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One-dimensional electron-optical-phonon interaction Hamiltonians in a rectangular quantum 
wire consisting of diatomic polar semiconductors are derived under the macroscopic 
dielectric continuum model. The scattering rates calculated in a GaAs square quantum wire 
show that when the quantum wire is free-standing in vacuum, the interaction by the 
surface-optical phonon modes is very strong and may dominate over other scattering processes, 
especially with dimensions of about 100 A or less. When the wire is embedded in a polar 
semiconductor (AlAs to be specific), the scattering rates by the surface-optical phonon modes 
become generally smaller, but yet comparable to those by the confined longitudinal-optical 
modes as the wire dimension shrinks. A considerable decrease in the total scattering 
rate for optical phonons as a result of simple reduction in dimensionality is not observed in 
this study. 

I. INTRODUCTION 

Recent advances in epitaxial growth technology for 
compound semiconductor structures have made possible 
the fabrication of wire-like regions of narrow-band-gap 
semiconductor material surrounded completely by regions 
of large-band-gap semiconductor material. In particular, 
such wire-like structures have been fabricated with rectan- 
gular cross sections having dimensions small relative to the 
electron thermal de Broglie wavelength; furthermore, op- 
tical anisotropy measurements on these wire-like structures 
provide evidence of two-dimensional quantum confinement 
of charge carriers.’ In such structures, the electron-optical- 
phonon scattering rate is affected by changes in the 
Friihlich interaction Hamiltonian caused by phonon con- 
finement and localization as well as by changes in the wave 
functions of the charge carriers due to the confining rect- 
angular potential. The presence of heterointerfaces gives 
rise to the confinement of optical phonons in each layer 
(i.e., contlned modes) and the localization in the vicinity of 
interfaces (i.e., surface modes or interface modes). Indeed, 
recent measurements have provided striking evidence of 
surface-optical (SO) modes in cylindrical quantum wires2 
and phonon confinement.3 The effects of carrier confine- 
ment on the total scattering rates for polar-optical-phonon 
scattering in quantum wells and quantum wires have been 
evaluated previously by Leburton4 with bulk longitudinal- 
optical (LO) phonon modes. 

In this paper, one-dimensional ( lD> electron-optical- 
phonon scattering rates in rectangular quantum wires 
(with diatomic binary polar semiconductors) are deter- 

mined not only by including the effects of carrier confme- 
ment but also by replacing bulk LO-phonon modes with 
appropriate optical-phonon modes. for a 1D system (i.e., 
the confined LO-phonon and SO-phonon modes). The re- 
sults demonstrate that electron-SO-phonon scattering can 
be strong and may dominate over (or, at least, be cornpa- 
rable to) other scattering processes in ultrasmall quantum- 
wire structures”2 and in mesoscopic structures’ containing 
wire-like regions of polar semiconductors. Thus, it is ex- 
pected that a simple reduction in dimensionality may not 
cause a significant decrease in the total scattering rate for 
optical phonons in rectangular quantum-wire structures. 
On the other hand, this finding does not preclude the pas- 
sibility of dramatical reduction in optical-phonon scatter- 
ing by appropriate tailoring of electronic bandstructure, as ’ 
suggested by Sakaki.6 The rest of this paper is organized as 
follows. Section II briefly summarizes the derivation of 
interaction Hamiltonian for confined LO-phonon modes in 
a rectangular quantum wire. Section III describes the char- 
acteristic SO-phonon modes and the interaction Hamil- 
tonian. Finally, Sec. IV presents the total electron-optical- 
phonon scattering rate in quantum wires of various 
dimensions and identifies the separate contributions of SO 
and LO scattering rates. 

Il. INTERACTION HAMILTONIAN FOR LO PHONONS 
CONFINED IN A RECTANGULAR QUANTUM 
WIRE 

Licari and Evrard7 have calculated the operators de- 
scribing the interaction between an electron and the opti- 
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cal-phonon modes of an ionic crystal slab and have derived action of conlined LO phonons and electrons in a quan- 
explicit expressions for the contined LO modes and the SO tum-wire structure as shown in Fig. 1 (a), the three-dimen- 
modes for such a slab. Furthermore, it was shown that the sional Friihlich operator is subjected to appropriate 
interaction operator for confined LO modes is, indeed, boundary conditions in both the y direction and the z di- 
equivalent to the Frohlich Hamiltonian for bulk LO pho- rection. Following an approach based on the macroscopic 
nons in the limit as the slab becomes very thick. A similar continuum model with electrostatic boundary conditions 
and more comprehensive treatment of the electron-optical- (similar to Licari and Evrard7 and Mori and Ando’), Stro- 
phonon interaction in single and double heterostructures scio’ has developed an expression for the interaction 
(i.e., quantum wells) has been given by Mori and Ando.’ Hamiltonian for confined LO-phonon modes in a rectan- 
To derive the Friihlich Hamiltonian describing the inter- gular quantum wire: 

cos (yy) sin (gz) 

+ m=&,..: n=;6.... ,e+ (F)'+ (~)2]1"'A(kxi+dt(-ii,)J 

(1) 

where a’ = {(~2/2~&&L~fz4a~~ [l/Er( CO ) - l/ 
El (O>]Y2, E,, is the permittivity of vacuum, e1 ( CO ) and 
E, (0) are the high- and low-frequency dielectric constants 
in the quantum wire (material 1 ), m and n are the phonon 
mode numbers in the y and z directions, respectively, k, is 

~ the phonon wave vector in the direction of free propaga- 
tion, and A and At represent the appropriate phonon an- 
nihilation and creation operators. In Eq. ( 1 ), electrons and 
the LO-phonon modes are characterized as traveling waves 
in the x direction and standing waves in they and z direc- 
tions. The change in the frequency of confined LO-phonon 
mode’e in the quantum wire, oll, is not considered. For 
proper normalization throughout this paper, the volume of 
the whole structure (including the region with material 2) 
is assumed to be L3 (i.e., - L/2 < x,y,z < L/2, LY 4 L, 
L, ( L) with periodic boundary conditions. 

Ill. SO-PHONON MODES IN A RECTANGULAR 
QUANTUM WIRE 

In this section, the polarization eigenvectors and dis- 
persion relations for SO-phonon modes are derived in the 

continuum approximation. The results presented herein 
are more general than those reported previously,” in 
which a quantum wire was assumed to be free-standing in 
vacuum (i.e., ez = 1 and no polarization for the material 
outside of the quantum wire). Instead, the quantum wire 
with a dielectric function Ed is taken to be surrounded 
by a material with a dielectric function e2(w) as shown in 
Fig. 1 (a). The Lyddane-Sachs-Teller relation is assumed 
for the frequency dependence of the dielectric function in 
material n, E,(W). Since the system is translationally in- 
variant in the x direction, the potential describing the op- 
tical-phonon modes may be taken as 

Q(r) = c ~Wkx,.w)eik~, 
k.x 

(2) 

where k, is the phonon wave vector in the x direction. In 
the absence of any free charge, the divergence of the dis- 
placement vector must vanish and it follows that the po- 
tential @ (k,y,z) of the SO-phonon modes must satisfy 

E,(O) 
i 
-g + -$ -k”, Wkx2YJ) =a 

> 
(3) 
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Material 2. 

() t--~++i 
a 

(b) 
FIG. 1. (a) Schematic representat ion of a  rectangular quantum wire with 
material 1  (inside) surrounded by material 2  (outside). E, (0) [Qo)] is 
the dielectric function for material 1  (2), respectively. (b) Cross-sectional 
view of the quantum-wire structure used to model  the characteristic SO- 
phonon modes.  

with e,(0)#0. The  derivation of Eq. (3) is straightfor- 
ward upon taking the relations 

E(r) = c E(k,,y,z)e”g= -V@(r), 
kc 

(4) 

P(r) = 2  P(k,,y,z)ei’~=~,Xn(0)E(r), (5) 
kx 

with cP(r) as given by Eq. (2), and where E(r) is the 
electric field, P(r) is the polarization field, and x~(o) 
= E,(W) - 1  is the dielectric susceptibility of. material n; 
a  similar treatment has been used previously to arrive at 
the corresponding result for a  quantum welk7’* The solu- 
tions of Fq. (3) with electrostatic boundary conditions 
constitute the appropriate potential for SO-phonon modes. 
Unlike in quantum wells, however, this boundary value 
problem does not have analytical solutions in rectangular 
quantum-wire structures. As a  result, an  approximation 
has been made to simplify the problem: i.e., while the po- 
tential q  is kept continuous throughout the space and the 
normal component  of e,E is kept continuous at the quan-  
tum-wire boundaries as they should be, the electric field E 
is not required to properly match along the edge of shaded 
regions as shown in F ig. 1  (b). This simplification stems 
from the consideration that due-to the exponential decay of 
fields away from the quantum wire, the relaxation of 
boundary conditions in the shaded regions would bring 
only a  small error in the calculation of fields and even a  
smaller error for the potential inside the quantum wire. A 
similar approach has been applied to the dielectric rectan- 
gular waveguide and has shown a  remarkable accu- 
racy.‘2J’3 W ith this assumption, Fq. (3) has a  symmetric 
solution of the form 

, 
c cash (cry) cash (flz) 

cash (aL,J2> cash (PLJ2) ’ [YI <4J2,[4 <w2, 

cash ta34 
~s(kxJl,z) = * ‘cash W ,J’~) 

epLJZe -p/q IYI aJ.aI4 >L/Z 

,c eaL1/2e~- alyl cash (Bz) 

cash (PL/2) ’ Iv1 h5Ja I4 <L?n, 
c pq4 - 4Yl&3w2e - ay IYI >J5Jh I4 hw2, 

and an antisymmetric solution 

, 
sinh (CXJJ) sinh (pz) 

‘sinh (aL,J2) sinh @L/2) ’ IYI aJ!n, I4 <L/2, 

&lh (ay) -c .~ 
Q>ACkmy,z) = ’ smh (aLv/2) 

P& -ply lyl <L/2, I.zl >LJ2, 

_ c ea-34 - 44 sinh (flz) 
sinh (fiLJ2) ’ lYl>J5v/2,I4<w& 

\ 
h c @pe - 4A.&& - Bbl t IYl>q44>W2, 
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where a and p satisfy the relation 

a2 + /3” - /t--=0. (8) 

The f sign in Eq. (7) is chosen + when yz> 0 and -_ 
when yz < 0, respectively. The dispersion relation required 
by the boundary conditions is 

pi tanh (a~5,/2) + ~~(0) =O, 
for the symmetric solution and 

(94 

q(co) coth (c&,./2) + e2(w) =0, (9b) 
for the antisymmetric solution, respectively, along with the 
relation 

for both Eqs. (9a) and (9b). The polarization eigenvectors 
for the symmetric and antisymmetric modes may be ob- 
tained from Eqs. (4)-( 7). 

To complete the derivation of the interaction Hamil- 
tonian for the SO modes, it is necessary to determine the 
normalization constant C of Eqs. (6) and (7). As in the 
case of a quantum we11,*>14 the microscopic relations which 
govern the equation of ionic motion yield the polarization 
field P(r) as 

P(r>=n,e,*0,“2u(r)=n,e,*0,“2 c u(k,y,z)e’b, 
kx 

(11) 

where u(r) is the relative displacement of an ion pair (i.e., 
unit cell), e,* is the effective charge of an ion pair, and n, is 
the number of ion pairs per unit volume. In addition, 
0, 1’2 = 1 -I- ,una,(w2 - w&)/e,*2 wherepn is the reduced 
mass of the ion pair, LZ, is the electronic polarizability per 
ion pair, and w, is the frequency associated with the short- 
range force between ions. To ensure proper quantization of 
the phonon field,8*‘4 each mode must satisfy 

* I kw,JL) ‘“u(k,,y,z)l = 1. (12) 

Using the relation 

4X: b:, -c&J 
7 n;e,*2@, 1 n~~=w/s c0) (@2 _ w;)2 

1 a%(@> 
=%G do 9 (13) 

as in Ref. 14, it follows straightforwardly from Eqs. (6 j, 
( 11)) and ( 12) that the normalization constant, C, for the 
symmetric mode satisfies, 

L-‘c2==EoE,( co) - ~~~~~)~[~o~h(~)c~sh(5)1-2[~(fsinh(aLy)+s~h’aL~~~‘~L~‘) 

sinh ( ctLy ) sinh (flL,) 

alp )I 

sinh (PL,) 
alp 

sinh (PL,) 

aP 

where the subscript t represents the transverse-optical 
(TO) modes. A similar expression for the antisymmetric 
mode may be obtained straightforwardly from Eqs. (7), 
(1 l)-( 13). When the quantum wire is free-standing, only 
the first term with e1 [out of four terms in Eq. (14)] con- 
tributes to the normalization constant C. Finally, the in- 
teraction Hamiltonian for the SO modes may be written as 

tisAD)= c ( - e)<P(kx,y,z)eiks 
k 

X &o(U+A$,( -kJ], (15) 

where Aso and A& - k,) are the annihilation and 
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(.&-&I I2’a2-tgy, 

(14) 

creation operators for appropriate SO-phonon modes of 
the quantum wire. 

IV. SCATTERING RATES FOR 
ELECTRON-OPTICAL-PHONON INTERACTIONS 

The 1D Friihlich Hamiltonian of Eq. ( 1) (i.e., con- 
fined LO phonons ) and the SO-phonon Hamiltonian of Eq. 
( 15) lead to especially simple scattering matrix elements 
when the electronic states are confined in an infinitely deep 
potential well in the y and z directions. While treatments 
with more realistic confining potentials are available for 
LO phonons described by the three-dimensional Frohlich 
Hamiltonian, they generally involve the extensive applica- 
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tion of numerical techniques. In the present treatment, 
electron-optical-phonon scattering rates will be calculated 
with an assumption that the quantum wire forms <an in& 
nitely deep potential well and only the lowest subband is 
occupied (i.e., only the intra-subband scattering in the 
ground state is considered). However, more accurate re- 
sults with the realistic conditions such as finite potentials 
and inter-subband scattering can be readily obtained using 
Eqs. (1) and (15) with numerical means. 

For the infinite well potential, the ground-state 1D 
electron wave function has the well-known form 

,p,)=$ (;)*‘Sos (;) ($‘2cos (; 
The corresponding electron energy is 

EkJ=g$+&[ (ET+ ($1. (17) 

Assuming that the Fermi golden rule gives an accurate 
evaluation of the probability of making a transition from 
an initial electronic state qx to a final electronic state 44, the 
transition probability is 

I~~~12Nmq;> - E(qJ k&l , 
(18) 

where e stands for emission, a stands for absorption,..the 
upper (lower) sign in the 6 function corresponds to emis- 
sion (absorption), and Mi3 is the matrix element for elec- 
tron-optical-phonon interaction 

MQ= (q:,N& + $*a pv’~qx,lv~x + +;>. (19) 

In Eq. (19), H(tD) is the total electron-optical-phonon 
interaction Hamiltonian for a 1D quantum wire. The pho- 
non occupation number is taken as Nk, + 1 for emission 
and as Nk for absorption. For the interaction of electrons 
with conffned LO-phonon modes, the transition rate 
l/rrd(q,) [ = Sdk,(L/2rr) wcLs] becomes 

-= 
XILo(k,,L,L,>S[E(q,*k,) - E(q,) driw], 

(20) 
where 

~LobW,&) 

x( m2.5... 2L.. p+ ($i (gy’)* 
(21) 

and the nonvanishing P,,,, results from the first term of Eq. 
(1): 

pm = 

Since the dominant contribution to the sum over phonon 
modes is made by the mode with m = n = 1 (PII = (8/ 
3~) 2), Eq. (2 1) may be approximated as 

16(8/37r)4 

xk;.+ ($+ (2)” ‘.- (23) 

It is important to note that the definition of IL0 in this 
paper does not follow the -convention of Refs. 4 and 9 in 
that Eqs. (21) and (23) ,: incorporate the:+ factor 
l/et ( 00 > - l/e, (0). This change makes the comparison 
with the SO-phonon scattering results easier as will be dis- 
cussed later. LZ 

Defining C’ and $(k,,y,?) as 
I. , 

WLw) =CWx,.w) =& Wwv) (24) 

from Eqs. (6), (7), and ( 14), the transition probability 
(from a ground state to a ground state) by a SO-phonon 
interaction may be written as 

x Kk,-w)cos2 (;) cos2 (E)12 
Xa[E(q:) - E(q,) *~I&&. - q,‘=kJ. 

+ .‘. (251 

For the antisymmetric SO-phonon modes, the transition 
probability W&g becomes zero when only the lowest sub- 
band. is occupied as in Eq. (25) but will, in general, be 
nonzero when excited electronic states are- considered. 
Taking $( k,,y,z) from, Eq. (6), the scattering rate l/ 
r$s(qJ for each of symmetric SO-phonon modes, w, 
which satisfies Eqs. (9a) and ( 10) may be expressed as 

&=-- J ‘+” dkx& 

I i’- 

X~so(k,;L,tL,)S[E(4~~k,) - E(qJ *K-I], 
t_ 

(26) 
. ,. 

where -i 
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Go (k&J,) = 
(2?T)W p2 

a2 S’ 

and 

1 
PS’ 

s 

+&‘2 dy 

cash (aL/2) cash (PLJ2) -L,J~ (LJ2) 

I 

+4-‘2 dz 
X -cos2 (;) CO2 (;) 

-LJ2 W42) 

X cash (ay) cash (fiz) 

1 
=cosh (aLd2) cash (pL42) 

(27) 

(28) 

Since the formulation of Eq. (26) is identical to that of Eq. 
(20), direct comparison between IL0 and Is0 is plausible 
as mentioned previously. Considering the energy-conserv- 
ing delta function in Eq. (26) (for the symmetric SO 
modes) and in EQ. (20) (for the LO modes), the expres- 
sion for the scattering rate may be further simplified. Only 
two values of k,k$l, contribute to the integral in either the 
case of emission or absorption; i.e., for emission, 

kc,“)=q+{qz-- (2m*w/fi>]1’2 

and, for absorption, 

(294 

k$$= - qpl= [d f (2m*w/fi)] “‘. (29b) 

Thus, integrating Eqs. (20) or (26) over k, yields 

1 -= 
74 (qJ 

c 
k =J3 $ 

$-- (Iq+&;) 
x +’ - 

I(kx,L,Jz) x jk(c~) - ** (30) 

for each of the appropriate branches of w with E,(q,) 
=&&2m*. 

As a specific structure in this paper, a GaAs square 
quantum wire of size d (i.e., L,, = L, = d) is chosen with 
two different surrounding materials. The first case deals 
with the GaAs quantum wire free-standing in vacuum [i.e., 
e2(w) = l] and, in the second case, the wire is assumed to 
be embedded in AlAs (i.e., the GaAs/AlAs structure). 
The relevant material parameters used in the calculations 
are wI1 = 36.2 meV, at1 = 33.3 meV, and e1 ( 00 ) = 10.9 
for GaAs, and wn = 50.1 meV, on = 44.8 meV, and 
e2 ( 03 ) = 8.16 for AlAs. The frequencies of symmetric and 
antisymmetric SO-phonon modes in both quantum-wire 
structures are shown in Fig. 2 as a function of k.&. The 
results are similar to those obtained in quantum-well struc- 
tures.8P15 For the free-standing wire, one symmetric mode 
ws, f and one antisymmetric mode oA, f are the solutions of 

/‘- @A+ 

c 4 

3o.o[, I , ( , j 
0.0 2.0 4.0 6.0 8.0 10.0 

ks! -_ 
6 

FrIG. 2. Frequencies of symmetric (tis,f,osl) and antisymmetric 
(~~,~,a~*) SO-phonon modes in a GaAs rectangular quantum wire with 
LY = 15, = d. While ws,/ and oA, / are for the wire free-standing in the 
vacuum, wsj, and mAa are for the wire embedded in AlAs. 

Eqs. (9a) and (9b), respectively, while the GaAs/AlAs 
structure (embedded in AlAs) exhibits two characteristic 
frequencies for the symmetric modes (Q+) and the anti- 
symmetric modes ( wA A ) . As can be seen in the figure, the 

I I 1 

10’ - -I 

k, (cm-‘) 

FIG. 3. 1D integral I(k,J,L,) for the confined LO-phonon mode (de- 
noted as ILo) and the SO-phonon mode in a free-standing quantum wire 
(denoted as Iso,,) as a function of the longitudinal component k, of 
phonon wave vector with various wire dimensions (L,, = L,). 
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10-l 
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1 o-3 

10.4 

lo-§ 

1O-6 

lo-’ 

- - ko,. 

- --- ko,+ 

I I 1 I I I I I 

IO5 106 IO’ 

k, (cm-l) 

FIG. 4. 1D integral Iso(k&,L,) for the os+ SO-phonon mode (de- 
noted as Iso, + ) and the ws- SO-phonon mode (denoted as Iso, _ ) in a 
GaAs/AlAs quantum wire as a function of the longitudinal component 
k, of phonon wave vector with various wire dimensions (,$ = .&). 

FIG. 5. Scattering rates at 300 K as a function of electron ene!gy E, in the 
longitudinal direction. The size of quantum wire, d, is 40 A (L, = L, 
= d). The SO-phonon scattering rate is denoted as SO, f for the frec- 
standing quantum wire and as SO for the GaAs/AlAs quantum wire, 
respectively, while LO represents the rate of electron scattering with con- 
fined LG-phonon modes. Phonon emission (absorption) process is repre- 
sented as emi (abs), respectively. 

+ ( - ) modes have AlAs-like (GaAs-like) characteris- 
tics, respectively. Considering the functional form of Eq. 
(30), it is apparent that the comparison between ILo and 
Iso can give a clear indication on the relative strength of 
the scattering rates by the LO-phonon and (symmetric) 
SO-phonon modes. To facilitate such an analysis, Fig. 3 
presents ILo from Eq. (23) and Is0 for the free-standing 
wire (denoted as Iso,f) as a function of k,, while Fig. 4 
depicts Is0 for the os + mode ( Iso, + ) and the ws _ -mode 
(Iso, _ ). As is apparent from the derivation of Eqs. (26)- 
(28), it is necessary to add the contributions of the u)s+ 
and ws- branches to compute the electron-SO-phonon 
emission and absorption scattering rates when the quan- 
tum wire is embedded in ALAS. The results of Figs. 3 and 
4 demonstrate several key points: Iso,f for the free-stand- 
ing quantum wire is approximately 20 times larger than 
.Im for small k, ( ;5 10’ cm - * > ; Iso, + for the OS + mode 
is dominant over Iso, - for the ws _ mode for small k, and; 
Iso, + is comparable in magnitude to ILo for small k, but 
decreases much more rapidly as k, increases. 

rates increase abruptly to infinity at the onset of emission 
processes and then gradually decrease. For the SO-phonon 
modes in the GaAs/AlAs structure (denoted as SO in Fig. 
5); the emission rate exhibits two peaks as a result of the 
two characteristic phonon branches (ws+ and ws- ). An 
important point to note in this figure is that the SO-phonon 
processes in the free-standing wire (denoted as SO, f ) 
dominate over the LO-phonon processes (denoted as LO) 
throughout the values of Em while in the GaAs/AlAs 
structure the scattering rates by SO phonons are smaller 
than those by LO phonons except for a narrow range of 
E, (due to the 1D electronic density of states). Even in the 
GaAs/AlAs structure, however, the SO-phonon emission 
rates become comparable to the LO-phonon emission rates 
when E, > fiws+. These results can be readily understood 
from the magnitude of ILo, Iso, p Iso, _ , and Iso, + as dis- 
cussed previously. The LO-phonon scattering rate of Fig. 5 
is similar in functional form to the results of Leburton.4 

As is clear from the previous comparison of Figs. 3 and Figures 6 and 7 illustrate how the SO-phonon and LO- 
4, the scattering of electrons by SO phonons may be of phonon scattering rates depend on d at E, = 45 meV and 
significance in these structures. The relative importance of 100 meV, respectively. The particular values of E, are cho- 
electron-SO-phonon scattering in rectangular quantum sen to appropriately reflect the two-mode nature of the 
wires (in our case Ly = L, = d) is made transparent by us- SO-phonon modes in the quantum. wire surrounded by 
ing ILo and Is0 to compute the scattering rates for various AlAs. In Fig. 6, it is observed that the SO-phonon emission 
values of the electron energy E, and the wire dimension d. rate in the GaAs/AlAs structure is always smaller than the 
The SO-phonon and LO-phonon scattering rates versus 
E, at 300 K are given in Fig. 5 with d = 40 A. Due to the 

LO-phonon emission rate as expected from the discussion 
of Fig. 5. In the free-standing wire, however, SO-phonon 

1D nature of the electronic density of states, the scattering emission dominates over the LO-phonon emission for val- 

10’5 

c4 
T 
8 10’4 
2 
d 
I2 

c” 
‘i: 

fj 1o13 

lo’* 

II \‘\ 

IA 
s\\’ ---LyJy, 
I! ‘\. I “k.J 

Lo (emi) 
-.-. -A.-. 
-,-----5 

b----Y 

SO. f fabsj _ 
I \ . , 

-.-._, 
- --.-. 

f 
LO (at=) 

SO (emi) 

.-._._._. -.-.+__ 
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I I I I I 1 
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FIG. 6. Scattering rates at E, = 45 meV as a function of quantum wire 
dimension, d ( = L,, = L,). All of the notations are the same as Fig. 5. 

ues of d less than about 60 A. As the electron energy E, 
increases and the emission of the os +_mode becomes per: 
missible, the relative strength of SO-phonon modes in- 
crease compared to the LO-phonon modes both in the free- 
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IO" 
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d $1 
FIG. 7. Scattering rates at 2, = 100 meV as a function of quantum wire 
dimension, d ( ‘.Lr = L,). All of the notations are the same as Figs: 5 
and 6. 

standing wire and in the GaAs/AlAs quantum-wire 
structure. As a result, at E, = 100 meV the cross-over be- 
tween the SO-phonon and LO-phonon emission rates in 
the free-standing wire occurs at a larger d ( - 140 A). At 
the same time, the SO-phonon modes in the GaAs/AlAs 
quantum wire also increases rapidly and becomes compa- 
rable to (or, even larger than) the LO-phonon mode as the 
wire dimension, d, decreases. It is instructive to note that 
the quantum wires free-standing in vacuum always exhibit 
far stronger SO-phonon modes than those embedded in 
polar semiconductors. This is obvious from Eq. ( 14). The 
free-standing wire has no “leakage” of SO modes (i.e., no 
polarization) in the surrounding environment (i.e., 
e2 = 1 ), while the strength of SO modes outside the quan- 
tum wire is significant when embedded in a polar semicon- 
ductor (for example, AlAs). Use of more realistic elec- 
tronic states for the quantum wire (with tails) would 
enhance the scattering rates by SO-phonon modes calcu- 
lated in the embedded structures. Based on the macro- 
scopic dielectric continuum model, it is then clear that 
SO-phonon scattering will be a significant energy loss 
mechanism in GaAs quantum wires and in mesoscopic 
structures with ultrasmall dimensions. 

V. CONCLUSION 

Based on the macroscopic dielectric continuum model, 
we have derived the Hamiltonian describing the interaction 
of both confined LO and SO phonons with charge carriers 
in a rectangular quantum wire where electron and phonon 
confinement occurs in two of the three spatial dimensions. 
The interaction Hamiltonian is used to calculate the elec- 
tron-optical-phonon scattering rates in- a GaAs square 
quantum wire with two surrounding materials: ( 1) free- 
standing in vacuum and (2) embedded in AlAs. Our re- 
sults lead to new predictions for electron-optical-phonon 
scattering rates in confined quantum structures. Further- 
more, within the macroscopic dielectric continuum ap- 
proximation, it is observed that has the dimensions of the 
quantum-wire structures decrease, electron-SO-phonon 
scattering can be significant and may dominate over (or, at 
least, be-comparable to) the electron-LO-phonon scatter- 
ing. It is anticipated that SO-phonon scattering will play an 
important role in mesoscale devices where it is of major 
importance to engineer ultrasmall devices so that the phase 
coherence of de Broglie wave is retained. 
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