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Analytical and numerical calculations of multiplication coefficients in the Schottky junctions are
performed with inhomogeneity of the electric field taken into account. It is shown that in the thin
depletion layers distribution functions of electrons and holes and their impact ionization (II)
coefficients is nonlocal, i.e. they depend not only upon the electric field strength at a certain
point but also on the fields in the vicinity of the point. In such nonlocal cases the introduction of
the II coefficients is justified only for small multiplication coefficients, for the large ones they
make no sence. If one assumes that the carriers — holes and electrons — differ from each other
by the sign of the charge only, the nonlocality effect does not change just the values of the I
coefficients obtained in the local approximation, but provides as well the difference between the
electron and hole multiplication coefficients. This is due to the electric field asymmetry in the
depletion layer.

Brinosnenst aHanuTHYeCKHIT ¥ YlcJeHHBII pacueThl K02y dILINEHTOB YMHOKeHNA B CJI0AX
IlloTTKH, € Y4YeToM HeOJHODOJHOCTH 3JIeKTPUUYEeCKOro mnojs. IlokasaHo, YTO B VY3KHUX
UCTOLIEHHBIX €10AX QYHKUHA paclpelelsieHHA 3JeKTPOHOB M IbIPOK, a Takyke HX KO-
adduuIeHTH ylapHoil noHu3aul (YY) HeoKadbHEL, T.e. 3aBHCAT He TOJBKO OT JJIeK-
TPHYECKOro Mo.1A B JaHHOII TOYKe, HO M OT MoJjiefl B e€ OKpeCTHOCTI. B HeJoKaJIbHOM
cnydae NoHATHe RO3PPIINEHTOB Y MorkeT OnITh BBeJEHO TOJBKO I5IA MAJIBIX KO3pdu-
LHEeHTOB pa3MHOKeHHs, a INpH OO0JIBIIIX OHI TepHAIT CMBICI.- EciaH Bce TapaMeTpHl,
XapaRTepH3VIOUlHe KUHETHKY 3J1eKTPOHOB U ALIPOK, NPUHATL OTHHAKOBBIMHU, TO addeKT
HeJJORAJbHOCTH CBOIMTCA He TOJbKO K CHIBHOMY MHCHpAaBJeHHIO 3HaueHHH Koaddu-
UHEHTOB VMHO:KEHIIfl, PACCYUTAHHBIX B JOKAJBLHOM NPHOJNKEHUH, HO H K MOABJIEHUIO
PasauyiA JIeKTPOHHOTO M IBIPOYHOIO0 KOIPPHIIMEHTOB YMHOMKEHHsd, CBA3AHHOIO C
ACUMMETDIHYHBIM XO0A0M JIEKTPHUECKOTI0 T10JI1 B MCTOIIEHHOM CJIO€.

1. Introduction

Tke time independent carrier multiplication process caused by impact ionisation (II)
in flat depletion layers of semiconductors is, as a rule, described by the continuity
equations

dj, dj, ) .

=32 =@ jpl®) — x(@) @) M)
where j, (%) are the drift current densities of holes and electrons:

7p(x) = (9:) p(x) in(x) = Un(x) n(x) oo (2)

P and n are the concentrations of holes and electrons, v}, n(x) are their drift velocities
and x (%) are their IT coefficients.

The local approach to the II problem is based upon the assumptlon that (1) and (2)
are valid and x, 5(x) and v, 4(x) are functions of E(z) only:

Xp,n = o‘p,n(E) ’ Vp,n = 2’p,u(E’) ’ E = E(CE) . (3)
1) Prospekt Nauki 115, 252650 Kiev-28, USSR. ' '
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Advantages of such an approach are that for a given semiconductor x; ,(E) and
vp,n(E) appear to be universal functions of temperature and field strength, and of its
orientation relative to the crystallographlc axis; these functions are completely in-
dependent of doping parameters (at least in the region of lattice scattering). Numerous
attempts were made to obtain the field dependence of x, , from the analysis of carrier
multiplication in depletion layers of p-n or Schottky junctions in Ge, Si, GaAs, InAs,
and other materials. Now it has become clear that such universal functions xp n(F)
may not be introduced due to the significant divergence of values obtained by various
authors from the experimentally measured multiplication coefficients M, (U), U
being the bias voltage across the depletion layer. This divergency cannot be ex-
plained by either experimental or calculation errors.

The absence of universal empirical functions xp ,(E) is connected with two reasons:

(i) ionization processes via deep impurity levels in addition to the main band-to-
band process [1, 2];
(ii) nonlocality of the II process that makes (3) incorrect.

Here we study just the second reason, which is essential in thin depletion layers,
where high pre- and breakdown fields are obtained with low bias voltages.

2. Influence of the Inhomogeneity of the Electric Field
on Small Multiplication Coefficients

Nonlocality of IT was in some form taken into account in [3, 4], where just one type
of nonlocality was considered — that of ““dark space”. It is connected with a signifi-
cant difference between the ionization threshold energy &, , and the postionization
energy &, p observed in most of the semiconductors [3, 6]. As a rule e, , > &, p, hence
both the primary and secondary partxcles can cause II again only after having run

a path not less than d, ;, = ¢, p/eE E being the mean electric field strength over the
path. The same is true for carriers entering “the depletion layer from the metal contact
or from the neutral areas of a semiconductor where there is no electric field. Obviously
the “dark space” effect may be neglected if

&n,pdnp L1, dp,p LW, (4)

where w is the depletlon layer width. In this case the quantities d; 3 are upper limits
of xp p (Gn,p < da, 1), which are reached near the ionization threshold when the II is
the only way of carrier energy relaxation (in this case all the energy received from
the electric field is spent to produce the electron-hole pair).

If the conditions (4) are not fulfilled it is clear that the IT processes affect not only
the normalization and asymptotics (¢ = €, ) of the carrier distribution functions but
determine all their energy and spatial structure. Therefore an essential spatial in-
homogeneity of the ionization rate leads to an essential inhomogeneity of the distri-
bution functions themselves and not only of their normalizing factors. Thus when the
conditions (4) are not fulfilled the phenomenological attempts to take account of
nonlocality effects without calculating the distribution functions, see e.g. [4], may
not be considered as quite correct.

Here we shall point out another source of nonlocality which may be considered
phenomenologically if the multiplication is low enough, this is the electric field in-
homogeneity along the length d, .

Let us assume that the distribution function is highly anisotropic in most part of
the energy interval from the mean energy &, , up to the threshold &, ;. Furtheron let
its energy dependence be determined by just the pre-collision drift in the electric
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field [7 to 9]. Then in case of a homogeneous field the asymptotic form of the distribu-
tion function is given by

de’
. fule) = nexp ¢ — J‘Z@T;ET . (5)

0
Here I (¢) is the mean free path of the electrons drifting with the 'energy ¢ along the
field. In the case of spatial inhomogeneity analogous asymptotics may be obtained
from the equation
.o of [ _
gy = E@) gt =0, f=fp.a). (6)

Tp

Here p and p, are the momentum and its projection upon the field direction, v, and
&p are velocity and energy of electron with momentum p, 7, is the scattering time
from this state. In () there is no term describing electrons coming to the state p
since it may be neglected when high energy asymptotics are considered. Such an
approach corresponds to the drift asymptoties in [7, 8]. An approximate solution of
(6) is given by
€

fule =) = (gl = =) exp 1 — - [ - 1 q

e e | | e—¢€\l, .,

v |E (fp(x) — )i l,(e)

where n(g) is the carrier concentration at the point with the potential ¢, E(p) is the
field strength at this point. The difference between (7) and (3) consists in the fact that
in (7) the carrier concentration rn(g(x)) at the point x is replaced by, generally speaking,
another one nf[g(z) — ¢/e¢], and instead of the field E(¢(x)) all the fields are present
between E(¢(x)) and E(g(x) — ¢/e). Equations (5) and (7) are valid if ¢ > ¢, i.e. if
the exponents are large enough. In this case relations (4) are fulfilled, so that

n ((p(x) — %’5) ~ n(p(z))
and also

P (qv(x) + 5‘3) ~ p(p(x)) .

€

The continuity equations (1) keep their form: unchanged, but in these equations one
should put

( n 3
1 de’
an(x)zanwexm——-e—f P -
| B (e -2 e
. . l v (8)
1 de’
&p(2) = Kpoo €XP s —?J\ ] e
K E@M+P6Nuw
instead of
(9)

() ~ ex L]
%n, p(¥) = On, poc €XP 3 — - E@) | Lo ) [’
0
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i.e. expressions (9) being used in a strictly local approach. Correction terms connected
with the use of (8) instead of (9) are essential if the field E(x) varies significantly in
the vicinity of its maximum value over a length of the order of d, ;. The latter condi-
tion means that in intervals the order of d, , (with voltages = ¢, /e across them)
practically all the II in the depletion layer must take place for voltages not too low

-as compared with the breakdown one. The latter takes place only in a rather thin
depletion layer with low breakdown voltage (for example, exceeding ¢, /e by less
than by an order of magnitude). Especially interesting in this sense are the so-called
Read diodes with narrow highly doped multiplication layers [10].

If somewhere over the interval (¢(z) —e,/e, p(z ) for electrons or (¢(z), p(z) + &ple)
for holes the field is equal to zero, the same happens to the coefficients « (x) and
Xp(x) so that the “‘dark space” effect near the edges of depletion layers is automatically
taken account of by (8).

In the case of smooth electric field

IdF!
Ao, p P <IE! (10)
(8) gives
2n, p(2) ~cxf,°’p(E(x)) Vo ol) (11)

where & (E) is the local multiplication coefficients and ¥, () are the correction
factors

(12)

| 4aN@) | [ (e — €) de
. . » P
Fn,p(z) = exp 1e/dF3 33)1 J. In, p(€")

In deriving (12) account was taken of the fact that E(x) is determined by the Poisson
equation

dE 4
____.:”_e N(z)

where x is the dielectric permeability and N is the difference between concentrations
of ionized donors and acceptors: N = N, — N,. Correction factors ¥ ,(x) are
essential if, due to field inhomogeneity, the quantities dn,p(E) vary over the same

distances not less than over the mean free path [
‘dn p dE| lu b
| B dr < oy

It is easily seen that in sufficiently narrow depletion layers the condition (13) is
fulfilled.

np,le.if

(13)

3. An Example: Schottky Junctions

Let us consider Schottky junctions in homogeneously doped n-tvpe material with
donor concentration N. Then
E = Ey (1“5‘), ?ﬁ= _4:zeN P (14)

w %4

where Ey <0, 0 < z < w, wis the thickness of the depletion layer,

2
¢=%[1—-(1—§)J, (15)
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@ = —Eyw/2 > 0 being the bias voltage. Then using (14) and (15) and assuming
ly,p = const in (8) we obtain A , : _

— 20, | @, gy \2 e\ 5
Oén(x) = &nec €XP { - ln ‘EM,I _(1 T T &E) B ( B (—p_O) - (16)
 for ggfe < p(x) < @y, 5 _ 12 : 1/27
Po AN 4 ¢
x (x) =« ooexp{'— ( ___) _< ___.__£> } 4o
P P I 1Byl | Fo %o €Po/

for 0 < @(x) < ¢y — &y/e; outside the @(x) intervals just indicated x, p(z) = 0.
Let us calculate the multiplication coefficients 3/, , under the low multiplication
conditions

Mpp—1=foapp(z)deL1. - (18)
0

In this approach when the exponents in (16) and (17) are assumed to be large
enough one obtains

1&[ 1 2(F0anw j.‘odu { 2¢0 [/1+uo 2\'— ’ €1 )1/2 .
M, — 1 = ;ex — {* — 2 S— —
" IEMI 0 ’ F ln‘E)d ( 7 V €Po
e \1/2
_(1 __,,_) +c]}, (16)
€Po
M, —1 ~ 2Fo%peo [drexp{_i%_ [1 — - V(l — )2 ——ELJ} (17°)
|\Eyl ) 7 lp |Eyl 7 €Po

0

Two consequences of the nonlocality are evident from (16’) and (177):
(i) The quantities M, , — 1 decrease compared to those calculated within the
local approach. At ¢, , < eg, we have

Map—1 = (MY, — 1) ex {—_—8——9—-—} 19
ne S e = N O T g, 1B 1)

This decrease becomes large when the exponent in (19) rises exceeding 1. The
decrease of M is due to the factor ¥ being less than 1 in (11) and (12). However,
M, decreases due to the “dark space™ which exists near the point z = 0, affecting
it stronger than the factor ¥, > 1. As a result the correction term in (19) appears to
have the same structure for holes and electrons.

(ii) In case of complete symmetry of the parameters (¢, = &p, I, = I, Gnoo = Xpoo)
the approximate equation (19) gives M, = M. However, the more accurate equa-
tions (16") and (17’) maintain the inequality between M, and M, due to the asym-
metry of E(x) within the depletion layer which is essential for the nonlocal effects.
Under the assumptions used above this inequality is rather small ‘and is not given
correctly since the field dependence of &po, *poo is lost here. Such a dependence is also
nonlocal and it may be as important as that taken account of above.

As far as (8) is obtained with the conditions (4) assumed to be valid, these equations
become unsuitable when M, , are large within the layers where the effect of the field
1nhomogenelty is most significant, i.e. “such may be the situation in the pre-breakdown
region. In these layers the main contribution to the multiplication comes from spatial
intervals of the order of d, , lying close to the point where the field strength reaches
its maximum. Thus the breakdown condition here takes the form xg ydn,p = 1.
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4. Calculation of 3, , by the Monte-Carlo Procedure

To describe the IT when the conditions (4) are not fulfilled it is necessary to find the
spatially inhomogeneous distribution functions f, , within the depletion layers. Here
we present the results of numerical calculations for a greatly simplified model of
a semiconductor. It is assumed that the carriers — holes and electrons — differ from
each other only by the sign of charge. Such an identity of the carriers not only simpli-
“fies the calculation but enables us as well to obtain the same local coefficients x (E)
and x (E). (Experiments on Gads [11, 12] give x,(E) =~ x,(E).)
The carriers are scattered with equal angular probabilities emitting or absorbing
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dispersionless optical phonons via the de-
formation potential interaction. Moreover
the emission probability strongly exceeds
that of absorption since we put hwy/kT = 10
(wy is the phonon frequency and T is the
lattice temperature). The IT threshold energy
is chosen to be ¢, = ¢, = 10/iw, = 100kT;
a particle appearing over the threshold
immediately generates an electron-hole pair
with zero energy and falls to the bottom
of the band. An isotropic parabolic disper-
sion law is assumed with an effective mass
m = 0.35m, where m, is the free electron
mass. (This comes into a certain contradic-
tion with the assumption just made con-
cerning the particle energy after II. That
assumption would have take place if a “third
body” were involved in the II. However,
such processes have a low probability.)
Within the layer 0 < =z < w the particles
move in a given electric field E(x). Two
cases of multiplication were considered:

(i) Initial electrons with energy & = k7,
distributed isotropically over the hemi-
sphere v, > 0, start from the point z =0
and 3 is calculated.

Fig. 1. Dependence of the electron concentration
n(e, x) upon ¢ at the point x = 2d(E) for various
values of the dimensionless field strength £’. (1)
E = 0.25,(2) 0.5, (3)0.75, () 1.0, (5) 1.25, (6) L.5;
calculation with and — —— without the

o0
II being taken into account. Here [ n(e)de =1
0
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Fig. 2. Dependence of the electron concentration n(e, ) upon z at a) B’ = 0.5 for various values
of e/kT: &/kT = (1) 10, (2) 20, (3) 30, (4) 40, (3) 50, (6) 60, b) E’ = 1.5; ¢/kT = (1) 12,
(2) 20, (3) 30, (4) 40, (5 )aO (63 60, (T) :O (8) 80, (9) 90, (10) 100

(i1) Initial holes with energy ¢ = kT distributed isotropically over the hemisphere
vz < 0, start from the poirt r = w and M, is calculated.

The many-particle Monze-Carlo method was used to calculate the motion and
multxphcatlon of the particles [13 to 18].

The motion of the particles was considered in fields of three different types:

A) E = const at 0 < z < w = 2.5d (E), where d (E) = ¢,/¢E;

B) E = Ey(1 — 0.9z/u), 0 < z < w(Eyy);

C) E=Ey(l —ax)atd < o<z

E = Em —_ E}[(l e Cro) at 2'0 g T é w = dn(EM)'.
Ey;, a, x;, were interdependent so as to obtain the bias voltage U(x,) of the form
azx3

(%) = Eyxy — T = 0.95 P

M

n

Fig. 1 shows the energy dependence of the electron concentration n(e) = f(¢) g(¢)
normalised to one electron for the A-type field at the point z = 2d (E) (fy(¢) is the
isotropic part of the distribution function and g(e) is the density of states). At such
a distance from the cathode the electron distribution function (with no ionization
taken into consideration) is apprommately saturated and is close to a homogeneous
one. The calculations were performed for six values of the dimensionless field strength

B =5 yEm* i)

here m* = m/m,, l(e,)) = z'(an) T,(c,) is the mean free path of the electron with energy
&y v is the velocity, and 7 is the scattering time. It is seen that at E’ =1 the II process

30 physica (b) 105/2
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alters the distribution function for all energies: if IIisnot considered, the mean energy
rises quickly on raising the field strength, but taking account of the II tends to give
saturation in the n(c) dependence at fields £’ = 1. According to simple estimates the
distribution function has the form

€n

de’
= . 20
fo(s) J g(El) vz(sl) T(S’) - ( )

£

It saturates due to diffusion heating of the electrons up to the energies ¢,, so that at
&> hw, one obtains n(e) = 1 — Ve/sn. The function (20) makes sense for fields

)thwo < ek l(sn) < €n > (2’1)

Le. 1.3 <C E" < 4.2 so that we observe it just tending to set up. At eEl(e,) > ¢, (i.e.
at £ > 4.2) the function f,(¢) must acquire a collisionless character (i.e. it must be-
come constant) over the interval 0, ¢,. However, the condition

eEl(e,) > }’enhwo -

is already sufficient for the II coefficient x (£) to reach its maximum value dj }(E).

The dependence n(e, x) upon z is shown in Fig. 2 a and b for some fixed energies &
at two values of field strength E* = 0.5 (Fig. 2a), where the II is still insignificant
and almost does not disturb n(¢) and E’ = 1.5 (Fig. 2b), when the disturbing effect
of the II is high enough. Attention is attracted in the figures by the energy dependent
“dark space” d(e, E) = ¢feE, and also by the significant decrease of n(e, ) on in-
creasing z at small ¢ due to electrons acquiring higher energies. Comparison of Fig. 2 a
and b demonstrates the transformation of the distribution functions due to II. This
transformation is displayed especially brightly by the presence of the second maxima
with z at small € connected with electrons appearing after the II (Fig. 2b).

In Table 1 the multiplication coefficients .M/ and J, in the field of type B are
given for two effective dopings N. The doping is determined by the parameter y =
= kTm*|(2e,) (l(g,)[lp)? where I}, = x,kT/4me2N. The depletion width w, depending
upon E and N is given by

Ey /m*
w = 0.09 —}’— V?- l(en) .

The II nonlocality is displayed not only by the strong decrease of 3, , but as well
by their inequality caused by the field asymmetry. This effect is seen especially

Table 1
y Ey A My (1 — M)/ — My)
0.002 0.8 1.0122 1.0175 1.43
1.0 1.1134 1.1423 1.25
1.2 1.5280 1.5720 1.08
0.05 3.18 1.1486 1.235 1.58
3.2 1.159 1.231 1.45
3.7 1.854 2.080 1.26

4.2 3.085 3.457 117
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strongly in the case of extremely narrow layers (y = 0.03), where the II occurs at w
values slightly exceeding d,(E). Much higher asymmetry ((1—M,)/(1—31,) = 5 to 10)
is obtained in fields of type C, where the multiplication is concentrated within the
narrow layer 0 < x < x, with the properly selected thickness. The electrons entering
this layer are perfectly cold and the holes are slightly heated in the region of low field
zy < ® < w, where the IT cannot occur at all.

The computer experimen: described for a completely artificial model of a semi-
conductor has the only aim to make some qualitative trends clear. The numerical
results were obtained for relatively high A1, ;, that is why we cannot compare them
with the estimates of Section 3 which in the case of this model are valid for very low
values of M, , — 1.
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