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We present a general theory to investigate the electronic noise in the presence of scattering as
well as of generation-recombination processes. An exact decomposition procedure of the current
spectral density is given that, in addition to fluctuations in carrier velocity and number, shows the
presence of a cross term coupling both fluctuations. Four correlation functions are thus found to be
needed to evaluate all terms. To this purpose, the Monte Carlo method is shown to provide a unify-
ing microscopic calculation of these functions. We consider the case of p-type Si at 77 K with a
generation-recombination mechanism given by the capture at shallow impurities assisted by acous-
tic phonons. Then, the theoretical results are compared with existing mesoscopic theories as well as

with available experimental results.

I. INTRODUCTION

The Monte Carlo (MC) method, by providing a micro-
scopic simulation of the dynamics of an ensemble of par-
ticles in a given physical system,’ offers a unique theoreti-
cal approach for investigating the different sources of
noise and the corresponding spectral densities. In partic-
ular, since by construction it is equivalent to the solution
of the appropriate master equation for any strength of the
applied electric field, it applies to Ohmic as well as to
non-Ohmic (hot-carrier) conditions.

Different authors in recent years have applied this
method to several physical conditions.>”’ In particular,
previous efforts of Reggiani and collaborators at Modena
have succeeded in interpreting noise data in Si with and
without carrier-carrier scattering®® and in the presence
of generation-recombination (GR) phenomena.'®~!2

In this paper we review and extend'*!'* the general
theory underlying the application of the MC method to
the simulation of electronic noise in homogeneous semi-
conductors. By allowing for GR processes within a two-
level model, we provide an exact decomposition pro-
cedure for the current spectral density which, in addition
to fluctuations in carrier velocity and number, shows the
presence of a cross-correlation contribution due to the
coupling between these fluctuations. In this way, we offer
a unifying microscopic interpretation of electronic noise
which is given at a kinetic level. In particular, for the
case of number fluctuations, this approach overcomes
previous mesoscopic theories based on relaxation-time ap-
proaches.”* 17 By considering capture processes at shal-
low centers assisted by acoustic phonons as a typical
source of GR noise, the theoretical analysis is applied to
the case of p-type Si at 77 K where a comparison with ex-
isting analytical results and available experiments is car-
ried out.

The paper is organized as follows. Section II presents
the theoretical approach at the basis of an exact decom-
position procedure of the current spectral density. In
Sec. III we apply the general theory to the simplified case
of noninteracting particles. The details of the MC simu-
lation are given in Sec. IV where the calculations per-
formed for the case of p-type Si at 77 K are reported and
the comparison with available experiments is given. The
main conclusions are drawn in Sec. V. Three appendixes
complement the theoretical calculations.

II. THEORY

We consider the following physical model. (i) Two ter-
minal nondegenerate semiconductor device of length L
and cross-sectional area A. (ii) Strongly extrinsic regime
(i.e., negligible compensation) with a two-level conduc-
tion mechanism, the impurity centers, and the conduct-
ing band. (iii) Stationary and space homogeneous condi-
tions.

Let us recall the definition of the current spectral den-
sity at frequency f,S;(f), given by'®

SiH1=2[" explizmfr)(81(0)81(1))dt , (1

where 81(t)=1(t)—(I) is the current fluctuation around
the average value {(I), and the angular brackets denote
an ensemble average which, by assuming ergodicity, can
be performed as time average.

The total current 7(t), as measured in the outside cir-
cuit, can be expressed in the following two equivalent
forms' (see Appendix A):

e €
I(t)=zN(t)vd(t)=f

where e is the absolute value of the electron charge, N (¢)

Nyl 2)
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is the instantaneous number of free carriers, v,(t) is the
instantaneous value of the free-carrier drift velocity
(which neglects the trapping time but accounts for the
change in velocity between the trapping and detrapping
instants), N, is the total number of carriers which, for
negligible compensation, is equal to the number of impur-
ity centers inside the device, and v;(¢) is the instantane-
ous value of the reduced drift velocity of the total number
of carriers (which accounts for the time spent by the car-
riers on the impurities, the so-called trapping time).

The instantaneous quantities in Eq. (2) are defined as
follows:

Nl
=3 uw,()=Nu(1), 3)
i=1
where u,(t) is the random telegraph signal: u;(¢)=1
when the particle is free and u;(¢)=0 when the particle is
trapped, and u (¢) is the instantaneous value of the frac-
tion of free carriers:
1 N(t)

vd(t)=mi§1 v (1), 4)

where v;(t) is the instantaneous value of the free-carrier
velocity component in the field direction of the particle i:

vd(t)z?,.z v,»’(t) s (5)

where v/(?) is the instantaneous value of the reduced ve-
locity component in the field direction of the particle i:
v/(t)=v,(t) when the particle is in the conducting band
and v/(#)=0 when the particle is trapped.

From the above definitions we notice the following
property:

H=u(th,(t) . (6)

Thus, the instantaneous current fluctuation in the outside
circuit, 81(t), is given by the two equivalent forms (see
Appendix B):

8I(t)=

8v§(t)2%[<N)8vd(t)+(ud>8N(t)], (7)

£
where 6Ud( )—Ud <Ud> Sl)d )—Ud _(Ud> SN (t
=N(t)—(N), and the right-hand side (RHS) of Eq. (7 )
follows from linearization of the RHS of Eq. (2). We no-
tice that the use of the reduced velocity has the remark-
able advantage of describing the current fluctuations in
terms of a single fluctuating quantity.

The last expression on the right-hand side of Eq. (7)
lends itself to an exact decomposition of S;(f) in terms of
different noise sources. Indeed, from Egs. (1) and (7),
S;(f) can be expressed in the following two equivalent
forms: '3

2
SiN= 25N} [ 7 explizmfe)(buj0bug)dr , (8
SH=S8p, )+ S, (f)+ S, (f) (8b)
where
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S,,,d(f)=2L%Z<N>2fiexp(izwft)<6ud(0)6ud(t)>dt ,
9)
Sie ()= <v,,)f _expli2mft)(8N(0)BN(1))dt
(10)
St ()= (N)(vd)

Xf, expli2mf1)[{BN(0)dv, (1))

+ (v (08N () 1de . (11)

As seen from Eq. (8b), the total spectral density is decom-
posed into the sum of three terms which are related to
fluctuations in free-carrier velocity (S;, ), number (S Ier )

and correlation between number and velocity (S, ), re-
spectively. From their definition in terms of correlation
functions [see Egs. (10) and (11)] it appears that S;,, and
S,., are proportional to (v, )? and at least to (v, ), re-
spectively. Therefore, they describe excess noise and, as
expected, vanish at equilibrium and/or when the noise is
evaluated perpendicular to the field direction, where
(vy) is equal to zero. Of course, Sy, and Sy, are zero
when the traps are fully ionized, since it implies that at
any time 6N (¢)=0.
By linearizing Eq. (6) as

Bvg(n)  {vg)
(u) (u)?

the three correlation functions in the RHS of Egs. (9) and
(11) can be conveniently expressed in terms of the re-
duced velocity fluctuations as

du(t), (12)

< 8Ud 8Ud > ( 8vd SUd( t) >

(u )2
(vj)?
(u)?

(v])
7 d>3[(6vd )Su(t))

+ (8u(0)8u (1))

+(8u(0)dv)(1)) ], (13)

(8N (0)8v,(1)) = ——(8u(0)dvj(1))

( )
(ud)NI

<u>2 — 5 (8u(0)du(1)) , (14)

(8v,(0)8N (1)) = (8v(0)8u(z))

< )
( viIN
(u)?
Therefore, the knowledge of the four correlation func-
tions in the RHS of Eq. (13) [which are given in terms of

u () and v}(1)] is equivalent to the knowledge of the four
correlation functions in Egs. (9)-(11) [which are given in

L (8u(0)8ult)) . (15)
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terms of N (¢) and v,(¢)] and thus sufficient to determine
the three terms of Eq. (8b) into which the total spectral
density is decomposed. Furthermore, the correlation
function {&v,(0)8v,(¢)) can be independently calculated
from a simulation that neglects the trapping time but
contains GR processes as velocity randomizing events.
We notice that, while the cross-correlation functions in
the rhs of Eq. (11) can be directly evaluated only by a
many-particle simulation, the use of the reduced velocity
fluctuations will enable us to evaluate these functions
from a one-particle simulation, provided that particle-
particle interaction is neglected. This is the subject of the
next section.

III. THE CASE OF NONINTERACTING PARTICLES

The calculation of the total spectral density, and of the
three terms into which it can be decomposed [see Eq.
(8b)], is considerably simplified for the case of nonin-
teracting particles. (Here, particle-particle interaction
does not only mean a direct scattering between two car-
riers, but also a correlation introduced by the occupancy
factor of the impurity levels.) Thus, for a single-particle
simulation only a linear recombination can be treated.
As a matter of fact, in this case we can take advantage of
the representation in terms of the reduced velocity fluc-
tuations seen above and calculate the different correlation
functions from a one-particle approach. For this pur-
pose, we make use of the following properties (see Appen-
dix C):

(8v;5(0)8v5(t )>=7V1—~<5u,.'(0)5u{(z)), (16)
(BN(0)SN(t)) =N, {du;(0)du;(1)) , (17)
(8N(O)8vd(t))=ﬁ(8ui(0)8v,’(t)>

:Z"; (8u,(0)8u,(1)) (18)
<aud(o>5N(n>=<—>~<5u,-'<0)5u,-(t))

{vd ——(8u;(0)8u,(1)) , (19)

(u>2

where 8v/(t)= —<v]) and du,(1)=u,;(£)—u).
As a consequence of Egs. (16)-(19), Eq. (13) becomes

I<u>2<5v'(o 8v/(1))

(v])?
N(u)t

(v})
INATIE

(8v,(0)8v,(1)) =

(8u,(0)8u,(1))

[(80/(0)8u;(1))

+(8u,(0)8v/(1))].  (20)

The initial values of the correlation functions in Egs.
(17)-(19), in this case of noninteracting particles, can be
exactly calculated by noticing that by construction it is
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(u?Y={u) and (u,v/)=(vj). Therefore, we obtain
([BN0) ) =N {u)(1—Cu))
(8N (0)8v,4(0))=(8v,(0)8N(0)) =0 .

(20a)
(20b)

Equation (20b) states that the fluctuations of particle
number and drift velocity at equal times are uncorrelated.
This is due to the fact that, for independent particles, all
scattering and recombination mechanisms depend only
on the average numbers of carriers and not on its actual
value.

Phenomenological models exist for some autocorrela-
tion functions,’””!7 while very little is known on the
cross-correlation functions.!*!%2% For the case of veloci-
ty fluctuations, within a relaxation-time approximation?!
it is

(8v,4(0)8v,(1)) ={[8v4(0)]*)exp(—1t/7,) , @21
where 7, is an average scattering time related to the mo-
bility, u, as

#zgﬂ (21a)

(m being the carrier effective mass) and, within an elec-
tron temperature model, it is

1 kT,

e

(u)N;, m ~

([8v,(0)]*) = (21b)

kg being the Boltzmann constant and 7, the electron
temperature related to the average energy of the carrier
ensemble (e) =2k, T,

For the case of number fluctuations, within a
relaxation-time approximation, it is'’
(8N(0)8N (1)) =([8N(0)]*)exp(—t/T;) , 22)

where ([8N(0)]*) is given by Eq. (20a) and 7, is the life-

time. For GR processes governed by linear kinetics, it
- 17,18
is' "

1

Tg—?, (22a)
(u)

=, 2

(= )) (220)
L] )

= _ = u R (220)
T, T, %

where y is the generation rate, 7, the generation time,
and 7, the average (over the energy distribution function)
recombination time. We remark that within the ap-
proach considered (i.e., relaxation time and linear GR
processes), Eqs. (22) are of universal form in the sense



42 MONTE CARLO METHOD FOR THE SIMULATION OF . ..

that they are expected to hold independently from the
dependence of {u ) on the intensive variables such as the
electric field, temperature, etc. We shall come back to
this aspect later.

IV. MONTE CARLO SIMULATION

Calculations are performed for the case of p-type Si,
where recent experiments from the Montpellier group are
available. To simplify the calculations and make the cpu
time accessible, we consider the case of noninteracting
particles. The details of the numerical calculation and of
the microscopic model are given in Ref. 22, while the pa-
rameters entering the simulation are summarized in
Table I. If not stated specifically, the Poole-Frenkel
effect is neglected. We remark that this microscopic
model has been recently used with success to interpret
the field-dependent conductivity of lightly doped p-type
Si.? Therefore, by including GR processes, it generalizes
a previous model adequate to describe transport in a con-
ducting band only.?*

The different correlation functions have been evaluated
in the standard way, as for the case of the autocorrelation
function of velocity fluctuations (AFVF) in the absence of
GR processes.! To this end we record the instantaneous
values of u;(¢) and v/(t) for a sampling time T
sufficiently long to detect the vanishing value of the
correlation functions (typically Tj =1 ns) with a mesh of
about 10° points. Each simulation requires between 2
and 10 h central-processing-unit (CPU) time of a Digital
Equipment Corporation VAX 6310 computer. The
reason for these long times is the large difference in the
time scales involved in the problem: scatterings occur
typically on a time scale below 1 ps while the time scale
for GR processes is of the order of 100 ps to 1 ns.

The average fraction of ionized carriers is consistently

TABLE 1. Parameters for p-type Si used in calculations. The
effective mass takes into account nonparabolicity and therefore
it varies as a function of carrier mean energy between the given
values as reported in Ref. 23.

Effective mass
Crystal density
Sound velocity
Optical-phonon

m, =(0.53-1.26)m,
po=2.32 gecm™*
$§=6.53X10° cms ™!

temperature 0,,=735 K
Relative static

dielectric constant €,=11.7
Acoustic deformation

potential E9=5 eV

Optical deformation
potential D,K=6X10% eVcm ™!

Equilibrium volume
recombination rate

Equilibrium

Peq=4.2X107° cm’s™!

generation rate y=2.9%X10° s!
Energy of the
acceptor level €, =45 meV

Cross section for

impact ionization 0,=5.02X10""* cm’

5705

determined from the ratio between the total time spent in
the valence band and the total time of the simulation.
Since in the present case by construction it is
(u?)={u), Eq. (20a) is exactly verified in MC calcula-
tions. Then, both the generation rate and the average
recombination rate have been independently determined,
respectively, from the ratio between the total time spent
in the traps and the total number of generations and from
the ratio between the total time spent in the valence band
and the total number of recombinations. We have
verified that the values of the rates so determined are in
good agreement with the expectations of Egs. (22a) and
(22b) for any field strength. On the other hand, the value
of the lifetime, as determined by the decay in time of the
autocorrelation function of particle-state fluctuations
(AFPSF) has been found to be in general not in agree-
ment with the expected value of Eq. (22c¢), as will be dis-
cussed in the following section.

Figure 1 reports the energy dependence of the scatter-
ing rates due to the different mechanisms which have
been used in the MC calculations.

Figure 2 shows the values of the average energy, the
fraction of ionized carriers, and the mobility as a function
of the electric field for a typical acceptor concentration.
The deviation from unity of different values is known to
be due to the onset of hot-carrier conditions.?>2¢

A. Results for the correlation functions

In this section we discuss the time dependence of the
reduced correlation functions required for our decompo-
sition procedure. These functions are the direct output of

14 _ . .
131 1_,/1‘7’_:’,—:::'// 4
12] . T AE i
— /\JH A
T\v:/ 11— ) ~ EOE T
= :
"o
|
as | 1 1
-1 0 1 2 3 4

log | [e (meV)]

FIG. 1. Scattering rates I' as a function of energy ¢ for p-type
Si at 77 K with N, =3X10"* cm 3. Symbols have the following
meaning: AA (acoustic absorption), AE (acoustic emission),
OA (optical absorption), OE (optical emission), II (ionized im-
purity), G (generation), I (impact ionization), R (recombination),
T (total). Notice that the generation rate does not contribute to
the total rate and its energy scale refers to the final energy of the
hole in the valence band.
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FIG. 2. Average energy, fraction of free carriers, and mobili-
ty as a function of the electric field E in p-type Si at 77 K with
N,=3X10" cm™>. Quantities are normalized to their zero
field value.

the MC simulation. (A complete analysis of the transport
phenomenon in terms of a full set of relevant correlation
functions involving energy, momentum, and carrier num-
bers is also possible to be carried out. However, such an
analysis, which is of physical interest in itself,2! is far
from the objectives of the present paper and will be
presented elsewhere.)

Figure 3 and 4 report the four reduced correlation
functions in the RHS of Eq. (20) normalized to their ini-
tial time values for an electric field of 50 V/cm (direction

Normalized correlation functions

Time (ps)

FIG. 3. Correlation functions normalized to their initial
value in p-type Si at 77 K with N, =3X10'"> cm™> and an elec-
tric field E =350 V/cm over a time range of 15 ps. Solid, dashed,
dotted, dot-dashed, and triple-dot-dashed lines refer, respective-
ly, to (v, (0)8v/(2)), (6u,(0)du;(2)), {(du,(0)dv/(1)),
(8v,(0)8u,(1)), and (8v,4(0)8v,4(2)).

Time (ps)

FIG. 4. The same correlation functions as in Fig. 3 but over a
time range of 1500 ps.

(100)) and an acceptor concentration of 3 X105 ¢cm 3.
Figure 3 shows the results in the first 15 ps, while Fig. 4
shows the same curves within an extended time range of
1500 ps. (The worse resolution at increasing time of the
cross correlations should be ascribed to their small abso-
lute value.) We notice that the autocorrelation function
of reduced-velocity fluctuations (AFRVF) decays very
fast in the first 10 ps, reflecting the short scattering time
associated with the collisions while the carrier is in the
conducting band. As a matter of fact, in the whole time
range the AFRVF, when appropriately scaled, is found to
nearly coincide with the AFVF (now calculated by in-

Normalized correlation functions

FIG. 5. Correlation functions normalized to their initial
value in p-type Si at 77 K with N, =3X 10> cm ™ and an elec-
tric field E=2.5 kV/cm over a time range of 15 ps. Solid,
dashed, dotted, dot-dashed, and triple-dot-dashed lines refer, re-
spectively, to (8v/(0)8v/(1)), {8u,(0)8u;(2)), (du,(0)dv/(1)),
(8v/(0)8u,(1)), and (Sv,(0)8v,(t)).
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FIG. 6. The same correlation functions as in Fig. 5 but over a
time range of 1500 ps.

cluding GR processes). However, the AFRVF exhibits a
small but very long tail which is responsible for a
significant contribution to the spectral density, as will be
shown in Sec. IVB. The remaining correlation functions
decay slowly in time, reflecting the long lifetime associat-
ed with number fluctuations. In particular, we notice
that (8u,(0)8u;(t)) and (8u;(0)dv/(¢)) exhibit at all
times nearly the same dependence within the MC uncer-
tainty, while (8v/(0)8u;(z)) shows an initial positive
slope reaching a maximum before decaying to zero. The
former behavior implies that (S8N(0)dv,(z))~0. The
latter behavior implies that (8v,(0)8N(?)) increases first
and then decreases on the time scale of the lifetime.
Indeed, if at time ¢t =0 the drift velocity is increased, the
carrier energy is also increased. Therefore, a recombina-
tion process is less probable (see Fig. 1) and dN(z) will in-
crease too. Conversely, if initially the drift velocity is de-
creased, then the carrier energy is also decreased. There-
fore, a recombination process is more probable and 8N (¢)
will decrease too. The characteristic time scale for the in-
itial increase of (8v;(0)8u,(¢)) is the energy relaxation
time, as verified in MC results. The decay occurs on the
time scale of the carrier lifetime, because it is on this time
scale that GR processes become independent from each
other. From Fig. 1 it can be seen that the recombination
rate exhibits a strong decrease above 0.2 meV. Thus, it
can be expected that the cross correlations are maximal
when %mv320.2 meV, which corresponds to electric
fields of about 200 V/cm in the present case. This expec-

100.0 . . : :
&

100 ¢
N 4 y *
3 5 N
N 8 v
8 PN
= AN

kY Yo - X

~ - R

1.0 © ey TG

0.1 L L L 1

0 0.2 0.4 0.6 0.8 10
<u>

FIG. 7. Values of 7y /{u ) as a function of the fraction of
free carriers {u ) in p-type Si at 77 K. Different symbols corre-
spond to the following doping: A=N,=3X10"7 cm 3,
O=N,=1X10"7 ecm™3, +=N,=1.4X10"® cm™3, V=N,
=3X10"% cm™3, X=N,=4X10" cm™3 The same symbol
refers to MC simulations at electric fields of 0.1, 1, and 10
kV/cm for increasing (u ), respectively. The solid line refers to
the phenomenological approach; the dashed lines are guides to
the eyes.

tation is well verified by MC calculations, as is shown
later.

Figures 5 and 6 show the same quantities for a higher
electric field of 2.5 kV/cm. With respect to the previous
case, we notice that the AFRVF decays faster, reaches a
minimum at about 2 ps, increases again, and then exhib-
its a decay on a long time scale. On the other hand, the
time dependence of the remaining reduced correlation
functions is found to coincide within the numerical un-
certainty. The structure of the AFRVF can be explained
as follows: The shortening of the decay time is due to the
onset of hot-electron conditions, which, by decreasing the
carrier mobility, lead to a shortening of the average
scattering time. For the same reason, the coupling be-
tween energy and velocity, which is responsible for the
negative part of the AFVF seen in the same figure, is the
origin of the minimum.2"?” The long time tail exhibited
by all the reduced correlation functions is associated to
the carrier lifetime. For completeness, Table II reports
the initial values of the correlation functions show in
Figs. 3—6 as well as the values of {(u ) and (v, ). We re-
mark that all quantities are calculated independently

TABLE II. Initial values of different correlation functions at the given electric field. Calculations refer to the case of p-type Si at

77 K with N ,=3X 10" cm 3.

E ([8v/(0)]*) ([8v,(0)]*) ([6u;(0)]*) (8v,(0)8u,(0)) (u) (vg)
(V/cm) (10" cm?/s?) (10" cm?/s?) (10° cm/s) (10° cm/s)
50 0.77 2.2 0.23 0.91 0.35 0.40

2500 4.7 6.1 0.21 9.6 0.70 4.5
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FIG. 8. Autocorrelation function of particle state fluctua-
tions normalized to its equilibrium value in p-type Si at 77 K
with N, =3X10" cm™* and an electric field E=100 V/cm at
different values of the GR rates. Triple-dot-dashed, dash-
dotted, solid, dashed, and dotted lines refer to a multiplication

of the values p., and y by a factor of 0.01, 0.1, 1, 10, and 100, re-
spectively.

from the MC simulation and, as a check of consistency,
they are found to satisfy rigorously Egs. (13)-(15), (20a),
and (20b).

The determination of the lifetime has been found to be
a complicated task. As a matter of fact, a unique
definition of a lifetime is problematic since, as a general
trend, the AFPSF does not display an exponential decay
at the shortest times. There, the decay is generally faster
than at longer times, where it really exhibits an exponen-
tial tail with a time constant we have called 7;°. Figure 7
compares the universal function (22¢), where 7;° is substi-
tuted for 7;, with the results provided by the MC simula-
tions. We have found significant deviations, the values
obtained from the simulation being systematically larger
than those predicted by the analytical approach.

To investigate the origin of this nonexponential decay
of the AFPSF we have performed a set of simulations by
keeping constant all parameters (in particular the ratio
Peq/Y> Peq being the volume recombination rate at equi-
librium) but artificially scaling the magnitude of y and p.q
over 4 orders of magnitude. In this way, due to the bal-
ance equation,”® the value of (u), and thus of
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([8u,(0)]?), is forced to remain constant while the rate
of GR processes scales accordingly to y and peq. The
AFPSF results for E=100 V/cm and N , =3 X 10" ¢cm 3
are reported in Fig. 8. The Arrhenius plot evidences an
exponential decay in the long time limit and a fast decay
of the correlation function at the shortest times, this last
becoming more pronounced at increasing values of the
GR rates. Table III summarizes the above results, show-
ing that MC results agree well with the analytical theory,
with the exception of the lifetime, which, in the long time
limit (7;°), exhibits values larger than those analytically
predicted. In any case, we notice that when lowering the
values of the GR rates, the lifetime tends to the expected
value.

This anomaly in the behavior of the lifetime is attribut-
ed to a nonexponential distribution of the microscopic
recombination time, which can be analyzed by plotting
the histogram of the number of recombinations associat-
ed with a given time interval. Figure 9 reports such a
plot at different values of the electric field strength. As
can be seen, most recombinations occur at the shortest
times and at longer times, within the statistical uncertain-
ty, they exhibit an exponential distribution. By increas-
ing the electric field, this peaking of recombinations at
the shortest times, which is found to parallel the behavior
of varying the GR rates, is smoothed out. We ascribe
these effects to the strong coupling between GR processes
and scattering mechanisms, which occurs in the lowest
energy region of the carrier energy-distribution function.
Indeed, GR processes occur mostly when the carrier en-
ergy is below the 1-meV region, where the probability of
capture even exceeds that of scattering mechanisms, thus
coupling GR and scattering processes at a microscopic
level, as seen in Fig. 1. In other words, a carrier after be-
ing generated from the trap has a high probability to im-
mediately recombine without having the possibility to
visit all the accessible energy regions of the distribution
function. Therefore, as pointed out by Price?® for the
similar case of intervalley noise, the carrier can keep
memory of the generation process up to the next recom-
bination process in contrast to the case when, once gen-
erated, it scatters many times in the conducting band
thus losing memory of GR processes. This interpretation
is supported by the fact that, at increasing field strengths,
MC results get closer to those of the analytical approach
at the given field. This is because the onset of hot-carrier
phenomena, by decreasing the importance of low-energy
processes, tends to reduce the coupling between GR and
scattering processes. Of course, this nonexponential de-

TABLE III. Comparison between MC and analytical results for different values of the GR parame-
ters for the quantities reported. Calculatons refer to the case of p-type Si at 77 K with N ,=3X 10"

cm *and E =100 V/cm.

10%p,,, 107y 10p.g, 10y Pea ¥ 107 'p.q, 107y 107 2p,q, 1072y analytical
(u) 0.37 0.36 0.36 0.37 0.36 0.38
((8u)?) 0.23 0.23 0.23 0.23 0.23 0.24
Ty 0.59 0.56 0.58 0.57 0.56 0.61
Y 1.0 0.99 1.0 0.98 1.0 1.0
ey /{u) 94 20 4.4 1.5 1.1 1.0
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FIG. 9. Time histogram of the number of recombinations Ny
at different values of the electric field in p-type Si at 77 K with
N ,=3.0X10" cm 3. Different symbols correspond to the fol-
lowing fields: V=E=0.1 kV/cm, O=E=1 kV/cm,
X =E=10kV/cm. The dashed lines are guides to the eyes.

cay of the AFPSF becomes more evident at increasing ac-
ceptor concentrations, and thus at lowering values of

(u).
B. Results for the current spectral density

The current spectral density, which is the measurable
quantity, is obtained by Fourier transforming the
AFRVF, as prescribed by Eq. (8a). Figure 10 reports the
numerical results for the low field case shown in Figs. 3

-20

log,, [S, (A"/Hz))]

-22 L Ly I | |

-18

13

log  [f (Hz)]

FIG. 11. Current spectral density in the direction of the elec-
tric field as a function of frequency f in p-type Si at 77 K for
E=2.5kV/cm with N,=3X10" cm ™3 L=1.5X10"? cm and
a sample area 4=3.6X10"° cm?. Solid, dashed, and dotted
lines refer to total, velocity, and GR contributions, respectively.
Open triangles represent experimental results (Refs. 29 and 30).

and 4. The total spectral density is decomposed here into
three contributions according to Eq. (8b). As can be
seen, at low frequencies the GR and velocity contribu-
tions are comparable and the cross term, even if of weak-
er relevance, is easily detectable. Both GR and cross
contributions decay with a Lorentzian shape with a
corner frequency given by 1/(277;°), while the velocity
contribution decays similarly but with a corner frequency
given by 1/(277,).
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e
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FIG. 10. Current spectral density in the direction of the elec-
tric field as a function of frequency f in p-type Si at 77 K for
E=50 V/cm with N,=3X10" ecm ™3, L=1.5X10"2 cm, and
A=3.6X1073 cm? Solid, dashed, dotted, and dot-dashed lines
refer to total, velocity, GR, and cross contributions, respective-
ly, as defined by Egs. (8)—(11).

log | [E(V/cm)]

FIG. 12. Relative importance of the different contributions
to the low-frequency spectral density as a function of the elec-
tric field E for the case of p-type Si at 77 K with N, =3X10".
The dashed lines refer to the case when the Poole-Frenkel effect
is accounted for.
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Figure 11 reports the frequency dependence of the
spectral densities for the high field case shown in Figs. 5
and 6 as well as recent experimental results.2%30 Now, at
low frequencies the GR contribution is the dominant one
while the cross contribution has been found to be of
negligible importance and practically not detectable from
the simulation. At the highest frequencies only the veloc-
ity contribution remains. We notice that this term exhib-
its a small but detectable increase, before the cutoff,
which is associated with the negative part of the AFVF.
We remark that the theory satisfactorily agrees with ex-
periments, fully supporting the microscopic model used
to treat GR process.

To investigate the role of the cross term, we report in
Fig. 12 the relative importance of the different contribu-
tions to the low-frequency spectral density as a function
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tribution is found to dominate in agreement with the Ny-
quist relationship. In the intermediate region of fields,
both GR and cross contributions increase, the former
becoming the leading term above 50 V/cm. We notice
that the cross term peaks in the region when GR and ve-
locity contributions become comparable and then de-
creases systematically. In the whole range of fields the
cross term remains of smaller importance. These results
correct previous overestimations of the cross term!'>!*
that have originated from a lack of consistency associated
to an independent estimate of the GR contribution alone.

The external field, by modifying the shape of the im-
purity potential (Poole-Frekel effect), is also responsible
for a change of the generation as well as of the volume
recombination rate. Accordingly, we have considered a
field-dependent generation rate yg, based on a three-

of the electric field. At the lowest fields, the velocity con-  dimensional Ohmic model,*"*? given by
J
48k, T BE 82
1 <4=—
Y BE sinh 45k, T for E =4 2 (23a)
YE= - _
(kgT) 8 BVE —5 | [BVE 26 BE %
+ -1 |— — for E>4—, (23b
Yogg |TP kT TP kT Ky T kTP " ask,T || " P2 )

where B=(e?/mes€,)!/? is the Poole-Frenkel factor and

8=232kp T (T is the lattice temperature) is the typical ener-
gy, measured from the bottom of the conducting band,
for which a bound carrier has a large probability to es-
cape thermally from the impurity level.

The field-dependent volume recombination rate pg, fol-
lowing Ref. 33, has been taken as

B’E <48
pea [1F0.98 7052 | for E <4 (24a)
PE™ — -
— 2
poi |140.98BYE=8 | o poa® )
q kBT B2

The calculations which include the Poole-Frenkel effect
are reported in Fig. 12 where it is shown that it becomes
significant above 3X10® V/cm. In the present case, this
effect concurs with carrier heating to a further increase of
the fraction of free carriers.

Finally, we wish to remark that the model of a linear
recombination kinetics, as we have used here, instead of a
more appropriate quadratic kinetics, is expected to yield
an overestimation of the GR contribution'” up to a factor
4 in the limit of vanishing values of {u ). This could re-
quire a reconsideration of the values of the GR parame-
ters used here. In any case, to account for a quadratic
recombination implies the use of a many-particle simula-
tion with associated CPU times which, for the present
model, are not yet accessible.

V. CONCLUSIONS

We have presented a general theory of electronic noise
in homogeneous semiconductors that enables an exact
decomposition procedure of different noise sources in the
presence of generation recombination processes to be car-
ried out. For the case of a two-level model, three contri-
butions are found to determine the current spectral densi-
ty. These refer to fluctuations in free-carrier velocity,
number, and their correlations. To evaluate all contribu-
tions, the knowledge of four correlation functions is re-
quired. To this purpose, we have shown that the use of
the reduced carrier velocity can simplify considerably the
calculations, being that it is the only quantity responsible
for current fluctuations. In particular, when particle-
particle correlation can be neglected, it enables us to
evaluate the cross-correlation functions from a one-
particle simulation. The Monte Carlo method is proven
to be a fruitful procedure to obtain the relevant correla-
tion functions (and thus the frequency-dependent spectral
density). Indeed, it enables us to solve the appropriate
master equation at a kinetic level without approximations
and in the presence of an electric field of arbitrary
strength. The satisfactory agreement obtained with exist-
ing mesoscopic theories'>~!7 (in the limit of their validi-
ty) and available experiments?®3° fully supports the phys-
ical plausibility of the present approach and gives us
confidence in predicting that this method will be further
developed to account for refinements in the theory.
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APPENDIX A

Here we shall prove Eq. (2). The total current j(r,?)
consists of two contributions, the conduction current
density j (r,t) given by

t)8(r—r,(1)) (A1)

rt—ezv

i=1
and the displacement current density j,(r,?) given by

OE(r,t)
a

From the continuity and the Maxwell equations follows

divj=div(j, +j,)=0 . (A3)

Ja(r,t)=¢€g€, (A2)

If we take the direction of the device as x the total
current through a cross-sectional area 4 perpendicular to
this direction is given by

I(x,t)= f fAdy dz j (r,t)

If the length of the device is small compared to its lateral

(A4)

J

dimensions, Eq. (A3) implies that the total current
through each cross-sectional area is the same, thus I(x,?)
is independent of x. Then we can write

_1pt
Ho=— [ I(ndx

=%f dxff dy dz

eZu,x 1)8(r—r,(2))

i=1

4 OE, (r,t)
ot

l
X eoe,A%[V(L)—V(O)] . (AS)

h]m

We have used the fact that E is the gradient of the poten-
tial ¥ and the contacts at x =0 and x =L are equipoten-
tial surfaces. If the voltage applied to the contacts is kept
constant with time, then the last term in Eq. (A5) van-
ishes and we obtain the final result

””:%é{' ;(t)——-%N,v,;(t):%N(t)vd(t). (A6)
APPENDIX B
Here we shall derive expression (7). Be definition we
have
81(t)=%[N(t)vd(t)—(N(t)vd(t)>] . (B1)

By linearizing Eq. (2) through N(t)=(N)+8N(t),v,(t)

=(v, ) +8v,(t), Eq. (B1) becomes

81t —Z~[<N><ud>+<N>au,, )+ vy YSN(1)+BN(1)8v,(£)— { N(t)o (1)) ]

%[(N)Sud )+ vy YON(£)+ 8N (1)80,(1)— (SN (1)6v,(1)) ]

—E—[(N)Sud H)+v, Y8N(1)]

(B2)

since the term [8N(£)8v (1) — (8N (1)8v,(1)) ], being of second order in fluctations, can be neglected.

APPENDIX C

Here we shall prove Egs. (16)-(20). According to the definition in Eq. (5), the autocorrelation function of reduced ve-
locity fluctuations (AFRVF) can be decomposed in the diagonal and off-diagonal contributions as

N
(8vj(0)8v(1 N2 2 0)— () of ) —Cvi) 1)
11,j=
NI
= (0= ) i — ) D+ S (01— ) v — ()] o)
NI NIZ Lji=1
(j#i)

The off-diagonal term in the last row of Eq. (C1) describes particle-particle correlations, thus for the case of nonin-
teracting particles it can be neglected and Eq. (16) is obtained.
Let us consider Eq. (17) which, according to Eq. (3), can be written as
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N,
(BN(0BN(1))= 3 ([u;(0)—

Lj=1

GO (0= )]

NI

WHD+ S ([u(0)—
ij=1
(j#i)

=N [u;(0)—Cu ) Ju;(t)— () u;()—Cu)]) . (2)

The off-diagonal term in the last row of Eq. (C2) describes the cross correlations due to particle-particle interaction,

thus for the case of noninteracting particles it can be neglected and the result, Eq. (18), is obtained.
Let us consider now one of the cross terms in Eq. (11) which, by using Eq. (14), can be written as

<5N<o>aud(z>>=<—‘><g [u,(0)—(u )]—]E‘[v
Nizjl>>2,,2_1<[u — () [, ()~
= s (L0 = G T/ = (o) D =
+U2; ﬁq — () [ve
i

<vg>]>

()]

<>2<lu )= () Ny = Cu)])
(v}

—(u ) — N (a )2([u =) u;(—Cu)d])
1

The off-diagonal term in the last two rows of Eq. (C3) describes particle-particle correlations, thus for the case of nonin-

teracting particles it can be neglected. By applying the same procedure to the term {8v,(0)8N(?)

(18) and (19) are directly obtained.

), the results of Egs.
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