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The transverse conductivity (TC) of a semiconductor is studied in the range of the multi-
valued Sasaki effect in a heating electrical ficld. The negative TC due to the Erlbach
effcet does not arise in this field. The TC depends on the surface conditions of the sample
and on the domain structurc arising in these ficlds. The case of a small TC caused by a
displacement of a domain wall under the influence of a transverse current is possible together
with the case of a large positive differential TC. Such conductivity can be both positive
and negative depending on the direction of the wall displacement. The case when the
driving ficld and the transverse current are homogencous has been studied.

Pacemorpeua nonepegnas uposogumocts (L) moaynpoBoaniina B rpeloiem
DACKTPHYCCIOM IT0JI¢ IIPHM MilorosmauynoMm a@gdgerre Cacann. B rawkoym uvoge me
Bosuukaer orpunareanbuoii I, coorsererpytomeit agderry dpadaxa. I zapueur
0T VCAOBUI Ha MOBEPXHOCTAX 00PA3IA M BOBHURAIONICH 1IPH TALKIN 11OTISIX 10MCII-
HOH cTpyRTYphl. Hapazgy co ciyuaeMm GONLITON 110401uTeanoil urddepeimaih-
woit 1T sosMosmpbl cayuan madgoit HIIL, odyenosaenroit cveureunes uoig gefier-
BHCM IIOIEPECUHOI0 TORA JIOMENHOH crelrikd. B 3aBHCHMOCTH 0T HallPaBaClHsT
CMCIICHHUA POBOTMMOCTDL MOSKET OLITE AR IOJOMUTCALICH, TAR H OTPHUATEILITONH.
Mceeaegopaicsa cayyail 0IHOPOAHLIX THIIYVILETO 1104151 H HOIePedloro TOKa.,

1. Introduction

The multivalued Sasaki effect in a many-valley semiconductor. considered in
[1 to 3], and the negative TC (transverse conductivity) effect (the Frlbach
effect — see [4] and {5 to T]) are rather mutually exclusive than interrelated
{see [7 to 9]) phenomena; a homogeneous semiconductor state, for which the
Erlbach effect was predicted, is unstable, and the negative TC does not exist
in stable homogeneous states. Hence the experimentally observed TC [10]
should be treated by a spatially inhomogeneous (domain) semiconductor state,
appearing in the multivalued Sasaki effect [3], rather than according to
theories such as [4].

Below we consider (in more detail than in[ 3]) an inhomogenecous structure
appearing in a two-valley semiconductor at a symmetrical current direction. The
occurrence of the “absolute’ negative TC is shown in principle to be possible in
a domain model; for its emergence the boundarics between domains at a
transverse current have to displace in a way that a domain with anisotropic
field directed against the transverse “ohmic” field widens and a domain with
ficld directed along the current gots narrow.
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2. Physical Model and Basic Equation

The considered effects arc typical for semiconductors with a high mobility,
when the Boltzmann kinetic equation is valid, but it cannot be solved exactly.
The system of current continuity equations

__A‘VL p3 (& _n/ﬁ) (1)

faa \ Ta Tp

is solved to get approximate results. Here i, is the electron current of the «-

valley (x-electrons further), n, is their concentration, t, is the transition time of

a-electrons to any other valley (in n-Ge o« = 1 to 4; in n-Si & = 1 to 3, where

the valley is a pair of equivalent valleys lying on the same axis). We shall

consider in detail only the case of two valleys (x = 1, 2) lying in the ay-plane.

This case is realised in deformed n-Ge and was exporlmentalh studied in [10].
Equation (1) is supplemented by the quasi-neutrality condition

3 n, = const (2)
and by the condition of constancy of the transverse current
Xty =1y (3)

resulting from the homogeneity in - and z-directions.
At inhomogencous heating of electrons the currents have the form

- a X N &
Typ == € C—U (D)) + eny(u\YEy + uSy By) (4)
Ty = (])W ) 4 eng(p 5,“,>E@ -+ [LL;?)EQJ) . (5)

Introducing 7, » = (1 -F f) ny according to (2) we obtain from (:

()
~—

L Uy + engulla” b atf) — eng q, [D( + a.)]
9 o= A 6
‘ ]u enguliz(1 + a,lf ()
where
u = ,leu + U/l/a/ s D = 1)5/{/) + Di/l)} 5 at = — (/u;/lr) ”T‘ Muz)/“ »

1 - (1) (2)
1 (M(JN) - 117/ /M > @y = (Dz./.u - )zm) LD .

Equation (1) taking into account (3) and (6) becomes

d a; + f od e
a {dj [D(ay 4 )] — T+ aj dy [D(1 4 alf)J} +
O CGETRTET Y L f;) et Ly
I CU{M o ltaf } eng dy \1 4+ aif) et F = A
(7)
where

p = (v, — )7y 4 72) -
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Tn order to turn (7) into an ordinary differential equation determining the
dependence f(y), the “‘parameters™ 719, u, D, a®, a;, a; have to be expressed
in terms of f and its derivatives. It is impossible to perform this exactly
(because it is impossible to exactly replace the Boltzmann equation by an ordi-
nary differential equation). Therefore, the necessity of introducing addi-
tional assumptions arises.

1. The low-field limit of the Sasaki effect (the field £} in [2]) lies practically
in the range of weak heating fields. Therefore, if the field %, is not very much
higher than E(, the energy dependences of the electron distribution functions
in different valleys differ slightly and are close to their equilibrium values.
Therefore, all “parameters” of equation (7), except the strongly distribution
function-dependent times 7,9, are close to their equilibrium values and are y-
independent.

2. Tt is supposed beforehand that the dependence f(y) obtained from (7) may
be represented in the form of domains, where the electron concentration changes
smoothly and the diffusion components of the current 7,, are small, and domain
walls, where f changes sharply with y and the currents 7,, do not change essen-
tially in the walls. In the domains the times 7 2 are determined (as in the homo-
geneous case [2]) by the specific powers

i oI . .
Pry= E:)E = eBp o F = el [M(rer) + (,M(zlz/Z) + M?z;:i‘l)

VO 0% (8)
9,2

calculated (ag seen from (8)) without taking into account the diffusion compo-
nents. The exact knowledge of the form of the right-hand side of equation (7) is
not necessary in the domain walls, because they are supposed to be narrow.
Therefore, we consider everywhere that 7, » are functions of P; 5, determined by
(8). and calculating the relation between ¢ and f for P, (8), we neglect the
derivative 6f/dy in (6).

3. Domain Strueture for Symmetrical Directions of the Driving Field

Let the a-direction and the valley symmetry axis coincide. According to the

assumption of Section 2 about the parameters, in this case a; = a, = a~ = 0,
so that
where { = 9fa*, 2 = 7,/(engu*ppE,), and (7) becomes
d3x d . d¢
S Ty A =) [E — L) — .
a0 @ A a0 - Lo 2, (10)
where

vy = ullyat|D a? =2t + 10D f= L) .

The phase trajectories of (10) p = p(l) (where p = dZ/dy) are determined
from the equation

il

d
» Hg + (2 — ﬂ»)] =20 [5 — L) — A (1)

At first we consider the rather simple case without transverse current
(4 =0). The case with current will be considered in Section 4.
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Fig. 1. The phase trajectories of (10) at 1 =0

We shall restrict ourselves to the case,
when in the honogeneous state there are
only three stationary valuesof { obtained
from the equation

L =0 (12)

and marked by G SO and L)) at
A=0: 102> 0,0 =0 and () =
= — [0, There are three critical points
on the phase plane of equation (10).
They lie on the axis p = 0 (Fig. 1), the
points (£, 0) and (L), 0) are saddle
points and the point (0, 0) is a vortex.
The phase trajectories presented on
Fig. I are separated passing through the saddle points by two separatrixes
whose equations at

abt (13)
are approximately

Lop =l — 22, 2 p=

(the latter is the extremum line equation).

The concept of domains and domain walls that substantiates (10), is
valid only provided (13) is fulfilled. At y? = o2, the separatrixes (and the phase
trajectories near to these) have such a form that the neglect of the diffusion
currents in the first case and of the intervalley transitions in the other are a
bad approximation.

At E, ~ E® the condition (13) can be approximated by

Te < Ty s (12,)
where 7, is the energy relaxation time of electrons. The condition (137) is also
essential for introducing the independent valley model and holdsin cases when
the multivalued Sasaki cffect is possible.

For determining {(y) from equation (10) it is necessary to use the boundary
conditions on the surfaces y = 4~ d. They are formulated in terms of the sur-
face intervalley transition velocity sia (see [11 to 13]) and have the form (at

3 —0)

A¥E) (£~ L)) (14)

2y<

0= O € O (15)
Yy

where &% (£) and L* (&) are expressed in terms of si, in such a way that «2({) and
L) are determined in terms of 77%. The lack of information on the real values
of sT5(l) prevents the usc of the conditions (15). (In (15) one should use
effective values of the velocities inside the space charge regions near the surfaces,
because (10) was derived supposing quasi—neutrality.)

W= -d
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The situation is simplified in two cases:

Case 1: a% <y and a domain goes out directly on the surface (a domain
wall does not separate the one from the surface — sce below). From (15) we
have

[t =-F1. (15"

Cuse 2: % > 9. It follows from this condition approximately

£r — LF(E*) =0. (16)

The equations (16) are analogous to the volume equation (12) and may also

have soveral solutions at a sufficiently sharp rise of s* with P. We shall
restrict ourselves to the case of the “trivial” surface solution')

[==0 (167

The separatrix equations (14) estimate two characteristic Jengths I, = 1y

and l, = y/a®, according to (13) I, > {,. Considering thick samples only

at o} —o00.

1) These considerations are valid only in the case when a domain goes out on the sur-
face. If a domain wall lies near the surface, {* do not characterize the carrier distri-
bution function near the surface. and (16) becomes senseless.




158 Z.S. Grrenigov and V. V. Mimix

(d >> ;) we are intercsted only in the phase trajectories passing near one or both
saddle points?).

If onl} one surface value of £+ lies outside the interval (£(-), £()), then such
sample is characterized by a segment of an unclosed phase trajectory passing
outside the central region limited by the separatrixes (Fig. 1), and only the
distribution {(y) (always stable) corresponds to the given Z£. Six types of such
solutions {(y) are possible. Their structures are shown on Fig. 2; the desig-
nations are listed in the caption (see also [15]).

It both surface values + lic within the interval ({(=),2(9), then the sample
is characterized by the segment of aclosed phase trajectory passing within the
central region limited by the separatrixes (Fig. 1) and surrounding the vortex
(0, 0). The given {* correspond to an infinite set of possible distributions &(y)
being an interchange of M-structures (M*M--structures) separated from cach
other by M~M*-type domain walls (Fig. 3a). This corresponds to a multiple
circulation around the vortex. Only three simplest structures from this in-
finite set (Kig. 3b, ¢, d) are stable and the remaining ones are certainly nnstable,
because the volume M~M*-wall (as distinct from the S-S*t-wall (Fig. 2a)) is
unstable. Consider a fluctuation displacement 8y, of the narrow domain wall
from its equilibrium position at y = y, supposing that it takes place for
unchanged carrier distribution in the rest of the sample. The equality of
the currents 7,5, near the domain wall is broken (i) s,(y, + Sy, + 0) ==
= 11,20(y -+ 8y, — 0)) at this new position of the wall, this inequality is such
that it attempts to return the S~S*-wall in the equilibrium position y =y, and
to displace the M~M*-wall from this position.

In fourspecial cases, when the boundary conditions (15" or (16") are realized on
the surfaces of a sample, the following structures are possible: A) i+ =1,
{7 = — 1, symmetrical S~St-structure (Fig. 2a); B) {* = 1, {~ = 0, St-struc-
ture (Fig. 2¢); C)Ct = 0,{~ = — 1, S~-structure (Fig. 2b); DYI~ =+ = 0. in
this case three structures depicted on Fig. 3b, ¢, d are possible.

4. Influenee of a Transverse Current on Domain Struetures

In the three-valued Sasaki effect the difference £ —L(¢) has the form shown
on Fig. 4. For small / on the phase plane of (10) three critical points exist on the
axis p = 0 and at 1 <1, (Fig. 4)

FEOA) = EE0) + MDA FO() = — kO, O R S 0. (A7)

As for 2=0 the points {(=)(1) are saddle points through each a pair of separatrixes
passes. However, as distinct from the case 2 = 0, these separatrixes do not

7
_7//
o7
/ r=i(0)
/J 5
kN Yy §”(0) f”(/l) Fig. 4. The function £ — L(Z) and the position
L of the critical points

%) The domain structure for nonheating ficld atl, < d < I, and at the distance ~ Iy
from the surface in thick samples with more than two valleys is considered in [14].
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Fig. 5. The separatrixes (dashed
lines) and the trajectories (solid L
lines) of (10) at 2 > 0. The lines

dp/d{ = 0 are dash-dotted A

coincide, generally, with each
other. The mutual arrange-
ment of the separatrixes de-

pends on that of the points N/ ISk Q)LZ' 5 ';) \_A 2

{E)2) and Z$3)(4). The quan- [ | T N (]
tities C{*)(1) are the values of 5 ] . / L _
f on one side of the narrow ;/
domain wall, if on the other } / / oo i !
side these values are ((F)(1). A '
They are determined from ’ / // \
the approximate conditions of | M
carrent continuity through l ! [
the narrow wall
EENI) = — L) + 2 (18)

or

L) = L9A0) 4 (1 — k) 4. (18"

Since k() =[1 — (dL/dL)|:_ &)L, then at (dL/dE) > 0 the inequalities £ >
> C9(0) > ZB(4) are fulfilled and (at 2 = 0) the family of phase trajec-
tories takes the form shown on Fig. 5. The third critical point is a focal point
(as shown on Fig. 5) if the condition 0 <722 < (x2/y?) (L/EO(R0) L 12} =22 is ful-
filled and is a nodal point, if 12 > 42, In addition to the mentioned points we
are interested in the point (0, {,) shown on Fig. 5; at A = 2, this point approaches
the point (0, (9) and then gets into the halfplane & < 0.

Consider the influence of a current on the boundary conditions at y = 4~ d.
Our analysis is based on the assumption of the homogeneity of the driving

Fig. 6. Experimental scheme for studying the {V b
transverse conductivity: a) scheme with in-
homogeneous & and ¢, usedin[10]; b), ¢) scheme

with homogeneous B, and i,
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field &/, and the transverse current 7,. In the experiments [10] these two assump-
tions were not fulfilled (sec Fig. 6a). On Fig. 6b, ¢ the diagrams of possible
experiniental schemes are shown in which the assumptions of the homogeneity
are fulfilled. On Fig. 6b the transverse current is applied by capacitive elec-
trodes which do not shunt the stationary driving field E,; the current 7, must
change with time slowly cnough to keep the quasi-stationary situation. In
this case we have on the surfaces

= +gk + eNF
—ifle = & (sfnf — sfnd) + - T
. (19
—+ I 4o , (JZ\>i ) )
— iy le = + (sgnf — sfnd) £+ —2,
ot
ONT,
where Nty are the sulfcue electron concentrations. Supposing i—at" =
4+ NF) we get
— LEeE) — ) (20)

instead of (13). At very small and very great surface velocities of inter-
valley scattering the boundary conditions are simplified.

Case 1: (a3 < y)

(F=+1417. (21

Case 21 (% >7/) — LE(@) — A == 0; for the “trivial” form of L*(¢) and
small 27s we get

LE(A) == k2, k> 0. (22)

In another more cumbersome experitental scheme, depicted on Fig. 6¢, both
E, and 7, may be stationary. The longitudinal conductivity of the sample
is given by nt-regions, s situated on the borders of the samples whose doping
is chosen so that: 1. the multivalued effect is absent there; 2. they is a small
spreading resistance for the transverse current contacts 1,17; 3. it is possible
to obtain sufficiently great fields F,. The current 7., and the ratio nya/n,
{i.e. the value f) arc continuous on the boundary between n-and n*-regions. If
the electron concentration in the nt-regjon is far in excess of 2n,, the trans-
verse current field in this region can be peglected as well as the influence of
the contact with the weakly doped n-region on the electron distribution in
valleys. Then f+ == 0, so that

EEAY = 4. (23)

Thus, the n*n-contact behaves as a surface with infinite intervalley transi-
tion velocity, and kf = 1 (compare with (22)).

We consider at 2 > 0 four limiting cases, mentioned at the end of the previous
section. In case A, when {* —= 4 1 + 1, the inequalities {~ < {() and
[0 7+ are fulfilled (because &) — 1 at () — 1), but beginning with the
cuuem Loe=dp= (L ZO0) k), E7(A) > {7 (A) is fulfilled. (The currents /.
in g@neml, are not sma H thus these estimations are valid onlv at 1 — Z9(0) <
L kU For 1 < iy the solution has the form of the S~ S*—stluc‘rure with a
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Fig. 7. The domain structures 143
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narrow domain wall that displaces with increasing A in negative direction and,
as will be shown in the next section, at
1 209(0)
R
2

e = 2] (24)

2
where p' = 3—?%::“0)% ;ﬁ;g(”@’) , the S*-domain occupies almost the whole
sample leaving for the S-domain a layer with thickness ~ 1/p" = I, near the
sarface. This rudiment of the S~-domain vanishes at 4 > ;. All stages of the
structure change are shown on Fig. Ta.

In the asymmetrical cases B ((* =14 2,{" =kgd) and C ({7 = — 1 + 4,
= k{A) the same (as for 2 = 0) S*- and S--structures are retained. In
addition to this in the case C at A > 0 the SM*-structure, not found at 2 = 0.
is possible; the narrow S~M*-wall behaves as the S-S*-wall in the case A, that
causes the same TC of this structurec. The M~S*-structure, analogous to the
latter one, is possible in the case B at 2 < 0.

In the case D, when {* = k74, at 2 = 0 we have three solutions. This situa-
tion remains at 4 << Jg; at 2 > A, it follows §, </ {*, and solutions in the form of
the M~-structure and the M+*M~-structure are impossible. The solution in the
form of the M+-structure is unambiguous. The current dependence of the M*M~-
structure is of intercst. The M*-domain presses soon to the surface y = d with
the rise of 4 > 0 leaving the whole volume for the M~-domain, i.e. the wide
M+M~--wall moves in the direction of the S~S*-wall in the case A (see Fig. Th).

5. Tranverse Conduetivity ol Samples
with Various Struceture of Solutions

Let us calculate the transverse voltage

a d
V=[Edy =a by [{(y)dy. (25)

—~d —d

11 physica (b) 68/1
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At small currents, when the formulae (17) are valid,
Vo~ Vo -+ 2dat B, 4+ 2D EAL)

l ; (26)
where A(}), the displacement of the domain wall (narrow or wide) connected
with the transverse current is positive, if the “+”’ domain (S*- or M*) widens
at this displacement and is negative otherwise. The second term on the right-
hand side of (26) characterizes the “‘ordinary’ transverse ohmic resistance of
the sample

2d k)

U,

3V =1y (27)
((27) takes the traditional form at k(+) == 1 when the transverse current docs
not alter the valley distribution of carriers). The last term on the right-hand
side of (26) determines the ‘“‘extraordinary’ transverse resistance connected
with the current displacement of the domain wall. 1t can be both positive
and negative at 1 > 0.

In the case A at A > 0 the domain wall displacement widens the S*-domain
and A(2) > 0. Let us write the thickness of the S*- and S~-domains for the cal-
culation of A(4) as

C+
d* ’i()f d¢/p@), A= [ dijpl), (28)
ez o
where Z(+) - z is the value of £(y) in the ST-domain near the narrow domain wall
separating it from the S~-domain, and
2AA) =dF¥ —d~, 2d =dt 4 d-. (29)

2z is determined from the second equality (29) and is substituted into the first
one. For wide samples the main contribution to the integrals d* make the
values of ¢ close to £{3), g0 that it can be taken,

(&) = pi€ — 19, (30)

and p)y ~ + p’, respectively, where pl. = (dp/dD)[:—zb.
The value ofz is determined from the quadratic equation obtained by the inte-
gration of (28) taking into account the smallness of 1

22 202(kD) — ) — (1 —0)2 e~ =0, (31)
If the strong inequality, opposite in sense to (24), is valid,
1 7

2= [1 — FCO(0)] e—Pd o~ 22)

2 (L= EDO)] e Al g (32)

In thick samples (p'd > 1) the “extraordinary” resistance is greater than
the ordinary onc:
3V, k) — 1 th o epd

Vs BN 33)
3V, GO 1 — 260 pd ()

When the condition (24) is fulfilled

(1 — ¢ 1»)(()))2 oy ) 1 A
2 o - o —2p'd ~ e 34
FE o -1y C T AR P m( ) ' B0
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Fig. 8. The transverse current-voltage Fig. 9. The transverse current-voltage
characteristics in the cases A, B, and C characteristics in the case D. (a) M*-struc-
ture, (b) M--structure, (c) M*M~-structure

the rise of 3V, gradually slows down with the increase of 4 and the contribution
of 3V, predominates as shown on Fig. 8, curve A.

In the cases B and C, if the one-domain structure is maintained, the “extra-
ordinary” resistance is absent; V(%% = 4 2da*{(-WE, and the current-voltage
characteristics take the form shown on Fig. 8 (B and C). But if the S"M*- and
M~-St+-structures arise step-like, the characteristics are close to the ones in
case A.

In case D three variants of the current—voltage characteristics correspond-
ing to three (stable at [2| < 4,) states are possible. They are shown on Fig. 9.
The current %, corresponding to M* == M~-transitions in the order of magnitude
is

. . kT 1 e

1 ~ enga T bl dg = engux — '('k(()) + 1 l/m (35)
The characteristic ¢ on Fig. 9 corresponding to the M™M~-structure at 2 = 0
is the only one from all the considered ones, for which the Erlbach effect (i.e.
negative transverse conductivity) appears. We did not succeed in exactly cal-
culating the negative resistance at 1 = 0

o017
IRI>Z~°~~£‘£—.EL, (36)
e engDx

The homogeneity of E, and 7, supposed above is difficult to realize experi-
mentally (see Fig. 6b, ¢). On the other hand the easily realized experimental
scheme (Fig. 6a) cannot be described theoretically in any simple manner.
There are some considerations according to which the transverse current char-
acteristics in some voltage range are qualitatively similar to the ones on Fig. 9.
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