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Galvanomagnetic Effects in Semiconductors of p-Ge Type

By
V. M. IvasaciieNigo, V. V. Mrrin, and N. A. ZAKALENTUK

Tt is shown that the rate equations for the light and heavy hole distribution functions in p-Ge can
be solved analytically using the real anisotropic dispersion law since for acoustic lattice scattering
the collision terms can be described by the isotropic relaxation time depending only on the energy
of holes, which is proved by numerical computations. The even Hall effect, the transverse and
longitudinal magnetoresistance (MR) as a function of the current and the magnetic field orientation
with respect to the crystallographic axes in non heating clectric fields £ as well as the transverse
v 1 and longitudinal y)| anisotropy of conduectivity arising in the heating fields, and the MR linear
in the magnetic field arc calculated. The linear MR is determined largely by light holes (without
these or with their isotropic spectrum the MR would have the reverse sign for the same direction
of the magnetic field). The relative contributions of heavy holes toy | andyj are nearly half of thatin
the earlier approximate calculations. The cven Hall effect, the longitudial MR, and the anisotropy
of the transverse MR are almost entirely due to the anisotropy of the heavy hole dispersion law.

TTorasano, 4YTO KHHeTHUeCKHe YpaBHeHUH NJIA QYHRUHII pacnpenelieHUA JeTKUX U
TAMKENBIX ABIPOK B p-Ge MOIYT OLITh pellleHbl aHaNUTUIeCKHE ¢ PeajbHbIM aHU30TDOIHBIM
3aKOHOM JIUICLIePCUH, IIOTOMY UTO IIPHM PACCEsIUN Ha AaKyCTHUeCKNX KoJIe0aHNAX PeleTHI
CTOJIRHOBHUTENbHbIE UJIeHbl MOTYT OBIThL OIIMCAIIBL M3OTPOIHBIM BpeMCHEM peJlaKcalyn,
3aBUCAINAM TOJbKO OT dHEPTUH IHIPOK, YTO OLWIO JJOKA3amo pacyetaMu Ha DBM. Buramce-
TeHs! YeTHEH adleRT Xoada, 3aBHCAMOCTE ITOMePeTHOI0 U MPOOIIhIIOT0 MATHATOCOIIPO-
TuBIeHHA (MC) 0T opHeNTAIIMM TOKAa M MardnuTHOTO IOJA OTUHOCHTENhHO KPUCTAIIIO-
rpaudaecKuX ocell B HeTrPeioHMX HICKTPUUECKUX II0NHX F, a raKike BO3HUKAOIHE B
Tpelomux. IMOJAX fioliepeuHad | W TpOAoJbHAH y|) AHH30TPONHUA IPOBOAUMOCTH W
smHeliHoe 110 MarHuTHoMy 1o MC. /IuncitHoe MC olpejensercs B OCHORHOM JeTKUMI
ABIpKaM# (OIpH UX OTCYTCTBUU MJIM IIPY M30TPONHOM HX clerTpe MC umMmesnao Ovl NpoTH-
BONIOJIOWRHBII 3HAK [JIsl TOTO e HaUPABJIEHHWs MATHHTHOTO Hods). OTHOCHTENBHBIT
BHIA] TAMKENBIX [IBIPOK B ¥ | U || YMEHbIUMJICA IPAKTHIECKH B IBA Pasa 110 CPaBHEHMIO
¢ OpUGIHKeIHBIMUA pacyeTaMt, BHIIIONTHEIIHBIMI PaHee, IIpU 3TOM (oJlee, yeM B ABa pasa
YMEHBOIATCA W caM# | U y||. Yernsiil sddent Xonna, npogoasuoe MC n anusoTponnia
mornepednoro MC IIpakTHYeCRH HOJHOCTLIO 00y CJA0BJCHB AHW30TPONell 3aKoHA [UcllepCUun
TAMCILIX XBIPOK.

1. Introduetion

In semiconductors of p-Ge type the light and heavy hole bands are degenerate at
L = 0 (k is the wave vector) and warped [1], therefore, they exhibit a variety of
effects not found in semiconductors with an isotropic dispersion law (k). For the non-
heating electric field the transverse magnetoresistence (MR) depends on the orienta-
tion of electric £ and magnetic H field with respect to the crystallographic axes [2],
the Jongitudinal MR, even Hall effect [3, 4], longitudinal Hall effect [5], ete. were
observed. Transverse and longitudinal anisotropy of conductivity [6, 7] and MR linear
in magnetic field [8, 9] arise in a heating electric field.

1) Prospekt Nauki 115, 252650 Kiev 28, USSR.
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The anisotropic kinetic effects were calculated either numerically [10], using an
exact digpersion law for heavy holes and an isotropic one for light holes, or analytically
[53, 11 to 13] with approximate e(k), when e(R) is

h2k? , .
eillk) = Q. Oi=1A]+ (1),
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and M is expanded in powers of O3 k¥k3/k* — %) which essentially simplifies all

x> f
calculations, In [5] % = 1/6, and in [11 to 13} = 1/5.In (1) 4, B, C are the band par-
ameters [1], 7 = 1 for light holes and 7 = 2 for heavy holes, o, f = 1, 2, 3 coincide
with the (100} crystal axes, m, is the free electron mass. The isotropic approximation
is obtained from (1) when % = 1/5, dropping CX( Y, k3A5/k* — x).

&>

The expressions for the kinetic cocfficients involve the derivatives 0"e;(k)/0ky. It is
not difficult to see that the discrepancy between the derivatives calculated by the
exact equation (1) and the approximate [5, 11 to 13] laws g;(k} increases with increas-
ing #, reaching 509, when 7 = 2 for some directions of k even at n = 2, provided for
» = 1/5 only the two first expansion terms are retained. Therefore, it is of interest to
calculate the galvanomagnetic effects using the exact dispersion law (1), and the com-
parison of the results obtained with the approximate calculations will enable us to
determine their validity range.

2. Rate Equations

In order to calculate the galvanomagunetic coefficients it is necessary to solve the set
of rate equations for the hole distribution function (‘7;:)

1 -
e ( E [,,,.m) Vs = X8 WainTs = WaiwsTs) (2)
' j=1p

where ©; = Vpei, Wy pi are the charge carrier transition probability from the state
with the quasimomentum p’ of the j-th band to the state p of the i-th band. We con-
sider semiconductors with predominant acoustic scattering. W, »i for this case are
obtained in {1]. The current density in each of the bands is expressed as usual through
Jg), which are normalized to the hole concentration .

. 2 )
i =eX 0Ty, P=3 NI, (3)
P i=1p '

Let us represent JS)

) _ g0 e o D
(TI‘ - jo + Z Z ]leEer 5 (4)

r=1m=0
where F§ = > :F,‘,") S(e — £p)/ 3 3(s — &p) is the symmetric part of the distribution

p »
function dependent only on energy. The terms of higher order in # and H will not be
considered here, since we examine only three particular cases: non-heating E and
weak H (Section 3), arbitrary heating £ at Il = 0 (Section 4), magnetoresistance
linear in the magnetic field in heating electric fields (Section 5). It is necessary to
emphasize that equations (4) are not expansions in powers of E but they are valid for
arbitrary electric field when quasi-elastic mechanisms of scattering are predominant
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as take place here (i.e. J((f)(e) are dependent on £ and (4) are expansions in powers of
va/v, << 1, where vy is the drift velocity due to the electric field £, and #, is the mean
random velocity).

3. Non-Heating Electric Field

Here fg)(s) = fole) coincides with the equilibrium Boltzmann distribution function
and it is necessary to find f(f(;, ‘1"]’_, §’§ For the light holes we neglect in the right-hand
side of (2) the terms describing an arrival from the first and the second bands, and for
the heavy holes, the terms describing an arrival from the first band. Such an approach

will be proved below after calculating Q?-;,’-) (for similar arguments for the isotropic
&(k), see [14]). Then for » = 1 we have the trivial solution

1 = ~ 1 € ~ = 1 =~
fid = cEvORSRT, fi= = BT Upfia,  (m=1,2), (5)
- . 2 B
where ¢ = H/H, & = E[E, 1/T, = %, 3, Wy p;. The relaxation times 7, were cal-
j=1p’

culated numerically using the deformation potential constants from [15] (for p-Ge

a= —26,0= —18,d= —3.Tandforp-Sia = —3,0 = —2.4,d = —5.3) and the
band parameters from [1] (for p-Ge 4 = 13.27, B = —8.63, (' =124 and for
p-Si 4 =428, B= —0.75, C = 5.25). It was found that 7; is weakly dcpendent on

the direction of p as compared with »® and the other p-dependent functions entering
(5). Therefore, 7, = 14 [/rkoflj/g1 is a good approximation. For the heavy holes, the time

2
describing a departure of carriers from the p state 1/7,= 3, 3 Wpa p; is also practi-
’ j=1p’

cally isotropic and can be written in the form 7, = 7, y’//\'io’f"/e;. This was also caleulated

numerically. The term Y, WI,/Z)I,Z(J;,ZI) — &) can be described by the relaxation time
e

only in the case, if 750 — F¢ = p’y(es), therefore, it is convenient to represent »@® in

the form

P — (@ p@) | @ po (6)
’ My,

We have shown that for m, = mo/(lA| — ]/Ezilv 02/5) the solution of (2) for 7 = 2 is

B = e(Foz, — TvoiF, — ) fkT (7
o {2 e s . . .,
= R Tyr®E) — hs ) ¢

X [HEY ey — T3(T, — ) [ E] 0 ma) o, T ®)

e ~ 2) I Y72 2) =20~ jadd
W = 5 (B0 V(0@ | V(@) — (7, — T2) X

% [ODI) V(0D [T EN Jmy — FoTa(Fy — T2) [0OH] X
X [HE N my — (75)2 (Fy — ) [WOI | [HEVm3] fol kT - (9)
The time 7; is given by the expression p/7z = p/To — 5 P Wpepe Wwith 73 =
<

— 25}k, Tle, and is also almost independent of the direction of p. The distribution
function for ¢ = 2 has a more complicated form than that for 7 = 1, since for v = 2
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there are two specified relaxation times, the time 75 describing only the function pro-
portional to »®, whereas the one proportional to the difference (8@ — »®) and the
more complicated functions of p is described by the time 7,. The difference 75 — 7,
enters (7) o (9) since ]‘]L are reduced to a form not involving the difference (v — p@),

In p-germanium 73 <C Ty since >, P’ Wpa p2 < 0 (this result ior the isotropic approxima-

»
tion can be found in [14]). We note that the relaxation times 7, 7,, 72 calculated here
practically do not differ from the u)rrMpondmé times obtained in [14] in the isotropic
approximation,namely:1/t, = 1/t}, X 6.13,1/r, = 1/7{ % 4.65.1/t5 = 1/2), X 5.6, where
128 = (myky TY32[ ()2 o C3).

Substituting the functions (5) and (7) to (9) into (2) and integrating with a computer,
we show that up to the terms ~ m,/m, = (|4] — JB? + C2J5)[(|A] + VB2 + 03/5) <1
these functions arc the solution of (2) which supports the validity of the approach used.

From (3), (5), and (7) to (9) it is easy to obtain expressions for the galvanomagnetic
coefficients, the anisotropy of the dispersion law is fully taken into account and enters
only in the velocities. Note that a similar situation holds in n-Ge, where the aniso-
tropy of the relaxation times is much smaller than that of the velocity (i.e. the effective
masses) and can well approximated by the isotropic relaxation time [15].

The eXpI'ossion for the current density is of the form

j= Z [6WE 4 o EH| + «OH2E + SO{EHH + yOF] (10}
i=1
where F is the vector with the components E,HY, E,H3, E,H3 along the principal {100}
axes of the crystal; the kinetic coefficients have the same symbols ag in [16] (p. 360),
for the acoustic scattering being
' m3? —LerL

() — 0P G0 - P b P, -
o ePujt; 01 @ mE - miP S He =

/m mZ

. 3 . e 97 . e 9T ..
,)7(¢) — 7EL] - Wi 7/](7) (X,(L) — ;: 6 (?) lBU) — _CE jjq’ﬁ ‘u?ﬁ(l)}

C q./

P = Py = &) — B L 250 1] =1, .

(1)
&40 is the hole concentration in bands 1, 2.

The expressions for all the factors with a bar are given in the Appendix. They are
chosen so that in the isotropic approximation all the galvanomagnetic coefficients are
of the general form (see [1, 16]), since in this case &#;, 6@, 5, & gD are equal to unity
and 6@ = 0. - N

The calculation of these integrals for p-Ge yields # = 0.94, P, =1, ¢ =1,
@ = 12,70 = 1, 7® = 0.88, 30 = 1,4® =4, 0 =1, & = 0.4, 6) = 7x 101,
62 — —5.5 % 1072, () = 0.038, y@ = 3.7; i.e. the hole distribution between the
bands 1 and 2 is here nearly the same as in the isotropic approximation in [14]:
PPy = 0.043 (0.046). Here and below the values for the isotropic approximation are
given in brackets.

The contribution from the light holes to the conductivity and the Hall effect, too,
is almost the same as in the isotropic approximation: /¢ = 0.26 (0.33), M/n® =
= 2.3 (2.34). Besides in the terms proportional to H?, taking account of the dispersion
law anisotropy gives no essential corrections only for the light holes, whereas for the
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heavy ones it is essential and can change the results considerably. A relative contribu-
tion from light holes to the corresponding coetficients is given by the ratios aM/x(® ==
= 4 (17), O/ = 40.2 (17), yV/p@ = 0.16 (p = 0, @ = 0). From (10) it is seen
that the transverse MR Ag/o, = (o — 0o)/0, is anisotropic, the MR is determined by
the contribution of the light holes (xD ~> x®) and the anisotropy of the MR is entirely
determined by the heavy holes (3 35y »& ~ x@),

Substituting (11) into (10) we have for the transverse MR

me [ 24
(ﬁ) %7_(‘“ )9 [17(,79 S (12)
Qo ¢ 77 a1

With the current along (100} the expression in the square brackets is unity, the MR
has a maximum value and does not depend on the orientation of II with respect to the
erystallographic axes. The MR has a minimum, if § [| [110], H || [110]. Note, that cal-
culated in the isotropic approximation, the MR is isotropic as is to be expected and

equals
Ag 97 (U,
= 4. :
()=l w

It is interesting that the difference between (12) and (13) is not large, though
x® and f® changed drastically with the account of the anisotropy. The longitudinal

MR is
Ap® (¢4 /MZH 2 1 3 .
—_— =727 2811 - — i y
(90)“ 16( & ) [ ?-41“5:‘417,‘ ( )

Tt has a minimum value, if j || [100], and a maximum, if j|] [110], its anisotropy
being much larger than that of the transverse MR. Provided j || [110], the ratio of the
transverse MR for H || [110] to the longitudinal MR is 6.9 which is near the experi-
mental value 6.2 obtained at 300 K in [2].

From (10) it is easy to derive also the expression for the even Hall effect

By 97 {u,H

E, 16 ( c ) 72 Azl ,a,,z;, Qusrlod s Healy 15)
where Ly is the field measured along the Hall direction. The even Hall effect is almost
entirely due to the heavy holes since Hy/E,~ yM + »@ and p®/p@) = 0.16. The
orientational dependence of the even Hall effect on the directions of E and H coincides
with the experimental [3, 4] one. It should be noted that in Fig. 4 of [4] the direction
of the electric ficld at which K /K, = 0 is not correct. This value is 54.6°. The even
Hall effect as well as the longitudinal MR are zero in the isotropic approximation. The
calculation of the current (10) for the case when ¢;(k) in (1) with » = 1/5 is expanded
in powers of the anisotropy, vields the same expressions as in the isotropic approxima-
tion, if the terms of first order in the anisotropy are retained. The values (Agfo,) | ,
(Apfoo)y), and Ey/E, for p-germanium taking into account the real dispersion law appear
to be obtained for the first time,

4. Longitudinal and Transverse Anisotropy of Conduetivity

Retaining only acoustic scattering the rate equation (2) can be solved for arbitrary

electric fields with anisotropic ¢;(k) (1) as was done in [17] for If = 0 with the expan-

sion in powers of C2( Y kZk§/k* — x). Then the symmetric part of the distribution func-
x>

tion is the same in both bands and equal to the usual Druyvestyn’s function [18],

j(()],2) = Fy(x) = Cy(x + 6%})83} e v, (16)




250 V. M. IvasHCHENKO, V. V. M1TIN, and N. A. ZAKHLENIUK

where
e o 2 EBar,( . T/ my Py
L= s & = — = e@ . 2 LM 17
kg T P08 kT omy + T, || my P, ’ (17

(), is the normalization constant calculated from (3), 7. =7, V/ls,UT/e.2 is the relaxation
time of the energy in band 2, 1/r, = (a*m2r} 2k, T |mh* where r; is slightly different
from r, in (7) of [17] for the isotropic approximation, the same is valid for the con-
stant O, too, therefore we can use the function 7 (¢) of the isotropic approximation
with high accuracy (the numerical value of 7, for p-Ge is 0.962).

When calculating the functions f2, /& /4 we first made the same assumptions about
the relaxation times ag in Section 3. However, because of a slight difference between
the times 7, and 72 in p-germanium, the numerical values of the resultant coefficients
practically coincide with the case when a unique relaxation time 73 = 7, Is introduced
also for the heavy holes. Below only the results for 75 = 7, are given in order not to
write out more cumbersome expressions with 7; == T,.

The conductivity ot is isotropic and its dependence on the electric field is deter-
mined by the expression for ¢® from (11) multiplied by

V; f F () dx/? Vo 7o) de. (18)

Along with the second-rank diagonal tensor 6¢9 also the components of the fourth-rank
9

tensor are non-zero, i.e. in (10) the term‘zl o(),sHsE,Es must be added. Just this
=

term is responsible for the longitudinal and transverse anisotropy of the conductivity

which is characterized by the parameters y); = [ju(£; [[[100]) — j(E:)1/7:(£5 || {100])

andy | = E,/F, where E, is the electric field transverse to the current. Since £, << ¥,
9

we consider only the components of the conductivity tensor Gum. = 3, ofl,, and

2 =1
Oyamy = Zlozf’f;)m for which we obtain
=
Ograw — ow ] Gya::m‘ =Vw s (19)

where U7 and V" are factors dependent on the orientations of the axes x and y in the
crystal equal to

3 3
U = 3 cos® (@, x) sin? (27x) , V =Y cos? (x7x) cos (y.x) , (20)
o ==1 a=1

In particular, when the plane xy coincides with {110} the sums over & in (20) are
5 sin® (3 cos? ¢ -+ 1) and — -+ sin 2¢(3 cos2 ¢ — 1), respectively, where ¢ is the angle
between the axis (001> and the current direction. W in (19) has the dimension of
conductivity divided by the squared elcetric field and is given by the expression

4
W=t x
mi
2 D) a3 1 o % - dT; ., d{7; _dz, d(%)
2 [S@ [Py da 288 [ ¥ Ty ar 72 A7) -+ 1.22%, dv; d(zay) dx
i=1 0 0 dx dx de dx
X - ——

ko [ @12 F () da( N 4 N®)
O
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Here 7 = —dF,/dz and the expressions for 8, 88, N® are presented in the Ap-
pendix.

If 7, == 7;/)/x as in the case of acoustic scattering, the expression for W essentially
simplifies and for p; and y; we have

v =5 Upsatl’, v = — 5 Vysal, (22)
where
Fol) ; |8
— dx AT A
fx + & . % (;) (59 — 1.45Y)

- 9 0 Ty /My i 2
gl g ) . (23)

ff x) do 0 ( (2) + ml ! 71))

my Py

In [20] the integrals S§) were calculated by expansion in powers of the anisotropy
parameter. The following results were obtained: S — 0, 89 = (—1)+! (4m/9) x
% C2fyB* + (/5 and in p-Ge: S =431, 8P = —12.06. Our calculations give
S = —0.689, S =—9.34, S — 4.4, 8P = —13.14, i.c. for 8 corrections are

. 2
small and S—(J does not only become zero, but reaches a value of the order 8. Because

the coefficient S(12) — 1.48%2) becomes almost half as large, not only the relative contri-
butions from the heavy holes to y| and y | decrease (they give the main contribution
both here and in [17], but here their contribution is —1.33(7,/7,)® times that of the
light holes, whereas in [17] it is —2.8(7,/7,)? times), but also y|; and y | themselves de-
crease more than twice (if 7,/7; = 1, yy; and | decrease by a factor of 5 as compared
with those calculated by expansion in powers of the anisotropy).

5. Linear Magnetoresistance

When holes are heated, there arises a magnetoresistance odd in the magnetic field. In
the theory linear in H this can be readily calculated by the above scheme. The symme-
tric part of the distribution function can be calculated as before with neglection of
the magnetic field. When the acoustic scattering dominates, it is of the form (16). By
solving (4) for the functions /9 we obtain the following expression for the current
density:

7(7) = G(i)Elc -+ 77(i)]El}[nL§Ic/7)z -+ G;jl?nmElEmEn -+ U%Z)'m,anlEm EnHr - (24)

All the coetficients entering in (24) depend on the electric field, for the acoustic scat-

tering the dependence 0®(E)and ¢ (F)are given in Section 4 and 1 for the same case
g P klmn g 7

is obtained after multiplying 1 from (11) by (ff () =12 da)/(2 ff( ) 212 da).
Only the tensor aﬁ,)mm is new here. When the magnetic field per‘pendlcular to the cur-

rent is along the axis z we are interested only in the oy = Z O‘m)@u component of
t=1
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this tensor. As in the preceding case, we obtain

. | r .
o0 = — 5 Vs ,m(/rf.wzfm da(NO - N1
cmy
0
2 R 8 ~3 d%, ao . . .
X B {10 (HO — 2 FO) | Ty LadR de - (60 4 4500 — 1580) x
i=1 \ b &£
0
~ . . r . - d%t {N‘IZ" ~5 d%i’
> fr?xxl/z dz 4 FO f B2 F, (2 o f,((:i_") v — iz dx‘)ﬂ “ (25)
The expressions for the integrals over the angles H®), G F® are given in the Appendix.
Expanding in powers of the anisotropy the author of [13] obtained GO = —2 H®)
HO = (1) (32/9) Ymojm, C2J) %+ €25, FO =0 (ie. for p-Ge HD — —8I11.8,
H® = 290.5). The present calculation yields F&) — 0, GO = 20 H1 = 8323,
H® = 270.1. i.e. the difference between 0.4, and the value calculated on account of
the approximate theory is not large. The ratio HM/H® = —3.05 in the absolute value

is larger than unity, therefore, for 7; = 7, we obtain that the main contribution to
Oweas: cOMes from the light holes which also determine the sign of this value.
For the MR Ag/g, we have
de) _ —EZH(o®W + @)1 + 2 A 26
o = P (o} ) Onawrs 20yzxax ?uiom . ( )
The expressions for all the coetficients entering (26) are given above (the last term in
the square brackets of (26) can be rewritten in the form 2y | (n + 7®)/E%. The whole
difference of the MR from that calculated originally by the expansion in powers of the
anisotropy in [13] is involved in the last term in the square brackets (26), discussed in
the foregoing section. In weak magnetic fields the linear MR is determined largely by
the first term in the square brackets and that is the reason, why it is determined pre-
dominantly by the light holes.

6. Conelusion

From the above results it is scen that the calculation of the galvanomagnetic coeffi-
cients by the expansion in powers of the dispersion law anisotropy (1) with » = 1/5
vields a fair agreement with the numerical computations using an exact dispersion law,
if these coefficients are non-zero in the zeroth- or first-order approximation in the
anisotropy parameter. The coefficients, which become zero in the above approxima- -
tions, are found to be non-zero in the exact caleulation and can be rather essential for
the corresponding effects. In the above caleculations the coefficients concerned fully de-
termined the even Hall effect, the longitudinal magnetoresistance, and the anisotropy
of the transverse magnetoresistance, they essentially decrease the longitudinal and the
transverse anisotropy of conductivity and the contribution to the linear magneto-
resistance due to this anisotropy.

Appendix

The factorsin (11) with the bar are of the following form, where it is needed to take into
account that for 7 = 1, 11 = 74,
NG m32 4 i

§T R yw vt VO = KPo, (A1)

]
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with
1 . oo
W = f sin 0 df f dg V077,
0 0
. 3w, ; i
6‘”*1\()&‘1(’ S, — 1 I9 .
Here
I =B, 19 = 0y w = _ T
”0 T
R — e[| Al — (—1)' M-(B? + 0502 Y, )], o = 000,
fitx
Cw = DalP
3> ) )
70 = SESIEKD — (= 1) o @l 4 1)),
where
KO = (B2 iy — ROBPYD:  akp. af=1.2,3,
1 = 0 ROt 1 (1) eyl
Yop = CPMY + 8,5 — ¢ — ¢§ — 26 + 0.65C2M 2 x
(L — =28 (1 28], E= Y e
. afi=1
s 3(,0; (@) 0] s 3(,(), i s
o = N £(LY — LYy, ald) = VO (t; L ALDY |
where
(i) 5(E i) () (i i 5(2) (i
LY = CRORDy Gty o LY = 0y atpty.
] NOC 5 (i i 5 i i
LY = (BIy3) 4+ (R4 — 210 By
ALD = oYt — 1) [BKO 4 o 11,10 + 19
S 30);? (¢) (q .
B =SS — L) — ALY,
where
(’) —_ <(ID(Z)) //(}L/;/;?') 2[)(1)]3(7)/2[ZX(”;)> .

The integrals over the angles entering (21), (25) are given by the expressions
(Dilyanbn +
<(})(l)) /(L) ) 9]:(4)1;(l) (l)
1) 8¢ an B(RE)? — pungl Y
]47(1) l)(’)

— 27RO

N

SY =
H®

GO —

P —

=
= (D@L gapl1470 R —

— 82 RE)  guas(L07 1)
= KD B3RV R —

202557 —

(72,

(])(’))_‘ N (')> .
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Pasp = Cal 2l + A0a[200p — €X(2 4+ C2M1 — & — 28)] +
20202 MY 2(eE 4 f — 1 — 8,5 + 28) -
ML — e — 28) (€& 265 — 2 — b, - 4E) —
— 050 M1 — ef — 28)2(1 — ¢f — 28)]} .
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