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The dependence of the magnetoresistance (MR) is studied of a many-valley semiconductor
with thickness 2 d (— d < y =< d) comparable with the length of the intervalley scattering
and/or the cooling length when the correlation between them is arbitrary. If a weak
clectric current flows along the z-axis the MR monotonously reduces in a magnetic field
H = H, when the thickness decreases and for d — 0 it becomes equal to zero. In the magnetic
field H = I, the MR can both increase and reduce and it always remains non-negative
when the thickness decreases.

Wsyyena 3aBUCHUMOCTL, MATCHETOCOIPOTHBICHUA MHOTOJOIMHHOTO MOJIYIPOBOJ-
HuKa OT Toamunel 2d (—d £y = d), Korga oHa cpaBHUMA ¢ JIMHOH Merkiy-
AOJHIHOI'0 PACCeANU U/UAU [JIUHON OCTBIBAHHUS, a CIabblil aeKTpuueckuii TOR
nporeKaer Baoab ocu x. Ilorkasano, 4yro B marnutHOM nosie H = H, marmeroco-
OPOTHBJIEHNE ¢ YMEHBIIEHWEM TONLIIMHBI MOHOTOHIIO ITafgaer u upu d — 0 obpatia-
eTC B Hyab. B MaruurTHOoM nosae H = H, Ipy yMeHDIIEHUH TOJNIMHBI MATHETO-
COIIPDOTUBJICHHE MOMKeT Kali NMajlaTh, TAK M PAcTH, 0CTABAACL BCerja HeoTpuIa-
TEJIbHBIM.

1. Introduction

A transverse magnetic field H does not cause a deviation from the equilibrium
carrier distribution in the volume, when a weak electric current flows through
the sample which is thick compared with all characteristic lengths. Quite
another situation takes place in a sample, the thickness of which is comparable
with any of the characteristic lengths. In this case the carrier distribution in
the volume of the sample can deviate from the equilibrium distribution which
results in a size-dependence (SD) of the magnetoresistance (MR). Two types of
deviation from the equilibrium distribution are known in monopolar semicon-
ductors. Namely, the deviation from the equilibrium distribution of electrons
with respect to the energy (valleys) in samples with thickness comparable with
the cooling length of electrons I, — y/ D 7, (the length of the intervalley scatter-
ing is L; = y/ D v;) where D is the diffusion coefficient, 7, is the energy relaxation
time of electrons, 7; is the intervalley scattering time.

The first deviation from the equilibrium and the SDMR connected with it
was theoretically considered only for the one-valley semiconductor with iso-
tropic spectrum of carriers [1 to 3]; while the second one was studied in papers
[4 to 6] for many-valley semiconductors where due to the condition L; == d > L,
the authors neglected the redistribution of electrons with respect to the energy
(here 2 d is the thickness of the sample).
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A theoretical study of the MR of a many-valley semiconductor is carried out
below for an arbitrary correlation between d, L., and L;, but it is supposed
(like in [1 to 6]) that the free path is small compared to d, L,, and L;, and hence
the size-effect on the free path is absent.

2. The Basie Equation

This paper deals with the MR of a rectangular many-valley semiconductor in
which the current flows along the x-axis, a transverse magnetic field H (H, =
= Hsiny, H, = H cosy) is present and only one size of the sample is limited
— d < y < d. In this case the distribution function F} in the x-th valley, the
field E,, and the current j, depend on the coordinate y only. The fields £, and
E, do not depend on y due to the condition rot E = 0. When quasi-elastic
mochanisms of intra-valley scattering are predominant, F;,‘x)( ) = Fm( y) +

Fe, ), FY = Z F) 5 (e — &)/ (3 8 (e — &) and F < FS, so the
»

equation for F§ is as follows:
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J is the number of valleys, W2, Wirs) are the probabilities of the intra- and
intervalley scattering, respectively. The o; ,;), 057)], () can be expressed in the
system of main axis of the ellipsoidal energy surface of the x-th valley as follows
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Here the axis 1 is directed along the symmetry axis of the ellipsoidal energy
surface of the x-th valley, e is the charge of the electron, 1;; are the components
of the momentum relaxation time tensor.
The fields E, and B, are determined by the conditions

az,_zf“) =0, Mzdy~fdy27(’) 0, (4)

—d -—d x=
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where
o
(o S
J = i) de
0
Tt is clear that equations (4) are true if the quasi-neutrality condition takes
place, i.e., if the screening length is small compared with the characteristic
lengths L, and L; and the thickness of the sample.
Tn the following we shall restrict ourselves to the linear approximation with
respect to the external field Z, (weak clectric current Js)-

3. Temperature Approximation

1 the time of the electron—clectron collision 7, is considerably less than 7., 7;
it becomes possible to introduce the electronic temperature 7', which will be the
same in all the valleys,!) i.e.

(x) e &kl
Fy == = e,
A (A ACTEY

Tn order to find the temperature 7' and the concentration 1, in the x-th valley
we obtain from (1) the total heat continuity equation (the equations (1) are
multiplied by &, integrated with respect to the energy, and summed with respect
to the valley) and the current continuity equations in each valley (the cquations
(1) are integrated with respect to the energy). In the linear approximation with
respect to the E, these cquations are as follows:

SHT

S(T) = T j 5

= — 81 = — 7&1’7‘/]:0(18’ (5)
0

0

@MW@/%%lggmﬁWﬁm_
YTy dy? A S dy \ Gy Dy,

* ¢ F(ox #( o

12 d?ng DA 5 1 D:f/(i;x> ci L d*7 Cy(!/) B»/(l . Lon, — g

i Oxpp 7 DY + Sy 7 = :
YU

W a2 Yy ST B S .
ng x=1 dy o Ay \ &y Dy p=1 M Tap

(5)

Moreover, — S(T) = — S(Ty) — (dS[AT )y, (1" — T) = (1" — Tyt Ty where
T, is the lattice temperature and 8(7,) = 0. In the semiconductors considered by
us all 7, 5 are equal and we shall denote 7,5 = AT

1y It is supposed that the electrons of different valleys collide as frequently as the elec-
trons of the same valley. That is why the increase of the concentration of electrons leads to
an increase of the intervalley energy change and hence to equal temperatures in the valleys.
Minor differences in the distributions with respect to the energy in the valley are not taken
into account because they do not lead to new qualitative results, and the corrections to
the quantative characteristics are of the order 7./, and Too/7;. Lt is essential to note that
the approach of the total electronic temperature is far better than the difference electronic
temperature in the valleys as it is follows from [7] for slight heating.

52 physica (b) 58/2
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The equations (5) and (6) ought to be supplemented by the boundary condi-
tions on the surfaces y = + d:

1 oo )
Uyk d) = + S5 k[T(+d)y — Tl hn,, U= 2 U = > [ e de .
a==1 Ne=1
A (M)
G ) = £ 3 ST (e d) — (S )] (8)
=1

Here /
D; f P fode, = £ = or i g de s = [( ¢ )20::<.“) de,
/'/* e fodes JAVY A fode.

0 )] 0

Z bis (9)

+ + 4 . vy ~ . .
S;" and Sy are the surface speeds of the energy scattering and the intervalley
scattering, respectively.

. o) st (¢ % g s 1 .

Analysing the value 4 = Cyﬁ, /Sy — D!/ﬂ/‘>/1).,/z, it is easy to obtain that:

1. 4= 01if H = H, and the z-axis is directed along the axis with
respect to which all the valleys are situated symmetrically (e.g.
(100) type axis in Ge). ‘ (10)
2. A~ H? in weak magnetic field (w, 7, )2 <1, if ;.= "L’Z/ (e/kTy)" .
3. A~ H™? in strong magnotic field (m, 7,02 > 1,if 7, =1l (/1) -

In these three cases the sccond terms on the Lh.s. of equations (5) and (6) are
not essential because in the first case they are cqual to zero and in the two others
they give a correction of higher order (with respect to H in weak field and to
H-1in strong field) to n, and 7' than the first terms on the Lh.s. of equations
(5) and (6). So the equations for defining the temperature (5) and the concen-
trations (6) are independent. The same situation takes place for the boundary
conditions (7) and (8) too.

Consequently in these three cases the size offect is the algebraic sum of two
effects studied before.

a) The size effcct on the cooling length L, [1, 2]
<L§ = Te C;U (771/://5«3’7/ — C.I.;(I//DJX«/) from (5)) .

b) The size cffect on the intervalley length L; [5, 6]

(due to the quasi-neutrality condition in (6) thelc exist the (A — 1) intervalley
length L2 =7, D, [1 — (D, — D,\V)2 D¥,1, & = 1 to (2 — 1). In the follow-
ing we shall mention simply the intervalley length L; having in mind one of
L, and take that inequality which will be fulfilled in the best way).

As the method of equations decision (5), (6) with the boundar} condition (7) to
(8)is stated in [1, 2, 4], below (Scetions 3.1 and 3.2) we shall give only the results
for some particular cases supposing that the conditions (10) are fulfilled.

Quite another situation takes place when the conditions (10) are not fulfilled
and (5) and (6) do not split. Then the decisions for 1" and n, can be easily ob-
tained only in the infinitely thin semiconductor,?) where the r.h.s on (5) to (8)

2} In Sections 3.1 and 3.2 such a semiconductor for which the conditions d/ L. d/L;
(ST v, d)/LE (ST 11 d)/L¥ < 1 are fulfilled we call infinitely thin. But here d/L¢e > 1 unlike
to Section 4 where d/L.. < 1 too.
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can be neglected. It appears that the MR of the infinitely thin many-valley
semiconductor is non-negative. Moreover for I = H, the MR is always less
than the MR of the thick sample (4> L., L;) and for H = H, it can be both
less and more than in the thick sample.

3.1 One-valley semiconductor with anisotropic spectrum of electrons

Tt the directional cosines of the axis 1 relative to the axes x, ¥, 2 are cos ¢:
sin ¢ cos: sin @ sina, respectively, we shall obtain the following expression
from the equations (5) and (7) for the MR in weak magnetic fields (F << 1):

Ao Ap
g ou
a(0) — o(h) ) ! . (1 + a)sin?y ) v
== . - T — b2 (] — a?)| / Yo (1 — f2) — : 1
(0) (L= @) | Ao ¥+ (= ) T g costa) )
9 {eosy +-a [cos y — 2 sin® @ cos x cos (x i’;}f)]}z ”
(1 +acos2q)[l +a(l —2sin®g cos? )] .
(12)
' tanh 7 s2 C
Agy = 1 — 2 B T
doe =1 =] (1 T oL o 5/2 Jr,s_)
Here (k) is the conductivity of the sample,
by = (7%/m) h , b2 — b3 (1'(5/2 + 3 9))/(L'(5/2 + 8))
o M H1R2E bgeotho, e S
1 bghgr +(gh +gp) ecoth 26, o Ly’
13)
o X 7}?{7 T ity T (
Le =D, % = L’ (m) T2 <’ml T mz) ’
o— (T T} (T2 Tu po PR LE)
T \my m_,) my My I'(5/2 sy I'(5/2 + 3s)
Tn the considered case of weak magnetic fields
D, = D" =D, (h = 0) = DO (52 + ) [l 4-a (1l — 2sin*¢ cosza)];l
ff)—) T (139
DO = ~3~y(8) & <m—> fode . I

Index zero at 8, and {, in (12) significs that the meaning of these values is taking
for h = 0.

As (11) shows, the cssential difference of the regarded case of the anisotropic
semiconductor from the isotropic is the SDMR not only for H = H, but also
tor H == H,. The dependence of the MR on the thickness of the sample is defined
by the value /g, which coincides with the value 4 multiplied by f2. The value A4
was introduced and analysed in detail in [1].

52%
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The MR reduces when the thickness decreases and in the infinitely thin
sample it tends to a value depending on s. The MR of the infinitely thin sample
as a function of ¢ has a minimum when s = 1 as it follows from (11) and the
table in [1]. Morcover the minimum of Acg/g, for H = H, is positive but for
H = H,it is equal to zero (the latter takes place in the isotropic semiconductor
too [1]).

The even Hall effect in the anisotropic semiconductor depends on the thick-
ness too (in the isotropic case the even Hall effect is absent) and for bE L 1 we
obtain

E, asin2¢@sins bf(d — a?)

E, 14a 0708727(]9
b2 (1 — a?)asin 2 ¢ sin (y +«) 9 aiin?
T U b acos 2o Ao [(1 4 @) cosy—2asin? g cosx cos (o )]

1 + acos 2 (;jsmy o

(14)
In the strong magnetic fields we shall distinguish two cases: a) H = H, and
by H =H,.
a)
Ao _
oy
tanh §,, 82
_ R e
T T T ’/ 1'7~7"7 2 - R T
1+ f9<]. thag lthE i —)azsin22<psin2a(lga)‘1 [1+a(l—2sin2pcos?n)]™
- R 5/2 —s
(15)
{{72 —(1 — A(i @ sgiqo qmﬁ (16)
E, g,) 1 +acos2q
Here
5 17(5/2)
1 —a®)bg>1 = o -,
=@ b>L b= 5Ty BR — )
Sy _ (17)
9 I s 1
D, = D {b;",é, 52;2 ig; (1 +a)[l — a(l — 2sin? @ sin? a)]} :
b)
Ao, (1 4 N) \
Gy tanhd, . sz
1+ N(lﬁ‘**‘—'sﬂy“) l
& 0. 52+ { (18)
N a? sin? 2¢ cos? x l
T o)l fa(l—2sin2gsinia)]’ |
, I'(5/2)
, b, (1 ) et
B, 1 —a(l—2sin?gcos®a) o9 g g 0
E, 1 4+a(l—2sin?gpsin?«) V(1 tanho, . 82\ (1%
T r2 v 7(38 “he E/T27+T9
Here

(1 —a?b;>1, D, =1 —a% DV [1 —a? (1 — 2sin? @ cos?x)?]™t. (20)
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Attention should be paid to two essential differences of the cases a) (15} to
(17) and b) (18) to (20). In the first place for I/ = H_ the MR reduces when the
thickness decreases and in the infinitely thin samples it becomes equal to zero
when s = I, but the MR increases for H = H,. Inthe second place L, —~ 0 (17),
(13) when H, — oo, i.c., the observation of the SDMR is impossible when H, -0,
but L, tends to the finite value (20), (13) which slightly differs from L when
H, — co.

3.2 Many-valley semiconductors

Tt is difficult to caleulate the SDMR for a semiconductor with any number of
valleys without specification of the sample orientation, therefore we have con-
sidered some particular cases. We shall give below the expression for the MR
in weak and strong magnetic ficlds for the case when the condition (10) is
fulfilled.

1. There are two valleys which have the directional cosines of the rotational
axis (axis 1) relative to the x, y, z axes as follows: cos ¢: - sin ¢; 0.

Tn weak magnetic field (b5 << 1)

9
Ai =02 (1 4-a) [l — D, {(1 — a) cos?y [— L-a — Ao +

T, 1 —a?cos®2¢q

L@, =0, =1) — D) (1 + 7]0)} + (1 — @ cos 2 ¢) sin® p X

1 — a?
__ (BbY(S. 1470 T _ 0 P2 (¢ 05 —1 —D®2(§.
X[l DY%d;) (1 Fy® + T 7 uf cos? 2(79(1 ¥ ))+}‘ (20%05)—1 (0] (57)) },
(21)
where
2 9; i 1 446,
] — - P Tt 235, (gt - A
O R L] G e
T T g g7+ 2tanh §, (I + g ¢) tanh 20, + g + ¢
(22)

ez, D, DV=DO(+tacos2g), D= DY (52 +3),
N a?sin?2 ¢  tanh 0;
D) = ——— L4

(9:) 1 —a%*cos?2¢ 0, o

When H = H,and B2 (1 — a?) > 1

tanh § 52
1 e

Ae 1— a? T, e 5/2 — s DO I(1j2 — 5)

=Y T e T e s [ S T
Gy Sy @ 1 — &%) T b2 (1—a®) I'(7/2+5)
(23

When H = H, and b5 (1 — a*) > 1

A 2 ang? © -1
A S [T AL 7,

0 —
p_po_Lt— =

1 — a2 co?ﬁ?p )
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. Two valleys have the directional cosines of the axes 1: cos @; 0; 4 sin -
In thls case the intervalley redistribution is absent in any magnetic fwld that is
why such semiconductor in the scnse of the size effect is equlvalcnt to the one-
valley semiconductor. The SDMR will occur only when H = H, and it can be
obtained from (11) to (17) supposing that in (11), (12), (14) to (16) ¢ == 90°,
& = 90° 9 = 0 but in (13) and (17) ¢ = 0.

3. If in two-valley semiconductors the axis 1 of one valley coincides with the
y-axis and, of another, with the z-axis, analogously to the previous subsection
the SDMR is obtained from (11) to (17) \\hcn =90 & =45° 9y = 0.

4. In three-valley n-Si when the #, y, z-axes coincide with the fourth-order
axes the size effect will take place only when H = H,.

In weak magnetic field (b << 1), when 87 = 87, we have
Ao b2 o ; tanh &y,
70:3—%—;2{@ — @ (L a) o, + 2 aZ[_(l — a1 o zh)+
tanh 8oy
+ 3+ cc)(l 1 af‘;“sz z)]} (25)
24
3 +a 1 +a .
— po? %59 —po- T % 26
D, 3 5/2 + s), Do =D ng((3 a -+ 2a) (26)
but when 5§ (1 — a2) > 1
Ao 9 j tanh Oe 52
1 — a2 — —— i .
e a>{1 {1+ %5/2_3)%
8 tanh ds; -
+§a2 I:l —f2 o 2521]}; (27)
D 1 (7 2—35) Dy I'(52—5)  3-—a F(5/2+3/9) St — -
DOT (12 4s) DOIGR sy 30 —a)b I'(52 15 7(A9(8£

5. For four-valley n-Ge where the current flows along the [100] axis and
y || {0117, z || [OI1] we have

Ac b1+ a) »
0, 9 3 o tan}l (3&; <) 4o |
‘ oy T '3 —a
(I +a)@—a)p | tanh o, s2 )1
X2 1L+ 0 s
y[ 3+a l -1 9, ZJFSOONVJ%‘
8 a2 ' tanh 6, ,
+3 — a{(l —a + '—7u sin? y){ —_—— ?0 Lo (L A+
6 (1 —a? | 4 a? covy i .tanhégz-,r
+f——§——* " sin?y (I — %) 4 3 3.4 1 —f2 fégj**sgf +
cda(1 4 a) . , ) (th ()1“0 N2
ey (! o, T
80 .
" 2 (1 + a)(3 —a) ., 2 ‘mnb O,(L‘ o) 4;7511]2'}/ ’ (29)
3 +a oY 3
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where
B<t, DY = po’ pY — pwd
30
o DW<Ltmajmw 530)
3+ a
When H — H,and b3 (1 — a?) > 1
Ao
Gy
+tamh O s tanh iv 16 a*
LT ETIIC) 0, "B s 8y O (1—a) (9 —a?)
-k 9 —5a2 A tanh 09, ., 4a? o
B4a—— G i
6(1]5 3 —a
(31)
where
Dy 3B+a)l (52 — ) 1 D I'(I2+s) 9-—5a
DU T 9 —5arl'(5]2 +5) B3l +a) pO T I(12—s) (I—a?) (3+a)2bd’
(32)
When H = H, and b} (1 — a2) > 1
As ]
oy
: 9(1 —a?) (3 +a)
O — ( ) (

77747d2 tanh 1 " tanhov,., 4a |
9 . 2 1 i o« 3 ' A,L%O R
( 5a { szg 5a2 0 =61 H: - a— ()” Slig T :|

Di: 9(L — a?)
DY, 9 —a

(33)
So the SDMR takes place in the field H = H, too for the many-valley semi-
conductor and for the anisotropic one-valley semiconductor. Moreover the MR

can both increase and reduce, but it always remains non-negative when the
thickness decreases.

4. Non-Temperature Approach

The effective elcetronic temperaturc approach is not justified, if the concentra-
tion of electrons are small, or the sample is so thin that the condition d > L. is
not fulfilled. Tn the second casc the clectron—electron collision term in the
kinetic equation is not the main one even for 7., € 7., 7. In a weak electric
field it is necessary to suppose that ¥ = ngfy [1 + f“)( i)]. Excluding the
fields E, and K, we shall obtain from (, ) the cquations for f( which should be
completed with the boundary conditions

i = d) = 4 STERL ) (34)
Here the functionals S (ft), ) characterize the relaxation of f{*)(e, ) on the
surfaces y = + d and generally speaking, they have the same structure as the
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functionals S(f, ). The tunctionals S appear on the r.h.s. of equations
(1) after the substitution of F(® = ngy f, (1 4+ f{¥)) and they characterize the
relaxation of the functions f{* in the volume [3].

Let us consider the simplest but quite important cage of the infinitely thin
semiconductor (sce the footnote on page 812). Then we canneglect the functionals
S, in (1) and in the boundary conditions (34). So the decisions of the equations (1)
are as follows f(¥)(g, y) = D) y/d, where the functions $(¢) can be easily found
from (34). For an arbitrary magnetic field having the components H, and H,
and for an arbitrary dependence of 7;,(¢) in the A-valley semiconductor we obtain

A h
o _ o (35)
Go a(0)
where
(0) Y ~ 232 o ) da
ohy = — -~ 5 Ve Tl A ) oging,sin®e) —
® e ’ e P.(x, h)
Z({ a2 077 7o) da &
— {a sin 2 ¢, sinox, — (1 — @) h'izg(l) sin 7/} X
"y
‘ Oo:cW e Th(n) dm [ ) ) Tao() '}
— 2 Hasin 2 ¢, sina, - (I — a) h-"=—"sin
/fgl Pg(x, h) 7 i ) My, ’)/J
% - - o e } . (36)

i 2312 0% 7yy(xx) da :
ﬁZlf Py, by o acos2an)

o = (e¥kT) A my D is the isotropic conductivity; x = &/k1'; cos ¢,, sin ¢,
cos,, and sin g, sin «, are the directional cosines of the axis 1 of the x-th valley
with respect to the axes z, y, z; Pua, h) =14 a (1l — 2sin? ¢, cos?x,) +
+ (1 — a)h? (122(96)/77@2)2 sin? .

From (35) to (36) we note first of all that the MR does not depend on the
z-component of the magnetic field, i.e. the MR become equal to zero when H=H,
and d — 0. When d — 0 and the component H = H, is present the MR can
both become equal to zero and remain the finite depending on ¢, and «,.

5. Conclusion

It was shown in the Sections 3 and 4 that the SDMR takes place not only for
H = H, but also for H = H, in the many-valley and one-valley anisotropie
gemiconductors. It is essential that the MR in the first case become equal to
zero when d — O but in the second case it is non-negative (zero, or positive) (35),
(36). The characteristic lengths L, and L; tend to a finite value (20}, (24), (33)
when H = H, — oo while L, -~ 0 and L, — 0 when H = H, — co, ie. for
H = H, — oo the SDMR disappears.

If the lengths L, and L; esscntially differ there will be two regions (d =~ L, and
d =~ L;) of noticable change of the MR when the thickness decreases but for
L, =~ L; there will be only one region (d =~ L, ~ L;). In case when L., < L,,
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L; there will be one more region of change of the MR from (11) to (33) and (35) to
(36) when d = Lee.

Tt is interesting to note that the usage of an anisotropic deformation in many-
valley semiconductors can considerably facilitate the determination of the charac-
teristic lengths L, and I;. The task gets simplified only if the electrons are in
the minima which become the lowest after the deformation. In such a case n-St
which has been considered in Section 3.2, point 4 becomes a two-valley semi-
conductor (Section 3.2, point 3) when it is strained along the x-axis, and becomes
a one-valley semiconductor with ¢ == 0 (Section 3.1) when it is compressed
along the x-axis. In the case of compression of n-Ge (Seetion 3.2, point 5) along
the y- or z-axis we obtain the two-valley semiconductor of the Subsection 3.2,
point 2 or 3.2, point 1.
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