Peculiarities of Reverse Current–Voltage Characteristics of GaAs Lo–Hi–Lo Impatt Diodes

By

V. M. Ivastchenko, R. V. Konakova, and V. V. Mitin

In the current–voltage (I–V) characteristics of Schottky-barrier GaAs diodes having a complex doping profile in the base regions of n–n′–n type a strong current–voltage dependence is observed in the prebreakdown region. Breaks are found to appear in these regions when with increasing V a sharp decrease of the differential conductivity dI/dV at a certain V = Vc occurs. The tunnel currents in such structures are calculated. It is shown that the sharpest dI/dV decrease is caused by the spiking of the highly doped n′-region, while the transition from the thermofield tunneling (maximum contribution to tunnelling current caused by carriers with an energy above the Fermi level in the metal) to the field tunneling (current maximum caused by carriers with an energy at the Fermi level) yields a less sharp change in dI/dV. The higher the concentration in the n′-region, the greater are the tunnel currents. The greater the doping differences in the n′- and n-regions the more distinct are the breaks. The dependences of Vc and the I–V-characteristics on doping strength and thickness of each of the regions of the n–n′–n diode are determined.

1. Introduction

When measuring the reverse I–V characteristics of the Schottky-barrier Lo–Hi–Lo diode regions were observed with a strong current (I)–voltage (V) dependence in the prebreakdown region. Breaks were found to appear in these region when with increasing V there occurs a sharp decrease of the differential conductivity dI/dV at V = Vc. Usually it is assumed that the field currents in highly doped homogeneous Schottky diodes are caused by electron tunneling from the metal into the semiconductor (see, for example, [1, 2]). Analogous models were used for the Hi–Lo structures in [3]. We calculated the tunnel currents for the Lo–Hi–Lo structures in order to investigate if the observed peculiarities in the “field” regions of reverse I–V characteristics can be explained in the framework of this model. The general expression for the tunnel current

1) Prospekt Nauki 117, 252028 Kiev, USSR.
density obtained in the quasi-classical approach was used (see, for example, [2])

\[j = -A \frac{E_z}{q} \int D \, dE_z, \quad D = \ln \left(B \cdot \exp \left(-x \int \frac{x}{x_n} \frac{U(x)}{U^2} - E_x \, dx \right) \right), \]

(1)

where

\[A = \frac{4\pi m_e k_B T}{\hbar^3}, \quad \alpha = 2 \sqrt{2m_e}, \quad B = \frac{1 + \exp \left[(v_m - E_x)/k_B T \right]}{1 + \exp \left[(v_m - U_m)/k_B T \right]} \]

(2)

\[m_m \] and \(m_e \) are the electron effective masses in metal and semiconductor, respectively, \(T \) is the temperature, \(k_B \) the Boltzmann constant, \(E_1 = A + v_m - U_m \) at \(U_n < A + v_m \) and \(E_1 = 0 \) at \(U_n > A + v_m \), \(E_2 = U_m = eV_a + A + v_m \) is the kinetic energy of the electron in x-direction, \(V(x) \) the potential energy in point \(x \). The potential

\[\Phi_0(x) = \frac{U(x) - v_m - A + eV}{k_B T} \]

(3)

which is used below, is selected in such a way that it vanishes far in the bulk of the semiconductor and reaches its maximum \(\Phi_0 = e(V_a + V)/k_B T \) near the metal-semiconductor interface. The notation of \(v_m, U_a, U_m, A \) are seen from Fig. 1a, \(x_1 \) and \(x_2 \) being classic turning points.

2. Numerical Calculations

By means of numerical integration we calculated the dependence of the current density \(j \) on the applied reverse bias \(V \) for four temperatures \(T = 300, 225, 150, 75 \) K in the Lo–Hi–Lo GaAs Schottky diodes \((m_e = 0.067m_e, m_o \) is the free electron mass). The \(V(x) \) dependence necessary for the calculation of current from (1) was determined for the Lo–Hi–Lo structures given in Fig. 1a from the Poisson equation, the image forces being neglected. The results of the calculations are given in the Appendix.

The following parameters of the Schottky diodes were chosen: \(eV_a = 0.9 \) eV; \(v_m = 0.1 \) eV; \(A = 0.01 \) eV. Doping in each of n and p regions was accepted to be uniform with \(N_1 = N_2 = 2 \times 10^{15} \text{ cm}^{-3}, N_3 = 5 \times 10^{16} \text{ cm}^{-3} \), the boundaries between the regions were sharply pointed (Fig. 1b). The thickness of the second LO region \(\delta d_2 \) was selected to be large in order to prevent spiking of the structure in the whole range of the bias \(V = 1 \) to 50 V, i.e., the width of the depletion region was less than the thickness of the semiconductor \(d_o \) (Fig. 1). The thickness of regions 1 and 2 were varied and

Fig. 1. a) The potential energy of the electron in the Schottky barrier as a function of \(x \) at reverse bias and b) the dependence of the donor concentration \(N \) on the coordinate \(x \) in the Lo–Hi–Lo structure.
the currents were calculated for 15 structures from the sets \(d_1 = 0.05, 0.12, 0.25, 0.5 \mu m \) and \(d_2 = 0.12, 0.25, 0.5 \mu m \). Note that the thickness and the doping of the first regions are chosen in such a way that the region is spiked before the bias is applied. The electrons with energy states lying deeply under the Fermi level of the metal do not contribute to the tunnel current. In order to avoid the integration over the region which does not contribute to (1), the value of \(\tau_{\infty} \) was selected one order of magnitude smaller than the real \(\tau_{\infty} \) for the metals. The validity of such a substitution for the investigations performed is seen from Fig. 3 discussed below.

3. Results and Their Discussion

Fig. 2 presents the calculated dependences \(j(V) \). It is seen that the curves belonging to one and the same temperature for structures with the same \(\Delta d_1 \) are grouped very distinctly, but the dependence on the thickness \(d_1 \) is expressed less weakly. The influence of the latter is increased with the decrease of \(T \) and \(V \).

Another typical feature is the break in the \(I-V \) characteristics, caused by the spiking of the Hi region. At \(V < V_s(j_s) \) the Hi region is not spiked and due to the high doping of this region the small \(V \) increases result in the strong narrowing of the barrier width. At \(V > V_s(j_s) \) the voltage drops mainly on the second Lo region, with \(V \) growing the barrier is weakly narrowing. Because of this fact at \(V = V_s(j_s) \) the differential conductivity sharply decreases. The break is shown in Fig. 2 by arrows, and for a given temperature it occurs at one and the same current \(j_s \) in diodes with identical dimensions of the Hi region and different \(d_1 \), i.e. \(d_1 \) does not affect the value of \(j_s \). The spiking of the second region occurs, when \(\Phi_0 \) becomes equal to the expression on the right-hand side of the inequality (3.3), i.e.

\[
\Phi_0 = \Phi_0(2) = \frac{d_1^2}{2d_1} + \frac{d_2^2}{2d_2} - \frac{d_1^2}{d_2}.
\]

![Graph](image-url)

Fig. 2. The dependence of the tunnel current \(j \) on the reverse bias \(V \) for the Lo–Hi–Lo structure with \(N_1 = N_2 = 2 \times 10^{19} \text{ cm}^{-3} \), \(N_3 = 5 \times 10^{19} \text{ cm}^{-3} \), a) \(d_1 = 0.5 \mu m \), b) \(d_1 = 0.25 \mu m \) and c) \(N_1 = N_2 = 5 \times 10^{19} \text{ cm}^{-3}, N_3 = 1 \times 10^{17} \text{ cm}^{-3}, d_1 = 0.25 \mu m \) for various values of \(d_2 = 0.5 \mu m \) and \(-0.05 \mu m \).
In order to determine the difference of the potentials between point \(x = 0 \) and any other point \(x < d_1 \) belonging to the first region, we combine (4) and (A.9) with the assumption \(d = d_2 \) and obtain

\[
\Delta \Phi = \Phi_0 - \Phi(x) = x \left[\frac{\Delta d_2 + d_1 - x/2}{l_2^2} \right].
\]

(5)

From (5) it can be seen that at

\[
\Delta d_2 \gg \left(\frac{1}{l_1^2} \right)^2 d_1
\]

(6)

the second term in brackets is not essential and the change of the potential within the first Lo region is determined only by the parameters of the Hi region. Differentiating (A.9) with respect to \(x \) we see that if inequality (6) is fulfilled, the electric field in the first Lo region is homogeneous and does not depend on the parameters of this region. On the other hand, if \(d_1 \ll \Delta d_2 \), inequality (6) in the Lo-Hi-Lo structures is fulfilled because \((l_1/l_2)^2 = N_1/N_2 \ll 1 \). Since under the condition (6) the change of the potential \(\Phi(x) \) for structures with the same \(\Delta d_2 \) but different \(d_1 \) is identical, the tunnel currents \(j_1 \) through these structures are also identical, because they are determined by the potential barrier width which depends on \(\Phi(x) \) only.

From (4) it is seen that \(\Phi_0(2) \sim 1/k_0 T \) and the spiking voltage \(V_s \) of the Hi region does not depend on the temperature as presented in Fig. 2. Decreasing the Hi region thickness the current decrease is stronger the lower the temperature and the applied voltage.

Usually [1 to 5] from (1) one obtains the analytical expressions for \(j(V) \) by expansion of the exponent of (1) in powers of \((E_x - E_m) \),

\[
x \int \frac{U(x) - E_x}{E_m - E_x} \, dx = b_1 + c_1(E_m - E_a) + f_1(E_m - E_x)^2.
\]

(7)

The following two types of tunneling are distinguished [1 to 5]:

1. Field emission (FE), which is realized at low temperatures or high voltages, when the electrons tunneling near the Fermi level (see Fig. 1, a) contribute mainly to (1) and \(E_m \) in (7) is replaced by \(E_m \).

2. Thermofield emission (TFE) which is realized at high temperatures and small bias when the current is determined mainly by the electrons with energy \(E_m \) (see Fig. 1a) which is greater than the Fermi energy but less than the barrier height. Note that \(E_m \) is determined from the condition

\[
c_1(E_m) k_0 T = 1.
\]

(8)

In (7) and (8) \(b_1, c_1, f_1 \) are coefficients of the Taylor expansion. Substituting \(U(x) \) from Appendix into (7) one obtains \(j(V) \) for FE and TFE, however, it is not convenient to use these expressions because of two reasons:

1. There is a wide range of temperatures and fields where there occurs a sufficiently smooth change from TFE to FE and the expressions valid for TFE and FE cannot be applied.

2. The dependences of \(D \) on \(E_x \), as seen from Fig. 3, are smooth especially for the case of TFE. Because of this the formulae for FE and TFE deliver only a characteristic behaviour of the \(j(V) \) dependence and essentially diminish the values of \(j \). The accuracy of these formulae increases with decreasing temperature and growing \(V \) when \(D(E) \) becomes more and more narrowed (Fig. 3).
Reverse Current-Voltage Characteristics of GaAs Lo-Hi-Lo Impatt Diodes

Fig. 3. The dependence of D on the energy E_x for various values of the reverse bias V in the structure with $N_1 = N_2 = 2 \times 10^{15}$ cm$^{-2}$, $N_x = 5 \times 10^{16}$ cm$^{-2}$, $\lambda d = 0.25$ µm, $d_1 = 0.25$ µm; $V = 10$ V, 30 V, 50 V.

Nevertheless, the concepts of FE and TFE remain useful even in cases when (7) is not justified. At 300 K in all cases considered TFE is realized, at 77 K FE. Fig. 3 presents the shift of the maximum on the $D(E_x)$ dependence towards small energies with increasing V and decreasing T. At 100 and 125 K with growing V there occurs a TFE to FE transition which is also demonstrated in Fig. 3. The values of V (at which such a transition occurs) are obtained from (9) and the formulae of the Appendix if in (8) E_m is taken to be E_m and from the analysis of the dependences of Fig. 3 coincide. It should be stressed that at the transition from TFE to FE there occurs a decrease of dJ/dV because in TFE the current decreases with V growing due to both barrier narrowing and decreasing E_m. In the case of FE only the first reason remains.

The above-mentioned peculiarities on $I-V$ characteristics caused by Hi region spiking or by TFE to FE transition are common to all Lo-Hi-Lo structures. Only the voltage, at which these peculiarities are observed, differs for different structures. The $I-V$ characteristics for a structure with high doping ($N_1 = N_2 = 5 \times 10^{16}$ cm$^{-3}$ and $N_x = 10^{15}$ cm$^{-3}$) are illustrated in Fig. 2. There is still one more peculiarity observed for these structures — the high sensitivity of the current magnitude with respect to the barrier height. The decrease of the chosen value $\epsilon V_0 = 0.9$ eV to 0.8 and 0.7 eV leads to a great current decrease (see Fig. 4).

Experimental investigations of the field currents in Lo-Hi-Lo Schottky diodes were carried out by Konakova et al. In this paper we do not give a detailed comparison with the experimental results which will be published by Konakova later, but here we only indicate the fact of the qualitative agreement between the calculated and experimental $I-V$ characteristics.

Fig. 4. The dependence of the tunnel current on the reverse bias V for the same structure as in Fig. 2a and $d_1 = 0.05$ µm for various values of ϵV_0: \cdots 0.7 eV; \cdots 0.8 eV; \cdots 0.9 eV.

44 physica (a) 51:2
Appendix

The dependence $\Phi(x)$ (3) for a Lo-Hi-Lo structure is determined from the Possion equation

$$\frac{d^2 \Phi}{dx^2} = \frac{4\pi \varepsilon^2}{\varepsilon k_0 T} N(x).$$ \hspace{2cm} (A1)

The boundary conditions are the value of the potential $\Phi(x)$ at $x = 0$ and a zero potential the boundary of the depletion region $x = d$,

$$\Phi_{x=d} = 0; \quad \Phi_0 = \Phi_{x=0} = \frac{\varepsilon(V + V_0)}{k_0 T}.$$ \hspace{2cm} (A2)

The extension of the depletion region d in (A2) is not known. It is determined from the condition of a zero electric field at $x = d$,

$$\frac{d\Phi}{dx} \bigg|_{x=d} = 0.$$ \hspace{2cm} (A3)

Considering that $N(x)$ is changed with x step-wise (Fig. 1 b) we obtained four different cases in dependence on the region which is spiked, i.e. on the relation between d and d_1, d_2, d_3.

1. At small voltages, when

$$\Phi_0 < \frac{d_1^0}{2l_1^0}$$ \hspace{2cm} (A4)

and even the first Lo region is not spiked ($d < d_1$) we have the usual dependence

$$\Phi(x) = \frac{(x - d)^2}{2l_1^0},$$ \hspace{2cm} (A5)

where

$$d = n_1 \sqrt{2\Phi_0}$$ \hspace{2cm} (A6)

is the extension of the depletion region, and the determination of the Debye lengths in each of the layers is

$$l_i = \sqrt{\frac{\varepsilon k_0 T}{4\pi \varepsilon^2 N_i}}$$ \hspace{2cm} (A7)

for all cases, with ε denoting the dielectric constant.

2. If only the first region is spiked,

$$\frac{d_1^2}{2l_1^2} < \Phi_0 < \frac{d_2^2}{2l_2^2} + \frac{d_1(l_2^2 - l_1^2)}{2l_1^2 l_2^2},$$ \hspace{2cm} (A8)

then in the first region $x < d_1$ we have

$$\Phi(x) = \frac{(x - d_1)^2}{2l_1^0} + \frac{(d - d_1)(d + d_1 - 2x)}{2l_2^0}$$ \hspace{2cm} (A9)

and in the second region at $d_1 < x < d_2$ (A5) may be used if we replace l_1^0 for l_2^0. Here

$$d = l_2 \sqrt{\frac{2}{\Phi_0 - \frac{d_1^2(l_2^2 - l_1^2)}{2l_1^0 l_2^0}}}; \quad d_1 < d < d_2.$$ \hspace{2cm} (A10)
3. If the second region is spiked

\[\frac{d_2^3}{2l_2^4} + \frac{d_1^2(l_3^3 - l_1^3)}{2l_3^4} < \phi_0 < \frac{d_3^3}{2l_3^4} + \frac{d_2^2(l_3^3 - l_2^3)}{2l_3^4} + \frac{d_1^2(l_3^3 - l_1^3)}{2l_3^4}, \]

(A11)

then at \(x < d_1 \)

\[\phi(x) = \frac{\big(x - d_1 \big)^2}{2l_1^4} + \frac{(d_2 - d_1)(d_2 + d_1 - 2x)}{2l_2^4} + \frac{(d - d_2)(d + d_2 - 2x)}{2l_3^4}, \]

(A12)

at \(d_1 < x < d_2 \) (A9) may be used, if we replace \(l_1 \) for \(l_2 \); \(d_1 \) for \(d_2 \); \(l_2 \) for \(l_3 \) and at \(d_2 < x < d - (A5) \) if we replace \(l_1 \) for \(l_3 \). Here \(d_2 < d < d_3 \) and

\[d = l_3 \sqrt{\frac{2}{\phi_0} \left[\frac{d_1^2(l_3^3 - l_1^3)}{2l_3^4} \frac{d_2^2(l_3^3 - l_2^3)}{2l_3^4} \right]}, \]

(A13)

4. If \(\phi_0 \) exceeds the value of the right-hand side of inequality (A11) the whole sample is spiked \((d = d_3) \) and for \(x = d \) the electric field is not equal to zero as for \(d < d_2 \). In this case condition (A3) is replaced by \(d = d_3 \) and the value of the field at \(x = d_3 \) depends on \(\phi_0 \). For \(\phi(x) \) we have

\[\phi(x) = \phi_0 + Cx + \frac{x^2}{2l_1^4} \quad \text{at} \quad x < d_1, \]

(A14)

\[\phi(x) = \phi_0 + Cx + \frac{(x - d_1)^2}{2l_2^4} + \frac{2d_1x - d_1^2}{2l_1^4} \quad \text{at} \quad d_1 < x < d_2, \]

(A15)

\[\phi(x) = \phi_0 + Cx + \frac{(x - d_2)^2}{2l_3^4} + \frac{(d_3 - d_1)(2x - d_4) - d_1(2x - d_4)}{2l_3^4} + \frac{d_1(2x - d_4)}{2l_1^4} \quad \text{at} \quad d_2 < x < d_3, \]

(A16)

where \(C \) is a value proportional to the field at \(x = 0 \)

\[C = \frac{1}{d_3} \left\{ -\phi_0 - \frac{(d_3 - d_2)^2}{2l_3^4} - \frac{(d_2 - d_1)(2d_3 - d_4 - d_2)}{2l_3^4} - \frac{d_1(2d_3 - d_4)}{2l_1^4} \right\}. \]

References

(Received December 2, 1983)