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It is shown that electron recombination and impact ionization with donors
give contribution to the intervalley scattering (IS) in many-valley semicon-
ductors. The IS probability (ISP) due to recombination coincides with the
phenomenological ISP which was previously introduced to explain
experimental results. The electron concentration n increases monotoni-
cally, when the electric field E increases, and it is practically independent
of the orientation of E relative to crystallographic axes in the range of
E<E,, where recombination gives the main contribution to the ISP. n
strongly depends on the orientation of E for £ > E, and the dependence
of n on £ may be even N-shape due to strong intervalley repopulation.

IN MANY-VALLEY SEMICONDUCTORS at low tem-
perature 7T, interaction with forbidden low energy
intervalley phonons gives an essential contribution to the
intervalley scattering (IS) [1—4] in addition to the
allowed high energy phonons [4,5]. The IS probability
(ISP) decreases exponentially as T decreases and is
strongly dependent on the electric field strength £ [1-4,
6,7]. This accounts for the divergence between calcu-
lated and measured current-voltage characteristics which
become very large for small £ when the current j is
parallel to [100] in n-Sifor T<45Kandjl [111] in
n-Ge for T<20K, where the calculated intervalley
repopulation steeply increases for infinitesimally smatll
E [2,3]. An additional E-independent ISP caused by
ionized impurities, 7', was introduced in the calcu-
lations of [6,7] to avoid this divergence and to explain
new experimental results on the multivalued electron
distribution in n-Si. The 75" was varied in the range
107 + 10% 5! to obtain agreement between theory and
experiment at 27 K. In paper [8] the probability W, of
the “elastic” process, in which an electron was
scattered directly between valeys by the donor-ion field,
was calculated. The W, was in good agreement with
experimental values [9] for As in Ge at 40-90K, but
for Sb in Ge it was small in comparison with experiment.
For n-Si the 75! is also sufficiently larger than W, for
ionized impurity concentrations realized in the experi-
ments [6, 7] (Np =N, ~(5-9)- 102 cm™3).

It is shown in this paper that recombination of the
electrons with positively charged donors in Si gives the
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contribution to the IS because the electron recombined
from one valley is thermally activated to any other
valley with equal probability. Without any parameter,
this new ISP coincides with 75' [6,7], in order of
magnitude. The impact ionization may also contribute
to the IS.

The variation of carrier concentration with the
electric field £ due to recombination and impact
ionization with the impurity were studied previously for
many-valley Ge and Si [10-12]. The quantitative
analysis was incomplete because the continuity equation
for a one-valley semiconductor was used [10—12]. Here
the many-valley semiconductors are studied and the con-
tinuity equation is applied for each valley separately
[5,10-12]:
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e is the electronic charge, j, and n, are the current
density and the electron concentration in the « valley
respectively, A is the number of valleys. 7, is the phonon
assisted IS time from valley « to valley 8 # o [13]. The
factors Ay, By 4 and A, denote the thermal ionization
of the donor, the recombination of the electron from
valley o with donors and impact ionization by the
primary electron from valley a. Np, N4 and n are
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concentration of the donors, acceptors and electrons:

A
n= 3 ng.
a=1

In equation (1) the Auger processes are not
included, and » will in the following be neglected when
compared with N4 and Np — N4, because only the low
temperature and pre-breakdown case is analysed, where
n<Ny, Np — N, . Thus the model can not describe the
impact-ionization-induced negative differential con-
ductivity S-shape (sigmoid) as it is treated, for instance,
in paper [14].

It is necessary also to stress that the thermal
ionization does not depend on electric field and upon
final state valley, i.e. the electron goes with equal
probability 4 (N, — N4 )/ into any valley.

The calculation of the probability of impact
ionization from neutral donors in many valley semi-
conductors has not previously been performed. This is
why the parameter y is introduced to combine in
equation (1) two possible ionization processes.

1.y =0. The primary electron from valley § ionizes
the secondary electron from a neutral donor with equal
probability, A; s(Np — N4 )ng/A, into any of the valleys.
The primary electron stays in the same valley § after
ionization.

2.v=1. For the secondary electron it is the same
as 1, but the primary electron leaves the primary valley
and after ionization it may be found with equal pro-
bability in any of the valleys. Variation of vy from 0 to 1
gives the opportunity to change the contribution of pro-
cesses 1 and 2. This parameter is unknown, but we can
say at least that there is no reason for y= 0 owing to
strong energy and momentum exchange between the
primary electron and the donor under ionization.

Summing over the a the equation (1) for all valleys
gives the continuity equation for the total current

° A-
i=Y ja-
a=1

In the steady and homogenous state

(2)

m 2
divj = divj, = — = 2e =

ot or )

the continuity equations become simpler. The equation
for the total current becomes the equation for the deter-
mination of the total concentration n (neglecting n <
Na, Np —Ny)

A
Ar(Np —Np) — Z [BygNa —ApgNp =Ny ng = 0.
g=1

(4)
And for each valley « we divide equation (4) by A and
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subtract from equation (1) which gives

A

Y aftinglth) =0, a=1+A—1, (5
B=1

where

Uty = 1rg + [BroNa + ¥4 (Np —NI/N. (6)

is an effective ISP (from valley & to another valley §
«). The effective ISP is a sum of the phonon assisted ISP,
the recombination and type 2 ionization probabilities.
(Note that to obtain an out-scattering probability (OSP)
from valley « it is necessary to multiply equation (6) by
A — 1, i.e. by the number of the valleys for IS).

Taking into account equation (2) it is easy to find
from equation (6) an ordinary solution [4, 5] for the
valley population:

A
ng = nryf ng N
g=1
Substituting (7) in (4) one obtains
n = Ap(Np —Na)/[BTNy —Ai(Np = NI, (8)
where
- A A
(AI:BT) = Z (AI,a:BT,a)na/n = Z
a=1 A «=1
X (A0 Bra)Tal Y. Ta - )
a=1

A} and B} depend on Ao and By, respectively in
each valley and on the intervalley redistribution (7, 9).

An ordinary Monte Carlo procedure [2, 3,6, 7, 15]
is used, and the ellipsoidal surface of constant energy in
each valley « are transformed into spheres and as a con-
sequence an effective electric field

by = E(mt/ml)l/3 1+ sin’ Ba(my _mt)/mt)m (10)

in valley o must be introduced [4, 7]. Here m; and m;
are the transverse and longitudinal effective masses, ¢, is
the angle between electric field E and longitudinal axes
of the valley o. Calculations are performed for n-Si (it
means that in the following calculations A =3 i.e. we
refer to two valleys on the same {1 00) axis as to one
valley and we consider g-scattering as an intra valley
one) at 27K with the same scattering parameters as in
[6, 7]1. By, and Ay, are calculated in addition to
[6,7]:

BT,oz =§U0Tfp,a/%:fp.a§f41,a = A\;vapr,a/gfp,a-
1n

Here f, o is the distribution function of the electrons in
valley a, the prime denotes that summation is restricted
to states p with an energy e greater than jonization
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Fig. 1. Dependence of the probability of scattering from
valley a due to emission of high energy phonons 1/7,
(1), emission and adsorbtion of low energy phonons
1/r, (2), of the recombination Bra 10 em™ (3)
and the ionization A;,-5.5-10%cm™ (1) pro-
babilities and of the effective probability of out
scattering from valley a, 2/T§, for Ny =4-102 cm™
(4), 410 cm™ (5),4 - 10 cm™ (6) on the effective
electric field £, in valley a in n-Si at 27 K.

energy €;. An ordinary expression for o (e(p)) [16] and
or{e(p)) [17] as in one valley isotropic semiconductors
were used in each valley owing to the above mentioned
transformation,

The calculated dependence of the OSP from valley
o, 1/7;, on the effective electric field £, is shown in
Fig. 1 for high energy (hiw; = 545 K) phonons (curve 1),
and also for low energy (hw, = 210K) phonons, 1/7,
(curve 2). 1/7, sharply increases when E,, increases. The
dependence of By, on E, is also shown in Fig. 1
(curve 3). It decreases one order of magnitude as F,
varies from 0 to 100 Vem™ and by an additional factor
of three as E, varies from 100 to 1000Vcem™. It is
accepted that for £, >0 Br,=6-10"° cm®s™ in
accordance with [10, 16, 18}.

Let us discuss the dependence of 4;, on E,. It is
well known that for €;/kpT> 1 A; depends mainly on
€r/kgT and E, but not on the detailed dependence of o7
on € [17]. This was checked in our calculation in the
following manner. The ionization energy €; of shallow
donors in Si is close to the energy hw; = 545K of the
high energy intervalley phonon [19], we took €; = hw,
and performed calculations for

op = oo(e/er — 1)/(ele)**
(from [17]) and for

or = 00(2/m*%) - (ele; — 1)*,
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when the energy dependence of the integrand for 4, ,
(10) is the same as for the emission of hew, phonons.
(Note that the normalization factor 2/7%° is introduced
in order to have the same A;, for both cases as £~ 0).

In both cases the dependences of Ay, on E,, are the
same. The probability of the impact ionization varies as
Np — N4 varies and the dependence of this probability
on F, coincides exactly with that of 1/7, on E, for
Np —~N4=55-10%cm™ (we chose o, =9.645-
107" ¢cm? in accordance with [17]). This means that
the dependence of Ay, + 5.5 - 10'® cm® on E,, is defined
by curve 1 (Fig. 1) of the dependence of 1/r, on £,.
For the Si samples used in [6, 7] (Np —N4 ~5- 10"
cm™> —5-10 ecm™) the contribution of impact
ionization to the effective ISP (6) is small, but in Ge,
where €7 is up to three times less [19] than the energy
of the high energy intervalley phonons (hw = 320K),
this new mechanism may give larger contribution to
1/72 (6) than the emission of high energy phonons.

Curves 46 in Fig. 1 show the dependence of the
effective OSP, 2/7s, on E for three different concen-
trations of the ionized donors (N =N,): 4-
102 em™,4-108 em™ and 4- 10" em™@ . Up to E, =
E, (E.,~=20Vem™ for Ny =4-10% ¢cm™ and E, ~
50Vem™! for Ny =4+ 10" em™) recombination is the
main contribution to the effective OSP (6).

We have discussed dependences of By, 47, and
74 on E, in the valley . Equation (10) then gives the
dependence of E, on the value and the orientation of
the electric field E with respect to the crystallographic
axes. This means that for any given E, we may find the
effective field £, and consequently By, 414, T ete.
in each valley «. There are some common features which
do not depend on the orientation of E in crystal.

If we chose an electric field £ such that in each
valley £, <E,, equation (6) gives 1/7a = Br o N/X\. The
products By, ¢ 74 =N, do not depend on « in the
numerator of equation {9). This means that all valleys
give an equal contribution to B for any orientation of
E. (It is the same with AF for the opposite case when
Eo>E, and 1/7) = 1/7 = Ay - const.) If Np —N,
exceeds V4 by no more than factor of about 10, the
contribution of the impact ionization in equation (8)
may be neglected at least up to 600V cm™'. (This is
easily seen in Fig. 1 from the dependences of By, and
Aro on E,, because intersection of the curve A}
(Np —Ny4) on E with the curve BN, on £ determines
the impact ionization threshold field). In this case B7(E)
determines the dependence of n (8) on E, which is given
in Fig. 2 (for Ny =4-10% cm™, 4-10” em™ and
410" ecm™ and for three directions of the current: j ||
[111], [100] and [110}). The E,, 1/} and valley
population n, are the same in all three valleys for j ||
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Fig. 2. Dependence of the concentration n on E, (a), and
the dependence of the current on £, (b and ¢), in (b) the
E dependence of n was taken into account while in (c) it
was neglected: J || [111] (1), [100] (2, 3,4), [110]
(5, 6, 7) and different Ny: Ny =4+ 102 cm™3 (2, 5),
4108 (3, 6), 4-10¥cm™ (4, 7). Dashed curve
demonstrates Ohmic behaviour. n-Si, T= 27K.

[111] for reasons of symmetry.T) The electron concen-
tration n increases monotonically, as F increases. In the
case j || [100] an effective field £; (10) in one valley
(¢ =0) is smaller than £, = F3 in the other two (¢ =
-m/2), i.e. there are one cold valley and two hot valleys.
Strong repopulation of electrons from the two hot
valleys in the cold one is realized owing to the pro-
nounced dependence of 1/75 on E, (see Fig. 1). when
E, 3 reaches £, with increasing E. The rate of increase
ol n with E (Fig. 2) is essentially slower in comparison
with the case j [| [111], because By, in the cold valley
is larger than in the hot one (Fig. 1). The N-shape
dependence of #n on E' is found for j || [110] (curves
5, 6, 7 in Fig. 2), where the intervalley repopulation
varies more sharply with £ than forj |l [100] [4, 6, 7].
Intervalley repopulation to the cold valley causes
N-type negative differential conductivity (N-ndc), which

T We did not discuss here the “loop” solutions which are
possible (for detail discussion see in papers [4, 7], in
addition to the equal population of the valleys treated
here.
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has been studied previously [2, 4, 6, 7]. The £ depen-
dence of # was not taken into account in theoretical
discussion, i.e. the current-voltage characteristics were
taken as shown in Fig. 2c. The dependence of j on F
changes from sub-Ohmic (Fig. 2¢) to super-Ohmic when
recombination is taken into account. The V-ndc is more
pronounced for j || [110], where the dependence of n
on £ has also N-shape. On the contrary N-ndc decrease
and may even disappear for j || [100] because the
monotonically increase of n with £.

The proposed “anomalous” Sasaki effect [20] must
occur when E is such that £, <E,. That is, a transverse
electric field in the opposite direction, as compared with
the normally studied case (i.e. 1/75 increasing with £,),
arises if the current does not coincide with the crystal-
lographic axes. It is caused by the predominant
population of the hot valley in the range of £, values
where 1/75 decreases with E,.
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