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An investigation is reported of the cooling of an electron gas (reduction in the average energy of electrons on
increase in the electric field £) in many-valley semiconductors which occurs when the dominant energy
dissipation mechanism is the generation of phonons with the Debye temperature fiw /k , much higher than
the lattice temperature T and the dissipation of momentum is primarily due to the scattering by ionized
impurities. It is shown that the impurity intervalley scattering time 7", which increases on increase in E in
the case of carrier heating, decreases on increase in E in the cooling case irrespective of whether intravalley
fiw, or intervalley fiw . phonons are generated. The phonon intervalley scattering time 7" decreases on
increase in E in the case of heating and continues to decrease when carriers are cooled if the cooling is due to
generation of intevalley phonons fiw, that determine 7™, However, if the cooling is due to generation of
intravalley phonons of energy fiw , < fiw ,, then 7*" rises on increase in the field. A change in the sign of the
derivative dr, /dE on transition from carrier heating to cooling causes an inversion of the valley population.
It is shown that an investigation of the intervalley population transfer and of the electrical conductivity

anisotropy can provide reliable diagnostic tools for the study of the cooling of carriers in semiconductors.

1. INTRODUCTION

Cooling of carriers in semiconductors was pre-
dicted by Gribnikov and Kochelap' and observed
experimentally by Ashmontas et al.2»3 It involves
a reduction in the total energy of the electron gas
in a semiconductor on increase in the electric field
when the dominant energy dissipation mechanism
is the generation of optical phonons and the momen-
tum is dissipated primarily by scattering on ionized
impurities. An electron diffusing in an electric
field attains the energy of an optical phonon /i,
(the constant for the interaction with such a phonon
is assumed to be large) and after emitting this
phonon drops to the range of low energies from
where escape by acquisition of energy from the
electric field is difficult because of the high rate
of impurity scattering, the probability of which
is ve~3/2 (e is the carrier energy). If the electron
flux to the range of low energies because of such
optical scattering is sufficiently large, the majority
of electrons become localized in this energy range
and this lowers their average energy £ (£ can fall
to a value smaller than the equilibrium value 3k,T/2,
which is in particular observed in Refs. 2 and
3). The cooling effect occurs in the temperature
range k.0 < hwy at extremely low carrier densities,
when their interaction with one another can be
ignored. The range of electric fields in which
this effect occurs was considered in Ref. 1.

Further studies of the effects associated with
the cooling of carriers was made by one of the
present authors“ and it was found that ionization
of carriers from impurities gives rise to a negative
differential conductance. The magnetoresistance
and field dependences of the carrier mobility under
cooling conditions in III-V semiconductors were
calculated recently® and an analysis was made of
the available experimental data on these dependences.

We shall consider theoretically the effects asso-
ciated with the cooling of electrons in many-valley
semiconductors. We shall consider two types of
semiconductor. Type A is a semiconductor such
as n-type Ge in which the energy of a typical
intervalley phonon fiw;, is small compared with the
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energy of an intravalley optical phonon w, (Ref.
6) and, moreover, the constant Wjy of the interac-
tion with an intervalley phonon is small compared
with the constant W, of the interaction with an
optical phonon, so that intervalley scattering has
practically no influence on the energy dependence
of the distribution function. Type B represents
semiconductors such as silicon or n-type diamond,
when the interaction with an intervalley phonon

is characterized by a large constant Wi, (Ref. 7)
and it is this phonon that dominates the energy
scattering in the range of electric fields of interest
to us.

2. INELASTIC SCATTERING OF ELECTRONS
BY INTRAVALLEY OPTICAL PHONONS

In type A semiconductors the weak interaction
with intervalley phonons means that the condition
of independent energy balance of the valleys is
obeyed and in calculating the distribution functions
of the valleys we can ignore the intervalley scatter-
ing process.®

In Ge, Si, and other semiconductors the anisot-
ropy of the relaxation times of the electron momentum
dissipated on intravalley acoustic phonons is weak
compared with the anisotropy of the effective
masses.®»? Therefore, if we assume that the
scattering is isotropic, we find that the applica-
tion of the Herring—Vogt transformation,'® which
converts ellipsoidal constant-energy surfaces to
the spherical shape, makes the transport equations
for electrons in different valleys identical apart
from the value of the effective electric field in
the valleys:

.‘.‘::-f-:[

mllros’;l 4- :; -in'?.] . (1)

Here, ¢j is the angle between the longitudinal axis
of the constant-energy ellipsoid for ‘the i-th valley
and the direction of the total electric field E; m =
(mym?)*/? is the denmsity-of-states effective mass;

m5' and mj' are the longitudinal and transverse
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somponents of the tensor of the reciprocal effective
asses, The equations for the transformation of
he variables, which we shall now identify by an
sk, are the same as the equations for a semi-
nductor with an isotropic dispersion law.'»7,1!

We shall adopt the quasielastic approximation
n the passive range of energies ¢< /~, (Ref.

12) and describe the distribution function #*' of
of the electron momentum p° in the i-th valley by
the expression

Fid o 9 () + {0 (7).

FiOp < F ) s) (2)
The isotropic F(i) and anisotropic F['(p") parts
of thia diatributmn function are found from

219, (1) + 1) L 2y (2 e (2), (3)
k. eye (7) AR (2 (4
1ot = vy L, ’

here
V6= S = B0 (5)
Fi Yy L3 (6)
=7 £,=—P;— I m fr.

Here, s is the longitudinal velocity of sound; }:‘ and
1jare the deformation potential constants®~'?

is the electron charge; =»+(f) is the momentum
pelaxation time. It is assumed that the electron
‘momentum dissipated on acoustic intravalley phonons
Ind jonized impurities, and that *» is described

¥ £ 4 Va
et = m T FH W ='-;{!1m:a:. (7

-~ The constant B in Egs. (5) and (7) allows
for the contribution of each of these mechanisms
and can be expressed in terms of the low-field
mobilities ua and I-'I of Eq. (5), which represent
the scattering solely by acoustic phonons or solely
by ionized impurities. It should be pointed out
that the anisotropy of the momentum relaxation
fime due to the scattering by impurities in n-type
Ge and n-type Si is of the order of the anisotropy
of the effective masses'® so that the effective field
method cannot be used when eeveml scattering
ﬁchanisms act simultaneously.® However, when
.one of these mechanisms predominates, which will
be the case of interest to us, an allowance for
“the anisotropy of =+ alters only the coefficients

in Eq. (1).

L The right-hand side of Eq. (3) allows for
prelaxation of the distribution function because of
the interaction of electrons with optical phonons,
whereas Ji(x) is equal, apart from a constant, to
the flux of electrons in the one-dimensional energy
space associated with this interaction:

§ kTVkT [ ! "
b (2) = E_.' u:n \n VAT E Ve 1) F3O (a4 2,) — NoF i (u)] da,
(8)
.f ‘ '(k T " o B LN
(r) = T T) kT ¥ =z}, STTo T=ET (9)

vhere N, is the equilibrium distribution function
of optical phonons; g(k,T)=(2n%,T)"/=*}* is the
‘density of states at € = k,T; 71.(k,T) = 1,(£3/23)
(k,T/2ms2) and =, (k, T}—\ 2 xhPpun,Wim™ (k,T)"  are
the characteristic Telaxation times of the electron
energy and of the optical phonon emission, respec-
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tively; p is the density of the investigated crystal.

In a fairly wide range of fields the penetra-
tion of electrons to the active range of energies
e > hw, is limited to a narrow interval Az < hu,,
so that we can quite accurately regard the fluxes
of Eq. (8) and the quantities of Eq. (9) as con-
stants *»* and assume that the boundary condition
for Eq. (3) is the approximate expression F(1)(x,) =
0 (Ref. 1).

Under these conditions we can use directly
the solution of the transport equation (3) obtained
in Ref. 1 for a single-valley isotropic semiconductor

exp If.“'lll} — 1, (z0)]

Figt (xy=Jyexp =1, () | gy o, (10)

¢ du
o= s
o

In Eq. (10) the expression J; = Jiexp[lj(x,)] rep-
resents the constant of integration, calculated from
the conditions of normalization of the distribution
functions Fsi) (x) to the electron density nj in each
of the valleys, which is given by

~.=¢z—=iv§*“-'»"<=w- (11
The density r;l is in its turn found from the condi-
tions of electrical neutrality and balance of inter-
valley transitions, which give®

lizu -.1‘ . (]2)
.i_l.?.
where tj is the time for the intervalley scattering
of an electron from a valley i to any other valley,
A is the number of valleys, and n is the total density

of electrons in a semiconductor.

The distribution function f3* in a valley i
depends only on the effective field &,. so that the
field dependences of the average energy £j and
of the drift velocities Vj in the valleys are the same
as in the case considered in Ref. 1. Therefore,
we shall consider only those effects which are
associated with the field dependences of tj. The
intervalley scattering time tj can be calculated from

Eq. {10)'

_L=.5 -——rgnmi;” =ik () d=,

(13)

where the frequencies of intervalley transitions
ri‘v’;(x) should allow for the contribution of the

scattering by phonons and by ionized impurities:

1 1 1 Ve—aiy, = ha iy

= =T+ =} — l}[—‘ﬁi‘“}- —-—-] ) e
id2) T () T ol () * ;u ":{éu AT

(14)

In the intervallegv transfer time due to scattering
by phonons 1 ‘D )(x) only the processes of the

scattering accompe.njed by the emission of a phonon
if:&’, " iv

of energy /wiy, are included; """:: W (k) . the
intervalley impurity scattering is assumed to be
characterized by a power-law dependence of -rf”

on x (Refs. 14 and 15) (1{,, is a constant de-
pendent on the impurity concentration and r is

a parameter).
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It is clear from Eq. (12) that the intervalley
population transfer is governed entirely by the
times 1j and the highest population is exhibited by
that valley for which 1j is longest. In fields such
that the condition Ij(x,) »1 is satisfied, this means
physically that the flux of Eq. (8) is small, that
the main contribution to the integral (10) comes
from the upper limit, and that integral is practically
constant. The distribution function then has the
form F{1) (x) = Cjexp[~1j(x)], where Cj is the inte-

gration constant, relabeled compared with Ref.

10. The effects associated with intervalley redis-
tribution in this range of fields were studied in
detail in Refs. 8 and 16. Here, 1§ rises exponen-
tially on increase in &, when the intervalley phonon
scattering predominates and this results in emptying
of the valleys with higher values of &, so that
inverse Sasaki effect is exhibited by the valley
populations.® If intervalley impurity scattering
takes place, it may predominate in weak fields,
giving rise to the anomalous Sasaki effect'® when
there are more electrons in a valley with a higher
value of &, When the field & is increased,

the anomalous Sasaki effect changes to the normal
effect and this occurs in fields which are still such
that the condition lj(x,) » 1 is obeyed.

In the range of fields where the condition
Iij(x,) » 1 is satisfied, the main dependence of
the distribution functions on the ene in Eq.
(10) is determined by the lower limit the integral
and these distributions are described by

"y

da

Fi ) =7, CIICERIN (15)

We shall consider separately two cases of pre-
dominance of specific mechanisms in the dissipation
of electron momentum.

a) The electron momentum relaxes by interaction
with acoustic phonons (B = X). It then follows
from the condition Ij(x,) =« 1 that 8, (r)=&i'z » |

and the distribution function in the range of ener-
gies of interest to us is independent of the field.*
According to Eq. (13) the field dependence tj for
a valley satisfying the condition Ij(x,) = 1 then
reaches saturation. This means that an increase
in the electric field weakens the intervalley distribu-
tion which occurs in the range of fields where
Ij(x,) > 1 and when all the fields satisfying the
condition Ij(x,) « 1 (i=1, 2, ..., 1), the re-
distribution ceases. Consequently, in this range
of fields the Sasaki effect affecting the redistribu-
tion between the valleys is no longer observed.
The average energy then also reaches saturation
and becomes ="y N,

b) We shall now consider the case when the
electron momentum is dissipated by ionized impuri-
ties (B » x,). In this case we have B, (x)={(8]/h)
and, in contrast to the preceding case, the condi-
tion Ij(x,) =« 1 does not imply that 6j(x) » 1is
obeyed. This is due to a reduction in 8§(x) on
increase in X and is the reason for the cooling
of carriers.! Calculation of the average energy
with the aid of Eq. (15) gives ¢ =(by Bz, /5=8)k,T,
i.e., this energy decreases on increase in the field
and such cooling of electrons begins earlier in a
valley with the highest effective field &, i.e.,
in the valley which is heated most strongly cooling
begins earlier than else where. In the case of
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1j it follows from Eqs. (13)-(15) that
1 2

=T e, (16)
i\rn “0
where
a' 1
. . ; "
c,_":‘-gg e =) (1=t — 1) de, P_m e .:f'_
]

In the calculation of Eq. (18) it is assumed that
r<?'/,. However, if r 2 '/,, when the correspondr
ing integrals diverge logarithmically or in accordance
with a power law so that to remove this divergence
it is necessary to allow for finite penetration of
electrons to the active range of energies or to use
the more correct dependence 1&”(:&) in the limit

It follows from Eq. (16) that if

x = 0.
< ir
T e
ivy

then =, ~ &, i.e., when the phonon mechanism

predominates in the intervalley scattering the popu-

lation of a valley with a higher field &, (which

is the valley that becomes cooler as a result of

the cooling process) is higher. Consequently,

if the condition Ij(x,) =« 1 is satisfied by all the

valleys, then the anomalous Sasaki effect applies

to the valley populations. It should be stressed

that in contrast to Ref. 16 this occurs in a dif-

ferent range of fields and for the phonon mechanism

of intervalley scattering (which is an important

qualification). In addition to Eq. (17), we can

expect the condition B > X to be obeyed, whereas

the strong inequality B » x, need not be obeyed.

If the impurity concentration is such that in the

range of energies ¢ ~ liwj, the acoustic momentum

scattering predominates, we still have 1j described

by Eq. (16), but with a somewhat different value

of a. The possibility that Eq. (17) is satisfied

is supported also by numerical results from Ref.

15.

(an

If the condition opposite to Eq. (17) is obeyed,
then = ~ & ¥ and therefore in the case of predomi-
nance of the impurity intervalley scattering the
valley with a high effective field is less populated
(normal Sasaki effect), whereas in an analogous
situation in the case of weak heating we have the
anomalous Sasaki effect.'® The physical reason

for this is the fact that a valley with a higher
effective field &, is colder, i.e., a form of in-
version of the valleys in respect of the degree

of heating and population takes place.

We have discussed the Sasaki effect only in
the case of intervalley redistribution of electrons.
If a sample is bounded in the transverse direction,
a Sasaki field E; appears in this direction and
it can be calculated from the absence of the total
current along this field. For the sake of simplicity,
we shall consider the appearance of the Sasaki
field in a two-valley semiconductor when the valleys
are oriented at 90° relative to one another and
their symmetry axis makes an angle of ¢ with the
direction of the applied external field F:.. Using
Egs. (1), (4), and (12), we find by analogy with
Ref. 8 that the Sasaki field E; is described by

b F eas K 1
E == ak g et FmpT

Tl alF sindy '

(18)

where a = (my — m;)/(my + m;) is the anisotropy
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arameter and K is the ratio of the products of
mobility in the valleys and the time of escape
m the valleys, which can be represented in the

v [y
2 dFi (x) |"‘5' ' T
j * - B dx dr; riJz: F§t) (z) d=

i‘ 2 dFD (x) II"-,-- h
= p 7z Fut (=) dz
PRy} dar /.‘i’ .iv{;.} i

i

‘The sign of the Sasaki field for a given orientation
of the valleys is governed by the sign of F. We
‘shall consider the specifie case &, > &,, and,there-
fore, we shall selcet y > 0 and label 1 the valley
which is characterized by ¢, = 45° + | and label

2 the valley which satisfies ¢, = 45° — ¢ [see Eq.
(].

In the case (a) if Ij(x,) « 1 (i =1, 2) the
(drift velocities in the valleys deduced from Egs.
(4) and (15) are proportional to the external field
Ex ("second" ohmic region':*), and it follows from
Egs. (18) and (19) that E; = 0. Consequently,

in this range of fields for any orientation of the

valleys there is no Sasaki effect in the intervalley

field, and a semiconductor can be regarded as iso-
‘tropic. An increase in the electric field causes
slectrons to penetrate deeply to the active range

of energies so that the above analysis is no longer
valid, but it is clear from gqualitative considerations
that the ordinary Sasaki effect appears in such
fields. Therefore, the dependences on the applied
field Ex have two extrema both in the case of the
redistribution of valleys and in the case of the
ransverse field E ;. The first extremum occurs

in the range of fields corresponding to the change
from the condition Ij(x,) > 1 to the opposite one
for the valley with the lowest effective field &,
whereas the second extremum occurs outside the
range of strong electric fields of interest to us
and it is discussed in Ref. 8.

In the case (b) the drift velocities of the
valleys reach saturation and the behavior of the
‘Sasaki field E; depends on whether the condition (17)
is obeyed. If it is obeyed, it then follows from
"Eq. (19) that K = 1 and E, = 0, i.e., in spite
of the anomalous intervalley redistribution, the
asaki field is absent for any orientation of the
valleys and this is true of a semiconductor with
‘an arbitrary number of valleys provided the valley
with the lowest effective field &,, satisfies not
y Eq. (17), but also the condition Ij(x,) < 1.

! When the condition opposite to Eq. (17) is
obeyed, it follows from Egs. (18) and (19) that
K=(8,/6)*** >1 and F = 1, i.e., the Sasaki field
differs from zero and its sign corresponds to the
‘normal effect (and this is true also of the popula-
‘tions of the valleys). It should be stressed that
the Sasaki effect is realized for intervalley impurity
_scattering, when the anomalous Sasaki effect applies
‘in weak fields,'® i.e., an increase in the field

EX on transition from Ij(x,) > 1to the opposite
‘case reverses the sign of E . It should also be
‘pointed out that when the intervalley scattering

‘is controlled by impurities the relationship between
lw, and he  is now of no importance.
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redistribution or in the appearance of the transverse

3. INELASTIC SCATTERING OF ELECTRONS
BY INTERVALLEY PHONONS

In type B semiconductors after inelastic scatter-
ing of a phonon of energy iw an electron is
transferred to a different valley and we now have
the case of an energy-dependent balance of the
valleys,® when such scattering must be included
in the transport Eg. (3). If in the balance between
the intervalley fluxes we allow only for the phonon
scattering, then the problem is of the kind dis-
cussed in Ref. 8, where is it shown that j; = j, =
const for all the valleys and if Ij(x,) < 1, then
the intervalley scattering time continues to decrease
on increase in the field, but now in accordance
with a power law (7, ~ &7%) and throughout the
range of fields in question the normal Sasaki effect
applies.

If the electron momentum is dissipated on
impurities, then the balance of the intervalley fluxes
should allow not only for the phonon mechanism,
but also for the intervalley impurity scattering.

This results in renormalization of the fluxes j; of
Egs. (3), (8), and (9), and we have jj # j,. On
the right-hand side of Eq. (3) we find that in the
case of the i-th valley we have the sum of arrivals
from the active regions of other valleys and instead

of Ji we must now write ;1 +  [this substitution

could also be made in Egs. (10) and (15)] and
the time of escape from the valley i is

£ k Ty 5

1 Y 1 S ’ Vol

W%-Lﬁ- Tj w T ’u.}fu]/j ahFE (2) dz, 0 90)
A i | O
k=1 |

where the constant Jj; governing the flux from

the active region of a valley i to the passive region
of a valley k are found form the conditions of
normalization and the intervalley balance. In par-
ticular, in the two-valley case (A = 2) we find from
Egs. (15) and (20) that

| 3 il . B . . '
—z[":—{rr+—.- . LE=L3 ek (2D
ivg
where
1 % 4
Lo . — b o2r=|
W= -‘rl.kur} — 3 B 2(.” aif|
ivyg

The second term in Eq. (21) is small compared

with the first since the intervalley impurity scatter-
ing is ignored in the transport equation and its
field dependence is the same as for type A semicon-
ductors [Eq. (16)]. A special feature of Eq. (21)
is that allowance for the impurity intervalley scatter-
ing renormalizes the intervalley phonon scattering
time vi/ vk). Therefore, in this case 1; also de-
creases on increase in &; and the allowance for
the impurity intervalley scattering reduces, accord-
ing to Eg. (21), the value of 7j. Since on in-
crease in &, the process of cooling increases the
number of electrons at low energies, this results

in a stronger dependence of t; on &,

We conclude by noting that in the cooling
case the time for the intervalley scattering by
impurities decreases on increase in &, (x, ~ &™),
and then the mobility obeys » ~ &', 1i.e., it
also decreases on increase in &;,. Therefore,
in the region of predominant impurity scattering
in some semiconductors we can expect the criterion
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(23.7) of Eq. (8) to be satisfied and multivalued
distributions of electrons between the valleys may
be realized, although it has been assumed earlier®
that they occur only in the case of the phonon
mechanism of intervalley scattering that ensures
a reduction in tj on increase in the field.
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