneric energy. ?he notation is the same 
as in figure 1. 

1 0 ' Z k  fl forward 

Figure Z Elecmn-so-phonon scattering mtes 
in/from the Ist subband as a hnclion of electron 
kinetic energy. I h e  notation is the Same in 
figure 1. 

0.1 0.2 0.5 0.4 
Electron Energy (eV) 

1oi.b ' ' ' ' I '  ' ' ' 

Figure 4 Electmn uansition rata from the Is1 
lo the 11th subband and from the 11th to the Ist 
subband due lo so phonons as a funclion of elec- 
lron energy with rerpecl lo the bottom of lhe 1st 
subband. m e  nolalion is the same as in figure 1. 

this statement we have also considered a model structure with allowed transitions 
between subbands in resonance. The transition rates between these subbands ex- 
ceed all other scattering rates by so phonons and are comparable to, or even higher 
than, electron-Lo-phonon scattering rates (numerical results are not presented here). 
Note that here we deal with the resonance with respect to the intersubband energy 
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separation, but not with respect to the electron energy. Electron-confined-LO-phonon 
scattering is not inRuenced significantly by the resonant intersubband scattering con- 
dition because, in the denominator of (9), there is the total phonon wavenumber 
with non-vanishing transverse components at finite L, and L,. However, in the 
3D h i t  when L, and L, tend to infinity, the transverse components tend to zero 
and the electron-La-phonon scattering becomes sensitive to the remnant conditions. 
That is why B r i m  er af [I have observed resonant intersubband electron scattering 
by 3D u3 phonons. The intrasubband electron scattering rate due to so phonons 
depends weakly on subband number, whereas the intrasubband scattering rate due to 
confined LO phonons decreases slightly due to the increase of the number of 'active' 
phonon modes and the denominator in (9). This fact has been anticipated when 
analping scattering rates. Thus, the results presented clearly demonstrate that intra- 
subband electron scattering in such structures is dominated primarily by confined LO 
modes, but in some particular (resonant) intersubband transitions the same or even 
the dominant role may be played by so phonons. 

Figure 5. Electron-Lo-phonon scattering rates Figure 6. Electron--phonon glattaing rates 
injfmm the 1st subband when the sulface mugh- idfrom the 1st subband when the surface mugh- 
n e s  is included. m e  effect of surface mugh- ness b included. The eEecl of sulfaoc mughness is 
n e s  is mnsidered by averaging the scattering ram considered, as described in figure 5. The notation 
wer the length of the owl wilh variable thick- is the Same as in 6gure 1. 
ness @en by L, = L,o + 6L,cos(Kz) and 
L, = L,o + 6LScos(2Kz) with 6LYlL,o = 
6LI/Lz0 = 0.05. m e  notation is lhe Same as in 
figure 1. 

The calculations of the scattering rates in real QWls have been performed with 
the same model of scattering processes as in ideal QWS, but with wriable thick- 
nesses L ,  and L,. We have assumed that the thickness varies with the harmonic 
law. The amplitudes of variation, 6 L ,  and 6L,, have been chosen to be a frac- 
tion 0.01 to 0.1 of the corresponding thicknesses L,  and L,. It is evident that the 
results of averaging do not depend on the period of the variation, but they might 
depend on the mutual phases of the variation of L ,  and L , .  Therefore we have 
considered three cases: L ,  = L , ,  + 6 L ,  cos(ICz), L ,  = L,, + 6L,sin(Kz),  and 
L ,  = L , 0 + 6 L , c 0 s ( 2 1 i z ) ,  with L ,  = L,,+6L cos(ICz)  in all cases. It has been 
found that the results do not show a significant difference between these models. Fig. 
ures 5 and 6 demonstrate the typical results obtained for a reasonable 5% variation 
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amplitude (6L , /L , ,  = 6 L , / L , ,  = 0.05). Compared to figures 1 and 2 (calculated 
for the corresponding ideal QWI), one can see that such variations in thickness yield 
considerable broadening and reduction of the very first scattering peaks and the com- 
plete disappearance of the peaks at higher energies. Similar curves with a different 
degree of broadening are obtained for other variation amplitudes. Even a variation 
amplitude as small as 1% leads to the disappearance of the divergence at the res- 
onant energies and essential smearing out of the peak-like structure on the 
discussed. Similar results are provided by the simplied model of equation (B). 

5. Conclusion 

In this paper, we have demonstrated that intrasubband electron scattering in 
GaAs/AL& awls 6 dominated primarily by confined Lo phonons, while electron in- 
tersubband uansitions under certain conditions are stroi~gly affected by so phonons. 
A unique feature of the electron-so-phonon scattering in QWIs is its resonant de- 
pendence on the intersubband energy separation. When the intersubband energy 
separation approaches the so phonon energy, the electron-so-phonon scattering rate 
tends to infinity at any electron energy. The scattering rates in the QWIS with variable 
thickness exhibit no divergence at the resonant energies as a result of the variation 
of subband energies. The peak-like structure smears out even for a "ry small wire 
thickness fluctuation. The peak-like dependence disappears for 5% fluctuations of 
QWI thickness. It is ve'y important to stress here that the inauence of the Q w i  cross 
section fluctuation on the scattering rate seems at first glance to be simiiar to the 
inEuence of impurity scattering 1231. In spite of this similarity, the effects of broaden- 
ing on electron transport in QWIs are completely different 1191. The broadening due 
to scattering [U] is homogeneous along a Q W ,  and in fact introduces new channels 
for the current so that the calculated conductivity is an average conductivity of these 
parallel channels. The channels with the largest conductivity give the major contri- 
bution to the average conductivity. That is why such broadening practically does not 
change the resistivity if only one quantum level is filled. In our case the conductivity 
fluctuates along the QW; the system is analogous to the series connections of resistors 
and the major contribution to the resistivity comes from the high-resistance parts of 
the QWI. Hence. the narrowest part of the awl defines its conductivity. More rigorous 
results on uansport phenomena in real QWls will be discussed elsewhere. 

Acknowledgments 

The authors would like to thank Professor M A Littlejohn and Dr J Mink for helpful 
discussions. The work performed at North Carolina State University is supported, in 
part, by the Office of Naval Research under grant No "14-90-5-1835 and by the 
US Army Research Ofice under grant No DAALiJ3-89-D-0003-05. 

References 

[l] Sakaki H 1980 Japnn 1 AppL P h y ~ .  19 L735 
p] Stroscio M A 1989 P h p  Rev B 40 6428 
131 Stroscio M A, Kim K W, Littlejohn M A and Chuang H 1990 Phys. Rev B 42 1488 



4910 R Mickevifius a al 

Kim K W, Stroscio M A, Bhalt A, MiclloiEius R and Mitin V V 1991 I. AppL p5rr 70 319 
Brig@ S and Lebunon J P 1988 Bp. RN B 38 8163 
Brig@ S and Lcbunon J P 1989 Superron M i  5 145 
B n g b s $ J o v l r n w i c D a n d L e b ~ n J P 1 9 8 9 A W L ~ L m 5 1 2 0 1 2  
MU M, Sotomayor-lbms C M, Am01 H E G and Eaumont  S P 1990 Sanicond Sd T ” 1  5 

Fasol 0, ‘It,naka M. Sakaki H and Horikosh Y 1988 phvs RN B 38 6056 
M e 1  A, Maik BE, Licr H, Mayer 0 and Gumann R 1 9 9 0 % ~ ~  stMlsSc4idi bE.9457 
Smith H r, lsmail K, (hu V4 Yen A, Ku Y C, Scha l t enbq  M L and Anloniadis D A 1989 

” m u c a m  phydcs and Fa5riclmin ed M A Rced and P W (Boston: Academic) p 57 
Pet” M P, Gosrard A C and Wiegman W 1984 AppL phys: Lac 45 620 
Fukui T Sailo H, PI” Y, Bubaki K and Susa N 1990 Swf Sci 228 20 
klmK P M, ’ISuchja M and Coldren L A 1990 Sur$ Sci 2 8  24 
Gainer J M, PeME P M, Kmemer H, Simen R J, Geels R S and English J H 1988 I. Voc. sfi 

Blas E, Symhony S, Kapon E, Bhal R, Hwang D M. Un P S D 1990 AppL phys. k i t  si 914 
Wrren A C, Anioniadis D A and Smith H I 1986 Php Rm Lm 56 1858 
Bapell P F, Anloniadi D A and Orlando T P 1989 YLSl Elecm’ics MiCmrmccauc Same: Advanced 

MOS L k ~ h  physics vu1 IS, ed N G Enspmch and G Gildcnblat p e w  York: Academic) pp 305-55 
Mitin V V 1990 S u p ”  MurarmL 8 413 
Hu 0 Y and O’Cnnnell R F 1990 phys. Rm B 42 1290; 1990 I. phys.: CO&. Mam 2 9381 
Bagwcll P F 1990 Phys. RN B 41 10354 
Kumar A and Bagucll P F 1991 phys RN B 43 WIZ 
Das Sam S and Xie X C 1987 phvs Ro! B 35 9875 

285 

E & w L  B 6 U18 


